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Abstract 

Energy efficiency policy is seen as a very important activity by almost all policy makers.  In 

practical energy policy analysis, the typical indicator used as a proxy for energy efficiency is 

energy intensity. However, this simple indicator is not necessarily an accurate measure given 

changes in energy intensity are a function of changes in several factors as well as ‘true’ energy 

efficiency; hence, it is difficult to make conclusions for energy policy based upon simple energy 

intensity measures.  Related to this, some published academic papers over the last few years have 

attempted to use empirical methods to measure the efficient use of energy based on the economic 

theory of production. However, these studies do not generally provide a systematic discussion 

of the theoretical basis nor the possible parametric empirical approaches that are available for 

estimating the level of energy efficiency.  The objective of this paper, therefore, is to sketch out 

and explain from an economic perspective the theoretical framework as well as the empirical 

methods for measuring the level of energy efficiency. Additionally, in the second part of the 

paper, some of the empirical studies that have attempted to measure the energy efficiency using 

such an economics approach are summarised and discussed. 
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1 Introduction 

This paper reviews the developments in attempting to define energy efficiency from an 

economics perspective and therefore how an economic based energy efficiency indicator should 

be measured/estimated.1 There is considerable debate about the contribution of energy efficiency 

policies in enhancing energy security and helping reduce emissions from the use of energy.  

However, there is no consensus on how energy efficiency is actually defined and measured.  The 

most typical indicator used in energy policy analysis is that of energy intensity, often defined as 

the simple ratio of energy consumption to GDP at the state or country level or energy 

consumption per square meter at the residential level. 

 

According to EIA (1995; p.vii) without a clear definition, the term energy efficiency is “a vague, 

subjective concept that engenders directionless speculation and confusion rather than insightful 

analysis” and so there is a need to adequately define and measure what energy efficiency actually 

is, although recognising that this is a difficult task.  Furthermore, EIA (1995) suggests that 

although energy intensity and energy efficiency are often used interchangeably, energy intensity 

does not necessarily reflect true energy efficiency given energy intensity is influenced by factors 

other than just pure energy efficiency.  For instance, the IEA (2009) argues that using energy 

intensity as a proxy for energy efficiency is not appropriate given changes in energy intensity 

depend upon several factors such as the organization and structure of the economy and the real 

level of energy efficiency. 

 

Over the past few years, some published academic papers have attempted to measure the level 

of the efficient use of energy based on the economic theory of production and used empirical 

methods for measuring productive efficiency. However, these studies have not generally 

provided a systematic discussion of the theoretical basis of energy efficiency. Neither have they 

clearly defined energy efficiency nor clearly shown how it should be empirically measured using 

parametric methods. The objective of this paper, therefore, is to sketch out and explain from an 

economic perspective the theoretical framework as well as the empirical methods for measuring 

the level of energy efficiency in order to try to deal with the problems highlighted by EIA (1995). 

Additionally, in the second part of the paper, some of the empirical studies that have attempted 

                                                 
1 Note, that in previous works (Filippini and Hunt, 2011 and 2012) in order to highlight the distinction from using 

energy intensity as a measure of ‘true’ energy efficiency, we used the term ‘underlying energy efficiency’ to 

indicate the efficient use of energy obtained from estimating a frontier energy demand function using stochastic 

frontier analysis. We have not used this term here, but it should be remembered that when we refer to energy 

efficiency this relates to the estimated economic based energy efficiency indicator obtained from the techniques 

discussed in this paper and not measured (or proxied by) energy intensity. 
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to measure the energy efficiency using such an economics approach are summarised and 

discussed. 

 

The paper is organized as follows. The next section presents and discusses productive efficiency 

and its relationship to energy efficiency. Section 3 then considers the developments in the 

parametric estimation of energy efficiency as defined here and the advantages and disadvantages 

of various stochastic frontier analysis models that can be applied. Moreover, a discussion of the 

distinction between permanent and transient productive efficiency is introduced. This is followed 

by Section 4 that highlights some of the attempts to measure energy efficiency, followed by a 

short summary and conclusion in the final section. 

