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Abstract 
 
This work proposes a multi-scale study of the properties of leaf sheath date palm fibres currently 

considered as agricultural waste. Firstly, by using optical and electronic microscopy, two main 

types of bundles were identified which have profoundly different structures. Biochemical analysis 

and X-ray diffraction (XRD) revealed a low degree of crystallinity but a significant lignin content of 

about 17% giving the bundles a very cohesive structure as well as a good thermal stability in 

addition to a singular behaviour in dynamic vapour sorption. An average cell wall stiffness in the 

order of 16 GPa was highlighted by Atomic Force Microscopy in mechanical mode but tensile tests 

on bundles have revealed low stiffness and strength but a high elongation. These results 

combined with the cellular structure of these bundles, provides the potential of these wastes as 

cost effective and environmentally friendly composite reinforcements for high energy absorption 

and improved acoustics functions. 
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1. Introduction 

Over the past two decades, the use of plant fibres as reinforcements in composite materials has 

rapidly increased. These fibres have attracted major industrial interest because of their low price, 

competent specific mechanical performance [1,2], as well as potentially low environmental impact, 

lower than ubiquitous glass fibre reinforcements [3,4], especially if the former are secondary fibres 

(i.e. fibres are by-products from some other primary utilisation of the plants). 

Plant fibres are derived from plant cell walls and therefore can have different origins within the 

plants. Some of them are found in the xylem of the plant, for example, fibres derived from wood 

[5]. Others are derived from the seeds, as in the case with cotton [6] and kapok [7]; these seminal 

hairs are not ‘fibres’ in the botanical sense of the term, but trichomes possessing a very specific 

structure and architecture. Due to their high microfibrillar angles and their very thin walls (for the 

kapok), they exhibit generally low mechanical properties. The other plant fibres are generally 

derived from the phloem of dicotyledonous plants or from tissues located at the periphery of the 

vascular bundles [8]. Among the phloem fibres, primary and secondary fibers are distinguished; 

primary fibres extracted from the cambium have the best properties because they have a structural 

role within the plant [9]. These plant include but are not limited to nettle [10], flax [11], hemp [12], 

and jute [13]. The fibres of the vascular tissues can be located in the culms (bamboo) [14], in the 

leaves of the monocotyledons (sisal or abaca) [15], in the mesocarp of the fruit (coir) [16] or 

around the trunks (palm trees) [17]. 

Date palm is cultivated extensively in North Africa and the Middle East, especially in Egypt, Iran 

and Saudi Arabia. In 2014, the global harvest area for date palm trees spanned 1.1 million 

hectares, with total collection of the high-value date fruit exceeding 7.6 million tonnes [18]. Date 

palm trees bear fruit 4-8 years after planting, and require a further 7-12 years to produce 

commercially viable yields [19,20]. Each year, the tree is pruned, including trimming of around 10-

30 new leaves [20], leading to substantial waste generation: up to 35 kg biomass per tree, with the 

dry leaves accounting for as much as 20 kg [21–23]. Consequently, the accumulated bio-waste is 

non-trivial, in the order of millions of tonnes per annum. While there are a number of traditional 

uses of this bio-waste [19,20], a large amount of the residue is burnt or land-filled [21]. Currently, 

the fibres from the leaf sheaths are utilised for ropes and baskets, but also for the reinforcement of 

composite materials [24]. 

The palm tree stem is covered with a mesh made of fibre bundles, called fibrillum, creating a 

natural, woven mat of crossed fibres of different diameters. The fibrillum forms from the natural 

decomposition of leaf sheaths, and surrounds the remaining petioles of the old leaves. This 

fibrillum has a function of thermal protection of the plant [25] with entrapped air between the fibre 

bundles. It is currently considered as silviculture waste, and could constitute a form of 

supplementary income for the farmers. More efficient utilisation of this natural resource would also 
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have a positive impact on the environment. Their possible use for composite reinforcement may 

open a new market, for what are normally considered waste fibres, for use in low-value products. 

Few studies are dedicated to the use of date palm fibres extracted from the tree. Alsaeed and 

Yousif [17] studied these fibres with an objective of using these fibres for composite reinforcement. 

They observed that the tensile strength between 100 and 400 MPa upon NaOH treatment of the 

fibres; a link between fibre critical length and diameter or NaOH treatment was highlighted. Alawar 

et al. [24] compared properties of date palm stem fibres before and after NaOH treatment. They 

found a tensile modulus and strength of 0.85 GPa and 245 MPa for raw fibres, respectively. A 

significant decrease in strength was measured after NaOH treatment, whereas Young’s modulus 

increased. They hypothesise that a modification in the main cell-wall polysaccharides leads to the 

observed changes. An extensive piece of work carried out by AL-Oqla and Sapuan  [26] on the 

feasibility of date palm fibre for light weight applications in the automotive industry suggests that 

natural fibres can be good candidate materials for composite reinforcement. They highlighted that 

date palm fibres can be used as sustainable materials for automotive applications. In the light of 

government regulations and consumer awareness, Yusoff et al. [27] analysed the mechanical 

properties of oil palm fibres. The oil plam/epoxy composites were fabricated at different fibre 

volume fractions. They pointed out that oil palm fibre can provide an effective reinforcing 

mecahnism to make light weight composites. Leman et al. [28] investigated the effect of 

environmental treatments on the fibre surface properties and its overall effects on the tensile 

properties of sugar palm fibre-reinforced epoxy composites. They suggested that seawater and 

freshwater treatments improved the surface properties of the sugar palm fibre, as well as their 

tensile properties through enhanced fibre matrix adhesion. 

In this work, we examine fibres from the stems of the date palm tree (Phoenix dactylifera) 

especially fibres extracted from the leaf sheath with the intention of assessing their potential as 

reinforcements of composite materials. Precisely, the present work is aimed at evaluating the 

possibility of using date palm fibres derived from the tree stem (leaf sheath) as composite 

reinforcements. The results are presented in two phases with subtitles: phase (I) fibre properties 

and phase (II) composite properties. The second phase of this paper focuses on the investigation 

of the mechanical properties of date palm fibre reinforced composites, whereas this present paper, 

phase I, carries out a detailed analysis of the fibre in relation to its potential valorisation in 

composites. Firstly, an ultra-structural analysis of the bundles was conducted using light and 

scanning electron microscopy. Thereafter, a biochemical analysis was performed to quantify 

important cell-wall polysaccharide components (such as cellulose and lignin), as well as their 

structure (vis. cellulose crystallinity and microfibril angle using X-ray diffraction). The results 

obtained from the biochemical analysis were used to explain measured moisture sorption and 

mechanical behaviour of the fibres. Specifically, fibre mechanical properties were measured at 

both cell-wall and the fibre bundle scales by means of nanoindentation and fibre tensile testing, 

respectively.  
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2. Materials and methods 

2.1. Materials 

Raw samples of the mesh (natural mat) surrounding the date palm tree stems were brought from 

Al-Ahsa, located in the Eastern Province of Saudi Arabia. Bundle diameters were optically 

measured on around 100 samples, ranging between 100 and 800 μm. Density measurements, 

performed according to the previously described method [29], gave a value of 0.968 ± 0.002 g/cm-

3.  

 

2.2. Microscopic observations 

2.2.1. Optical microscopy 

Two bundles of palm fibre, one millimetre in width and one much smaller were selected from the 

raw material and then cut transversely by hand. These samples were then embedded in 

polyethylene glycol (PEG) at progressively increasing concentration steps (30, 50 and 100%) at 

room temperature. The final embedding step was achieved in pure PEG at 70°C. 100 µm thick 

sections were obtained using a HM360 microtome, equipped with disposable microtome blades 

(Microm Microtech, France), and mounted on microscope slides. Some of the 100 µm thick 

sections were stained with a Congo Red solution, for which the PEG was removed prior to cyto-

chemical staining by a washing step using deionized water. The Congo Red staining was done by 

5 minutes immersion in the solution followed by a thorough washing step; in the process the (1,4)-

β-glucan polymers (i.e. cellulose) and other polysaccharides(i.e. hemicellulose) are stained in red. 

All observations were done using an Axioskop microscope equipped with an Axiocam MRc, at 

different magnification levels. Non-stained palm fibre sections were observed under visible (bright 

light) or UV (mercury lamp) light mode. Under UV light, we observed the blue fluorescence of 

phenolic (i.e. hydroxycinnamate and lignin) compounds upon excitation at 340 nm [30]. The Congo 

Red stained sections were observed under visible light.  

2.2.1. SEM 

Palm fibres were fractured by hand after immersion in liquid nitrogen. Scanning electron 

microscopy (SEM) images of the fracture surfaces were taken using a SEM Jeol JSM 6460LV. 

The samples were sputter-coated with a thin layer of gold in an Edwards Sputter Coater. 

 

2.3. Biochemical investigations 

2.3.1. Carbohydrate analysis 

The identification and quantification of neutral and acid carbohydrates was carried out using high-

performance anion-exchange chromatography (HPAEC) in the manner described previously [31], 

with a slight modification. To ensure representability, approximately 10 g of the palm fibre material 

was cryo-ground prior to hydrolysis. 2-deoxy-D-ribose was used as an internal standard and the 

https://en.wikipedia.org/wiki/Eastern_Province,_Saudi_Arabia
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amount of neutral carbohydrates (arabinose, glucose, xylose, galactose, and mannose) were 

determined. In addition the acidic carbohydrates, galacturonic and glucuronic acids, were 

determined. The total carbohydrate content is the sum of the amounts of all monosaccharides and 

is expressed as a percentage of the dry palm fibers. Cellulose content was assumed on the basis 

of glucose monosaccharide content.    

2.3.2. Lignin and ash content analysis  

Lignin content was determined on three replicates using cryo-ground palm fibre using the Klason 

method described in [29]. The method is based on the quantification of the non-hydrolysable acid 

residue remaining after sulfuric acid hydrolysis. The ash content was subsequently determined 

after 4 h at 500°C. 

 

 
2.4. X-Ray Diffraction 

Wide-angle X-ray diffraction (WAXD) measurements were performed under ambient conditions on 

a Siemens D500 diffractometer CuKα radiation. Scans were collected from 2θ = 5 to 60° with step 

size of 0.03° at 4 s/step (Fig. 1). The beam was directed perpendicular to the fibre bundle length. 

Crystallinity was calculated using Eq. 1, where Itot is the intensity at the primary peak for cellulose I 

(at 2θ = 22.5°) and Iam is the intensity from the amorphous portion evaluated as the minimum 

intensity (at 2θ = 19.0°) between the primary and the secondary peaks (Fig. 1). 

100



tot

amtot

I

II
C     (Eq. 1) 

Cellulose microfibril angle (MFA) in the S2 secondary cell wall layer was also estimated using the 

spectra. First, the T parameter was determined by Cave’s [32] method using the primary peak for 

cellulose I. Thereafter, a polynomial equation proposed by Yamamoto et al. [33] was used to 

estimate MFA from the measured T-value.  