 

2. Productive efficiency and its relationship to energy efficiency2 

There is no one clear and accepted definition of energy efficiency, but according to 

Bhattacharyya (2011), most definitions are based upon the simple ratio of ‘useful output of a 

process/energy input into a process’. Furthermore, Patterson (1996) identifies a number of ways 

in which the outputs and inputs for this ratio can be quantified. These include: i) thermodynamic 

indicators (energy input and output are measured in thermodynamic units); ii) physical-

thermodynamic indicators (energy input is measured in thermodynamic units and output is 

measured in physical units); iii) economic indicators (output and input are measured purely in 

terms of monetary values); and iv) economic-thermodynamic indicators (output measured in 

monetary values and the energy input measured in thermodynamic units). Moreover, these 

indicators can be applied at the product, sectoral or national levels of economic activity and for 

primary energy consumption and secondary final energy consumption. 

 

One of the most often used ratios in energy analysis at the macro level is the energy-GDP ratio, 

which is in fact the inverse of economic-thermodynamic indicator of energy efficiency identified 

by Patterson (1996).  However, when undertaking aggregate energy efficiency analysis, this 

approach is arguably too simplistic and naïve and a better way to proceed is to use the definition 

based on the microeconomic theory of the production (see, Huntington 1994) advocated in Evans 

et al. (2013) and considered further below. 

 

                                                 
2 This section builds upon and improves upon an initial attempt to consider these theoretical issues in Evans et al. 

(2013). 
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To understand this approach, it is necessary to recognise that the demand for energy is derived 

from the demand for outputs that can be products, services or energy services such as heating, 

cooling and lighting. Households and firms use energy, labour and capital to produce outputs. 

From an economic perspective, it is important to produce outputs in an efficient way; that is, by 

choosing the combination of inputs that minimise the production cost. In this context, situations 

where households or firms are producing outputs without minimising the use of inputs or using 

an obsolete technology that does not allow them to minimize the quantity of energy, labour and 

capital cannot be excluded.  In these situations, the input energy as well the other inputs capital 

and labour are used in an inefficient way and a waste of energy is observed.   

 

Productive inefficiency in the production of energy services can be discussed using the 

microeconomic theory of production framework with particularly isoquants and isocosts 

(Chambers, 1988; Huntington, 1994). In this context, the radial definition of technical, allocative 

and overall productive efficiency introduced by Farrell (1957) and particularly the non-radial 

concept of input specific technical efficiency introduced by Kopp (1981) can be helpful to 

understand the concept of energy efficiency. 

 

Figure 1 presents the situation of an economic agent that is using capital (K) and energy (E) to 

produce, in this case, an energy service (ES) such as heating.3 The situation is illustrated using a 

unit isoquant (IS0) and an isocost (IC0) line.  A technically efficient economic unit uses 

combinations of E and K that lie on the Isoquant IS0.  

 

 

 

 

 

                                                 
3 An economic unit could be a firm or a household and could refer to a wide range of energy services, such as 

heating, cooling, lighting, transportation, industrial processes, etc.  Moreover, Figure 1 could also represent the 

economy wide aggregate production function for a state or a region.  
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 Figure 1: Productive efficiency 

 

If the input price ratio, represented by the slope of the isocost line IC0 in Figure 1 is known, then 

a cost efficient input combination can be identified. An economic agent that uses a cost-

minimising input combination is illustrated by point x*, where the isocost line wTx* is tangent to 

the isoquant IS0, which reflects the production of a given level of energy services (ES*). Thus, 

the minimum costs required for the production of the given level of energy services (ES*) are 

wTx*.  

 

If an economic agent uses a combination of inputs defined by point x1 in Figure 1 to produce a 

level of energy service that correspond to the isoquant IS0, it is technically inefficient as the point 

lies above IS0.  Using a classical input oriented radial measure, the level of technical efficiency 

 can be measured as the ratio between the distance from the origin to technically efficient input 

combination x1 and the distance from the origin to input combination x1. This measure treats 

the contribution of each input to technical efficiency equally (equi-proportionate).  

 

From Figure 1 the economic agent operating at x1 is technically efficient but allocatively 

inefficient since it produces with higher costs. The level of allocative efficiency is measured as 

the ratio between the distance from the origin to x1 and the distance from the origin to x1. 