 

2.5. Thermo-gravimetric analysis 

Thermogravimetric analysis (TGA) was conducted using a Perkin Elmer Pyris 1 TGA.  Palm fibre 

samples were scanned from ambient temperature to 800 °C at a heating rate of 10 °C/min under a 

20 mL/min nitrogen gas flow (i.e. inert conditions). 

 

2.6. Water absorption tests 

Isotherms of water vapour desorption/sorption measurements were carried out using a Dynamic 

Vapour Sorption (DVS) instrument from Hiden Isochema Ltd. (UK). The procedure is similar to the 

one described in Guicheret-Retel [34]. In this study, the quantity used for both replicates was 

approx. 5 mg and the sequence of water sorption (10–90% relative humidity (RH) at 10% intervals) 

and desorption (90–15% RH at 15% intervals) was programmed.  

 



6 

 

Figure 1. XRD spectra of date palm tree stem fibres. Error bars indicate 1 std. dev. 

 

2.7. Mechanical characterisation 

2.7.1. Tensile test on palm fibre bundles 

During selection of palm fibre bundles for testing, two broad groups of bundle types were 

observed: ‘large’ bundles with width on the mm scale and ‘small’ bundles, 3 to 5 times smaller than 

the former (discussed further in Section 3.1). Fibre bundles were randomly selected for the test; 

bundle width was not observed to have a noticeable effect on the measured mean strength 

properties. 

The bundles’ ends were encapsulated in resin to enable fibre gripping. These samples were 

prepared in sandwich plastic tabs (Diastron Ltd., Hampshire, UK), using a photo-curing glue and a 

UV-source pen. The samples have a gauge length of 10 mm. 

Prior to testing, the samples were stored for 48h in a climatic chamber regulated at 20°C and 55% 

relative humidity. The cross-sectional areas of the samples was assessed with a dedicated and 

calibrated Fibre Dimensional Analysis System (FDAS, Diastron Ltd., Hampshire, UK), using  a 

protocol similar to the one described in [35]. In this study, the samples were rotated within a laser 

beam with the full rotation scan mode (Fig. 2), on 5 equidistant slices along the palm fibre sample. 

The UvWin 3.40 Software gives the mean cross-section.  

After dimensional assessment, the samples were tensile tested using a TEST108 2kN universal 

testing machine (GT-TEST, France), equipped with pneumatic side action grips (1kN, Instron) and 

the Testwinner software (Testwell®) in a climatic chamber (20°C; 55% RH). The displacement rate 

was set at 10 mm/min and the test was considered successful when failure occurred in the gauge 

length; 33 samples satisfied this criterion.  

 

2.7.2. Nanoindentation and AFM Peak Force QNM measurements 
 
Palm leave sheath bundles were embedded in a resin in order to maintain the fibre and the cell 

wall structure during sample surface preparation. Final resin polymerisation is done in an oven (60 

°C, overnight). Then, the whole resin block with the sample is machined to reduce its cross section 

and an ultramicrotome (Leica Ultracut R) is then used with diamond knives (Diatom Histo and/or 

Ultra AFM) to cut a series of very thin sections (about 50 nm thick in the last step) at reduced 

cutting speed (≈1 mm/s) to minimise compression and sample deformation during the cutting 

process. This process allows us to decrease the surface roughness. 

 

Figure 2. Fibre cross-section shape (bold black line) and area (shaded region) was estimated 

using a Fibre Dimensional Analysis System (FDAS). The coloured lines show the lines of path of 

laser beams that were tangential to a fibre surface.   
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A commercial nanoindentation system (Nanoindenter XP, MTS Nano Instruments) was used at 

room temperature (23  1°C) with a continuous stiffness measurement (CSM) technique, equipped 

with a three-side pyramid (Berkovich) indenter. The system was operated at 3-nm amplitude, 45 

Hz oscillations using a 0.05 s-1 loading rate. Measurements were taken at depths to 120 nm. 

Around 20 indents were performed in each sample.  

In addition, mechanical characterization was performed by using a Multimode AFM (Bruker 

Corporation, USA). PF-QNM is an extension of the peak force TappingTM mode where the vertical 

motion of the cantilever oscillates far below its resonant frequency (2 kHz). Each tapping event is 

an action of the probe indenting into the surface of the sample (typically 1-3 nm). RTESPA-525 

(Bruker) probe was used. Its spring constant, around 200 N/m, was calibrated using the so-called 

Sader method [36] with a Scanning Electron Microscope (Jeol JSM 6460LV) for the 

measurements of the cantilever length and width, and the AFM in TappingTM mode, for the 

measurement of its frequency response (resonance frequency and quality factor). The tip radius, 

between 9 nm and 50 nm, was tuned during a measurement on a Highly Oriented Pyrolytic 

Graphite (HOPG) standard from Bruker in order to obtain the indentation modulus of around 18  

GPa, taking the adhesion force into account with a DMT contact model [37]. The applied maximum 

load (peak force) is set to 200 nN for all the measurements, leading to a contact stiffness of the 

same order as the cantilever stiffness for the studied materials [38]. The calibration was checked 

by comparing values obtained with those of nanoindentation. 

 

3. Results and discussion 

3.1. Focus on palm fibre structure 

Figure 3 presents a schematic view of a date palm tree and the origin of the studied fibre bundles. 

Thanks to optical microscopy and SEM analysis, two main types of palm leaf sheath fibre bundles 

were identified in the collected fibrillum. Large bundles had an average diameter between 600 and 

1000 m, whereas the small bundles are around 70-120 m. Figure 4 presents various views, 

obtained through optical microscopy, and highlighting the main morphological differences between 

the two fibre elements. Palm fibre bundle sections in (a)–(f) were examined by visible light 

microscopy, whereas (g)–(h) micrographs were observed under UV exposure. Histological 

features of non-stained small and large bundles are shown in (a) and (b), respectively. Congo red 

stained images (c) and (d) show a small and a large bundle, respectively, while (e) and (f) are 

focus of a large bundle. Firstly, one can notice the structural differences between the two kinds of 

bundles. The small ones exhibit a homogenous structure constituted of an assembly of elementary 

fibres with thick cell walls; single fibre diameter is approximatively 10 m and cell wall thickness 

around 3-4 m. Due to this specific organisation, these bundles have probably a mechanical role. 

Furthermore, the Congo red stained image (Fig. 4.c) is evidence of the presence of hemicellulose 

components within the cell walls, confirming a possible mechanical function of these fibre 
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elements and potential mechanical interest for composite applications. The UV induced auto 

fluorescence of fibre cell wall phenol components, highlighting preferentially lignified regions. One 

can notice blue fluorescence preferentially located in the middle lamella area; this phenomenon is 

usual on plant fibre such as flax [39]; lignin having a protection rule, enabling a strong bundle 

cohesion.  

Interestingly, the large bundles have an opposite organisation and structure with thin cell walls 

(Fig. 4.f) and large lumens. One can also notice the presence of large vascular tissues with a 

diameter 100-200 m. The main function of these large bundles is to provide a conductive path in 

the leaf; the large vascular vessels probably enable to conduct the raw sap and the small bundles 

the elaborated one. Congo red stanining experiments reveal low hemicelluloses or cellulose 

content in the cell walls except in the vascular vessels area, these localised and specific structures 

can be developed in order reinforce the stiffness in the vascular areas to protect these essential 

elements. Bundles stiffness can also be ensured by high lignification rate of the cell walls, 

compared to the small bundles, as highlighted on Fig 4.h. Another explanation of this reaction to 

Congo red can be the age of the cell walls; the younger ones may possibly be less lignified. 

These two bundles are made of mostly cellulose, hemicelluloses and lignin arranged in a highly 

ordered but different structure. Consequently, the mechanical performances of the two kind of 

bundles can differ but their specific ultrastructure can be complementary. Due to their specific 

honeycomb structure we can suppose that the large bundles have probably interesting energy 

absorption impact properties; these points will be deeply investigated in mechanical section of this 

paper but also on a forthcoming paper, dedicated to composite reinforcement. 

 

Figure 3. Schematic view of fibre bundles origin and identification. 

Figure 4. Optical microscope observations, scale bars are 100µm in all the micrographs. 

 

A final analysis in this descriptive section focusses on the presence of silica, which was noticed 

through SEM analysis (Fig. 5). In our case, silica is found embedded in the surface of large 

bundles (Fig.5). According to Esau [40] silica can be deposited in monocotyledonous cell walls and 

especially in leaves where content can be as high as 41%-wt. In palm, small silica cells are formed 

and called stegmata [41]. The presence of silica causes many kinds of problems in pulping and 

papermaking. Silica accumulation in plants contributes to the strength of stems and provides 

resistance to attack by pathogenic fungi and predaceous chewing insects and other herbivores 

[42]. With lignin, the production of stegmata by the rind provides additional mechanical defence for 

the plant. Finally, the presence and the shape of the silica bodies can be an interesting way for 

species identifications as underlined by Prychid et al. [43]. Fibre surface defects, such as silica 

bodies may affect overall composites properties. The defects can act as stress concentrators and 

damage can initiate from such defects. We observed clear defects on the fibre element structures, 
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with the pits with silicate bodies arguably providing crack departure mechanisms or being surface 

flaws in view of composite properties. 

 

3.2. Biochemical and XRD analysis 

Table 1 shows chemical composition of the date palm leaf sheath fibres bundles. Additional values 

are indicated about literature data on both palm element and other plant fibres. Firstly, one can 

notice an interesting cellulose rate (45.1±3.4%); this cellulose content is well correlated with value 

of Saadoui et al. [44] on palm fibrillum and is in the same range than bamboo or coir fibres. Our 

samples are characterized by an important lignin content, especially compared to phloem bast 

fibres such as hemp or flax; indeed, these plants are harvested between the lignification process in 

order to facilitate the retting and the mechanical extraction; in vascular cambium tissues, i.e. palm, 

bamboo, sisal or coir, lignin is preponderant for the plant and contribute to its protection against 

exogenous attacks (water, insects…) by reinforcing the bundle stiffness. 

 

Figure 5. SEM observations of silica bodies. 

Table 1. Chemical composition (dry wt%; mean ± st. dev.) of the date palm tree fibres. 

 

Hemicelluloses content is also high but this value must be treated with caution; indeed, our 

synthesis hemicelluloses, for a homogenous comparison with literature date, represents the whole 

cell wall polysaccharides whatever their chain length and their linkage or reinforcement capacity. 

According to the biochemical method, the precise quantification of matrix or structuring 

polysaccharides is not possible. Several authors [48–50] showed that according to their structure, 

pectins components can highly impact the stiffness and mechanical performances of flax fibres. 

The strong contribution of galactans into cell wall stiffness was also proved [51] as well as their 

main rule into the structuration of gelatinous cell walls (G-layer).  

In agreement with Van Dam and Gorshkova [8] or Chernova and Gorshkova [52], plant fibres can 

be classified into two broad categories from a biochemical and structural point of view. The first 

consists of xylan-type cell walls and is the most widespread, it involves different types of wooden 

cells, but it is also found in fibers derived from stems such as jute or kenaf. These walls are 

characterized by a high microfibrillar angle (MFA), by small thicknesses of secondary walls 

(generally between 1 and 4 μm), but also by high levels of lignin and xylan. The G-layer form the 

second group; They have the particularity of possessing matrix polymers rich in galactose and 

high cellulose contents of up to 85%. Unlike xylan fibres, these cell walls exhibit very small MFA as 

well as high wall thicknesses, generally between 10 and 15 m. These fibres are mainly derived 

from the phloem of flax, hemp or even ramie but can also be found in bamboo. To better 

understand the specific composition of our fibres, carbohydrate analysis is detailed in the first line 

of Table 1. Due to their high xylose and lignin content, palm leave sheath fibres are part of the 
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xylan group; this assumption is also confirmed by their low galactose content, especially by 

comparison with bast fibres such as hemp [53]. 

To complete the biochemical analysis, we measured the crystallinity of the date palm fibres using 

XRD to be 41 ± 3 %, comparable to literature (Table 2). Both, the measured cellulose content and 

crystallinity of the date palm fibres are at the lower end of other leaf fibres (Table 2), such as 

banana (70-82wt%, 44-60%) and pineapple (44-64wt%, 45-55%), but higher than that of seed 

fibres such as coir (32-43wt%, 27-33%) and fibres from oil palm empty fruit bunch (40-50wt%, 20-

30%) [47]. The measured MFA of the date palm fibres was 26.1 ± 14.2°, which is also in 

agreement with literature (Table 2), and intermediate to leaf and seed fibres. As is discussed later, 

the tensile properties of date palm leaf fibres also exhibit this inclination. 

In general, whether by biochemical or microstructural analysis, important results such as 

hemicellulose and lignin content, MFA and presence of silica bodies were highlighted. When 

considering these fibres as composite reinforcement, this information needs to be taken into 

account; the link between plant fibre structure and fibre or composite properties has been 

demonstrated by many authors [54,55]. 

 

3.3. Thermo-gravimetric analysis 

The thermal degradation behaviour of the date palm fibres was examined through TGA and 

compared with other natural fibres (Fig. 6). Initial mass loss of 6.0 wt% up to 200 °C was attributed 

to moisture evaporation. This is typical of natural fibres [56] albeit measured to by higher in our 

date palm fibres, similar to bamboo. Thereafter, the onset of thermal degradation and rapid mass 

loss was at 270 °C, with the maximum degradation rate occurring at 410 °C; both are much higher 

than other natural fibres. This point is particularly interesting for a future use of palm fibres as 

composite reinforcement; due to their important lignin content, their high degradation temperature 

can allow an association with a large range of thermoplastic polymers. These measurements are 

useful in determining the maximum processing temperature of the fibres during composite 

manufacture without substantial fibre degradation, and for example, selection of an appropriate 

thermoplastic. Notably, fibre mechanical property degradation may start earlier than the onset 

temperature for thermal degradation. Substantial degradation between 250 and 450°C was 

attributed to decomposition of the organic cell wall polysaccharides, with denaturation and charring 

occurring beyond 450 °C. Unlike other natural fibres, which typically show one degradation peak 

(in the range of 250 to 350 °C), the date palm fibres are unique in that they show two distinct 

degradation peaks: a primary peak at 410 °C, and a secondary peak in the typical in 250-350 °C 

region indicating better thermal stability compared to other commonly used natural fibres. 

Evidently, bamboo does show a minor secondary peak as well. The higher degradation 

temperatures of date palm fibres may be due to the higher observed silica content. A residual 

mass of 15.9 wt% was measured when heated to 800 °C, which would be a mixture of charred 

organic material and inorganic inclusions, such as the silica bodies. 
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3.4. Sorption behaviour 

Moisture absorption and desorption isotherm plots for the date palm tree fibres are presented in 

Figure 7, with a comparison to other natural fibres. Classic sigmoidal-shaped (type II) isotherms 

were observed, as well as a hysteresis response, similar to that of other plant fibres [57,58].  

The isotherm plots can be described by three regions [57]: i) Region A, up to 10% RH, where 

water is principally absorbed through hydrogen bonding by amorphous cellulose and hemicellulose 

in the inner-most cell wall layer, until saturation, ii) Region B, between 10 and 60% RH, where the 

porous structure of the fibres and cell wall enables absorption of  water into the other cell wall 

layers through micro-capillaries, and iii) Region C, above 60% RH, where capillary condensation 

dominates and water molecules aggregate to form a fluidic, bulk phase. 

 

Table 2. Comparison of mechanical and governing bio-chemical properties of our date palm tree 

stem fibres with various other plant fibres. Data from [47] and references therein. 

Figure 6. Thermal degradation behaviour of date palm fibres in comparison to other natural fibres. 

Figure 7. Moisture sorption behaviour of date palm tree stem fibres in comparison to other natural 

fibres. Data on other natural fibres from Hill et al [57]. 

 

The hysteresis response can be explained by the differing conditions in which sorption and 

desorption take place [57]. During adsorption, the date palm fibres deform by swelling and the 

micro-capillaries expand. However, during desorption, relaxation to the previous state is kinetically 

hindered, leading to a larger free volume (i.e. micro-capillary space) in comparison to the 

adsorption state.  

Comparing to Hill et al’s [57] data on various natural fibres (Fig. 7), the date palm fibres have very 

similar isotherm profiles to coir (coconut palm) and Sitka spruce wood, including the total moisture 

content at a given relative humidity (approaching 24% at 90% RH) and the high degree of 

hysteresis exhibited. In fact, hysteresis for the date palm fibres peaks to as much as 4% between 

50-70% RH; this is substantially higher than the typically 1.5-3.2% peak hysteresis recorded for 

other plant fibres [57]. High amorphous polysaccharide content (amorphous cellulose, 

hemicellulose, and lignin) give the date palm fibres high water accessibility (through hydrogen 

bonding) leading to the high moisture uptake. The high degree of hysteresis may be explained by 

the high lignin content of the date palm fibres [57], and the presence of substantial micro-scale 

porosity in the fibre surface (filled with silica bodies; Fig. 5). However, most interestingly, the date 

palm fibres were also found to be unique, in that in comparison to the other fibres (including jute, 

coir, flax, hemp and cotton), they have the largest RH region (up to 10%), where adsorption and 

desorption curves overlap (i.e. 0% hysteresis region). This may give the date palm fibres a 

capacity to absorb and hold moisture, potentially of vital importance in supporting the growth of 

these date palm trees which generally grow in water-scarce regions. 
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3.5. Multi-scale mechanical properties of palm fibres 

 

3.5.1. Bundles tensile characterization 

At the fibre scale, tensile tests were carried out on fibre bundles. Prior to tensile testing, fibre 

cross-section properties were measured through a Fibre Dimensional Analysis System (FDAS). 

We found that the date palm fibre bundles were often better approximated by elliptical cross-

sections than circular cross-sections (Fig. 2). The elliptical geometry approximation, which is 

closer to the true cross-section shape, yielded areas 14 ± 7% larger than those obtained by 

circular geometry approximation based on a measured mean diameter/width. Notably, the irregular 

cross-section of plant fibres and insensitive (yet prevalent) area measurement approaches (e.g. 

‘apparent’ area based on an assumed circular cross-section shape and measurement of mean 

diameter/width) have been a major source of error in many plant fibre testing studies [59]. A 

number of studies have shown that the true cross-section area can be up to 1.42 to 2.55 times 

lower than the apparent cross-section area [60–62], leading to an underestimation of fibre 

properties (strength and stiffness) by up 40-70%. Here, the use of an FDAS enables more 

accurate measurement of fibre geometrical properties, for use in mechanical property calculations. 

The key fibre mechanical properties measured through the fibre bundle tensile tests are presented 

in Table 2. The Young’s modulus, measured in the initial linear region, was obtained as 1.8 ± 0.6 

GPa. A knee in the stress-strain curve, indicative of a yield point, was noticeable at ca 2% applied 

strain. Failure strength and strain of 131 ± 34 MPa and 20.9 ± 7.6% were measured. Fibre 

toughness, estimated by the area under the tensile stress-strain curve, was 13.9 ± 6.9 MJm-3. 

Table 2 and the Ashby charts in Fig. 8 and compare the mechanical properties of our date palm 

tree stem fibres with those of various other plant fibres. In terms of stiffness and strength, both 

absolute and specific, it is evident that the date palm tree stem fibres register the lowest 

properties. However, these properties are closer to that of seed fibres, such as cotton, oil palm and 

especially coir (coconut palm). The failure strains of these various palm fibres (date palm, oil palm 

and coir) are large and in a similar range (15-30%). The large failure strain results with a moderate 

toughness of the date palm fibre, comparable to strong-brittle bast fibres, like flax. 

The primary structural polysaccharide in the plant fibre cell wall is cellulose, which exhibits both 

crystalline and amorphous regions. The mechanical properties of ordered, crystalline cellulose 

(both along and transverse to the chain direction) are substantially higher than that of amorphous 

cellulose, as well as the other amorphous polysaccharides (vis. hemicellulose and lignin) [63]. 

Furthermore, cellulose microfibrils are helically wound around the cell walls, and therefore are at 

an angle with respect to the fibre axis. Consequently, biochemical properties, particularly cellulose 

content, cellulose crystallinity, and MFA are well-known to have a profound effect on fibre 

mechanical properties [47,64].  

Table 2 compares the mechanical and the relevant biochemical properties of the date palm tree 

stem fibres with other plant fibres. It is obvious that bast fibres, with the highest stiffness and 

strength, and low failure strains, have high cellulose content (60-75%), high cellulose crystallinity 
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(up to 90%) and the cellulose microfibrils are closely aligned to the fibre axis (MFA <10°). Leaf 

fibres with moderate stiffness, strength and failure strains have slightly high cellulose content (up 

to 80%), moderate cellulose crystallinity (up to 70%) and higher MFA (up to 25°). Finally, seed 

fibres with the lowest stiffness and strength, but high ductility, have low cellulose content (typically 

less than 50%), cellulose crystallinity (up to 50%), and large MFA (30-50°). Indeed, the 

comparable mechanical properties of our date palm fibres with the seed fibres, particularly other 

palm fibres (oil, coconut) can be explained by their comparable biochemical properties. Moreover, 

palm bundles exhibit a specific structure with single cells having important lumens which is not in 

favour of high longitudinal tensile performances. These objects can be more interesting for energy 

absorption thanks to their structure and high elongation at break. This point will be explored in the 

second paper dedicated to the use of palm fibers for composite reinforcement. 

 

Figure 8. Materials Ashby chart of absolute (a) and specific (b) tensile stiffness and strength. 

Adapted from [2]. 

 

 

While the tensile modulus and strength of the date palm fibres is observed to be very low, this 

however, is not a deterrent for use in composites applications. Firstly, as the fibres are bio-waste, 

their utilisation, even as fillers, replacing a sizeable fraction of the more environmentally-polluting 

matrix, can lead to sustainable materials, particularly if the matrix is a thermoplastic or 

biodegradable. Secondly, the date palm fibres have properties not very different to seed fibres, like 

cotton, and cotton fibre composites are by far the most widely used non-wood plant fibres in 

biocomposites applications for the automotive industry: 100,000 tonnes cotton fibre composites 

were produced in the EU in 2010, in comparison to 45,000 tonnes of non-wood, non-cotton plant 

fibre composites [47].  

 

3.5.2. Nanoindentation and Peak Force-QNM measurements 

Table 3 shows nanoindentation modulus and hardness values obtained on both large and small 

bundles. Regarding the nanoindentation modulus, palm stiffness values are in the same range that 

jute, sisal or hemp fibres studied in a previous study [65] 

On mature plant cell walls, the longitudinal nanoindentation modulus is generally included between 

15 and 22 GPa [66–69] and differences are often low between various plant fibres. Indeed, 

whatever on wood of plant cell walls this value is low compared to the modulus obtained by with 

conventional tensile tests [68,70]. The variations between varieties could be induced by variations 

in the microfibrillar angle (MFA) of the crystalline cellulose or by the cellulose:matrix volume ratio 

as evidenced by Tze et al. [71]. In this way and as assumed by Konnerth et al. [66,70] and Gindl et 

al. [70], the hardness behaviour is dominated by polymers constituting the polysaccharide cell 

matrix, i.e. hemicelluloses, lignin and pectins. The nanoindentation modulus is more linked to the 

cellulose properties and to their microfibrillar angle. The indentation hardness is generally included 
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between 0.25 and 0.45 GPa for wood [67,72] or flax cell walls [68,73]; thus, the monitoring of this 

parameter is an interesting way to estimate variations or scattering into the polysaccharidic matrix. 

In our case, one can notice that palm cell walls nanoindentation modulus is high and not well 

correlated with the tensile one regarding to literature data [65]. Nevertheless, it is not pertinent to 

compare palm bundles with bast fibres such as jute, flax or hemp. Morphologically speaking, these 

fibres are strongly different and even if cell wall stiffness is quite similar, their specific structure 

with fine cell walls and important lumen give them a different mechanical behaviour underlined by 

low stiffness and important elongation at break (Table 2). Regarding the cell wall hardness, 

interestingly, the important measured value indicate a hard polysaccharidic matrix; this point 

corroborates the biochemical conclusions and the important lignin content as compared to other 

plant fibres. 

These nanoindentation data were supported by an AFM PF-QNM analysis at the cell wall scale. 

Indeed, nanoindentation provides a global cell wall stiffness information but the relative indent size 

compared to cell wall doesn’t support to finely describe the cell wall mechanical properties. In this 

way, Figure 9 proposes PF-QNM stiffness mapping of small and large bundles cell walls.  

Firstly, one can notice an interesting correlation between the two investigation ways. The S2 layers 

PF-QNM values are very close to those obtained with nanoindentation. Whether for small and 

large bundles, the cell walls stiffness are around 16 GPa; this  PFQNM modulus value is in good 

agreement with values obtained by other AFM techniques for similar layers in wood or flax cell 

walls [38,74]. Interestingly, one can notice that the indentation modulus of the middle lamella 

(CML) area is around 10-12 GPa, this results is higher than nanoindentation results for flax [74] 

and can be explained by high lignin content in palm cell walls.  

In addition, one can compare the morphological and mechanical structure of the two kinds of 

bundles. As expected and previously observed in Figure 4, large bundles exhibit cells having large 

lumens as compared to small bundles. Nevertheless, cell wall thickness are in the same range and 

around 1.5 m. We can clearly observe the presence of different domains, S2 layer of the fibres 

are clearly visible as well as the middle lamellas linking the fibres together. On specific fibres, it is 

also possible to distinguish a thick S1 layer. One can notice the high middle lamella thickness 

leading probably to very cohesive bundles. 

 

Table 3. Palm bundles nanoindentation properties. 

Figure 9. PF-QNM modulus mapping obtained for large and small palm bundles. A profile of the 

stiffness is indicated under each image, corresponding to the black line. 

 

In this section, PF-QNM and nanoindentation, experiments were combined to investigate the cell 

wall mechanical performances of palm bundles. Interestingly PF-QNM confirms nanoindentation 

values and gives pertinent information in terms of cell wall bundles structure and morphology.  
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4. Conclusions 

In this work we studied the structure as well as the physio-chemical and mechanical properties of 

palm leaf sheath fibre bundles at different scales. We were able to identify two types of bundles, 

each with a specific function in the plant. Those with a larger diameter are conduction bundles 

made up of cells having thin walls and large lumens while the smaller ones with lumens of a much 

smaller size which are  dedicated to a more structural function. 

The biochemical analyses revealed a significant lignin and xylose content which makes it possible 

to classify these walls as the xylan type. Their high lignin content, highlighted in middle lamellas by 

PeakForce-QNM stiffness measurements gives them good thermal stability as well as an original 

sorption behaviour, with a wide hysteresis range which allows them to have good performances in 

terms of water absorption and  storage. 

On the other hand, their mechanical performances at the bundle scale are moderate in terms of 

stiffness and strength. This is not found at the cell wall scale. Thus, the nanoindentation and 

PeakForce-QNM showed rigidities of cell walls close to those of other fibers extracted from the 

plants. The bundle behaviour is compromised by the small cell wall thickness and the large relative 

lumen size. On the other hand, these bundles possess a high elongation at break. The 

combination of good deformation and of their cohesive structure can enable them to be integrated 

into composites with an energy absorption function. This point will be more deeply studied in 

another paper. 
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FIGURES 
 
Figure 2. XRD spectra of date palm tree stem fibres. Error bars indicate 1 std. dev. 

 

 
 

 

 

 
Figure 2. Fibre cross-section shape (bold black line) and area (shaded region) was 

estimated using a Fibre Dimensional Analysis System (FDAS). The coloured lines show 

the lines of path of laser beams that were tangential to a fibre surface.   
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Figure 3. Schematic view of fibre bundles origin and identification. 

 
 
 
Figure 4. Optical microscope observations, scale bars are 100µm in all the micrographs. 
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Figure 5. SEM observations of silica bodies. 
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Figure 6. Thermal degradation behaviour of date palm fibres in comparison to other 
natural fibres. 

 

 
 

 
 

Figure 7. Moisture sorption behaviour of date palm tree stem fibres in comparison to other natural 

fibres. Data on other natural fibres from Hill et al [57]. 
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Figure 8. Materials Ashby chart of absolute (a) and specific (b) tensile stiffness and 
strength. Adapted from [2]. 
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Figure 9. PF-QNM modulus mapping obtained for large and small palm bundles. A profile 

of the stiffness is indicated under each image, corresponding to the black line. 
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TABLES 

 

Table 1. Chemical composition (dry wt%; mean ± st. dev.) of the date palm tree fibres. 

 

 

 

Carbohydrate analysis (our study) 

Fuc Ara Rha Gal Glc Xyl Man GalA GlcA Total 

0.09 1.34 0.27 0.78 45.08 23.22 0.21 1.38 0.43 72.80 

±0.01 ±0.07 ±0.01 ±0.03 ±3.40 ±0.89 ±0.01 ±0.18 ±0.28 ±4.88 

 Cellulose Hemicellulose Lignin Ash Other Reference 

Leaf sheath fibre 45.1±3.4 27.7±1.5 16.9±0.3 1.7±0.1 8.6 This study 

Literature data – Palm elements     

Palm fibrillum 50.6±1.3 8.1±0.3 31.9±1.3 6.8±0.2 6.6 [44] 

Palm leaf sheath 34.0±0.7 28.9±1.8 18.2±0.7 12.3±0.2 2.5 [44] 

Palm leaflets 29.7±1.3 23.3±1.2 11.6±1.3 9.2±0.4 16.5 [44] 

Palm rachis 39.8±0.9 31.4±3.2 14.0±0.9 9.2±0.1 2.5 [44] 

Palm leaf sheath 28.2 20.6 44.1 - - [45] 

Literature data – Other plant fibres      

Abaca 60.8-68.0 17.5-21 5-15.1 - - 

[46,47] 

Bamboo 36.1-54.6 11.4-16.6 20.5-28.5 - - 

Coir 32.0-43.4 3.3 40-45.8 - - 

Flax 60-85 15.8-35.6 1-3 - - 

Hemp 55-90 15 2-5 - - 

Jute 58.0-71.5 15.6-26.0 11.8-16 - - 

Kenaf 52.0-61.2 18.5-29.7 12.9-16.1 - - 

Sisal 52.8-65 19.3 11.1-13.5 - - 
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Table 2. Comparison of mechanical and governing bio-chemical properties of our date palm tree 

stem fibres with various other plant fibres. Data from [47] and references therein. 

 

Fibre 
Tensile 

modulus 
[GPa] 

Tensile 
strength 

[MPa] 

Failure strain 
[%] 

Cellulose 
content 

[dry wt%] 

Cellulose 
crystallinity 

[%] 

Microfibril 
angle, MFA 

[°] 

Date palm leaf 
sheath (our study) 

1.8±0.6 131±34 20.9±7.6 45±3 41±3 26.1±14.2 

Date palm (other 
studies) 

0.3-7.5 58-203 5-50 35-50 30-40 25-30 

B
a
s
t 

Flax 28-100 343-1035 2.7-3.2 64-71 70-90 5-10 

Hemp 32-60 310-900 1.3-2.1 70-74 70-90 2-6 

Jute 25-55 393-773 1.4-3.1 61-72 60-80 8 

L
e

a
f 

Sisal 9-28 347-700 2.0-2.9 66-78 50-70 10-25 

Pineapple 6-42 170-727 0.8-1.6 70-82 44-60 10-15 

Banana 8-32 503-790 3.0-10.0 44-64 45-55 10-12 

S
e
e
d

 

Cotton 5-13 287-597 6.0-8.0 85-93 40-50 46 

Coir (coconut 
palm) 

4-6 131-175 15.0-30.0 32-43 27-33 30-49 

Oil palm 3-4 248 25.0 40-50 20-30 42-46 

 Bamboo 11-30 140-230 1.3 26-60 40-60 8-11 

 
 

 

 

Table 3. Palm bundles nanoindentation properties. 

 
Number of 

measurements 
Nanoindentation modulus 

(GPa) 
Nanoindentation hardness 

(MPa) 

Large bundles 32 14.31.8 46993 

Small bundles 29 15.82.4 53177 

 

 
 