The overall productive efficiency or cost efficiency  can be obtained as the ratio between the 

distance from the origin to x1 and the distance from the origin to x1. To reach the optimal input 

combination, the economic agent has to increase the use of input K and decreases the use of input 

E. For example, an increase of K could be reached by installing a device on a cooling system to 
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improve the function of the system or by substituting the single glazing windows with double 

glazing windows. 

 

Note, that an economic agent that uses quantities of inputs defined by point x1 it is technically 

as well allocative inefficient. The economic agent could improve the level of overall productive 

efficiency by moving to the optimal input combination x*. In this case, energy consumption will 

decrease, as energy is substituted with capital and used in a more parsimonious way allowing the 

economic agent to consume less energy. This occurs for instance when a household or a firm 

improve the insulation of the building, change some electrical appliances, optimize the use of 

the heating or cooling system and the use of electrical appliances, in order to reach x*.  

 

So far, a radial notion of technical efficiency has been discussed. In this case, an improvement 

of the level of efficiency in the use of inputs requires a reduction in energy and the other inputs 

proportionally. However, if researchers are more interested in obtaining an input specific 

technical efficiency measure, for example, as here, in terms of an energy efficiency measure, 

then empirical analysis should be based on a non-radial notion of efficiency.  This measure, 

introduced by Kopp (1981), can be expressed as the ratio between the distance from the 

technically efficient input vector x1 and the input vector x1 in Figure 1. This is a special case 

of technical efficiency and, considering the input energy, is defined as the ratio of minimum 

feasible (E2) to observed use of energy (E1), conditional on the production technology and the 

observed levels of outputs and other inputs.  

 

It is worth noting that, as discussed in Kopp (1981), all the theoretical definitions presented in 

Figure 1 help to understand the concept of technical, allocative and input specific efficiency. 

However, empirical studies on productive efficiency provide measures of efficiency that 

represent a generalization of these theoretical definitions. For example, the assumption of a unit 

isoquant is usually relaxed in empirical studies. Furthermore, with empirical frontier production, 

cost or input demand functions the level of efficiency is measured as deviations in output, input 

or cost from these frontiers.   

 

As discussed in more detail in the next section, Filippini and Hunt (2011), motivated by the 

notion of non-radial input specific efficiency introduced by Kopp (1981), proposed that the way 

to econometrically estimate a measure of the efficient use of energy is to estimate a single 

conditional input demand frontier function, such as a demand function for energy. With this 
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approach the difference between the optimal use of energy (E*) that corresponds to the cost 

minimizing input combination x* to produce a given level of energy services (ES*) and the 

observed use of energy (E1) should be measured. 

 

In summary the above suggests that the non-radial measure of input specific efficiency is an 

interesting concept to use in the empirical analysis of the level of the efficient the use of energy 

for the production of outputs or energy services. As will be seen later in the paper, the majority 

of the empirical studies dealing with the measurement of energy efficiency are based on this non-

radial measure of input specific efficiency, although not always recognized and fully explained 

in the papers. 

 

In the analysis of the productive efficiency of an economic agent it is also important to consider 

the impact of technological change on the efficient use of energy and, more generally, on the use 

of all inputs. In this context, when technological change allows the economic agent to produce 

the same level of the energy service ES*, with less energy and capital, the isoquant shifts.  For 

instance, this occurs when the temperature of rooms in a house is maintained at say 20 Celsius, 

with less energy and capital maybe due to new insulation technology or a new heating system. 

In this case, the technological progress will move the isoquant, IS0, to the left as depicted in 

Figure 2.4  In this case, the amount of energy and capital used to produce the energy service has 

decreased and the economic agent reaches point xt1*.5 If an economic agent decides to use an 

obsolete technology and remains at xt0*, then a technological gap is observed, i.e. the economic 

agent does not adopt a new technology that allows the inputs to be reduced and therefore decrease 

cost. 6  

                                                 
4 See also Gillingham et al. (2009) for a discussion of this effect. 

5 In Figure 2, a homothetic production function is assumed, which implies a parallel shift of the isoquant. 

6 The use of an obsolete technology is related to the ‘energy efficiency gap’ concept often discussed in the 

energy economics literature (see, for example, Jaffe and Stavins, 1994). The energy efficiency gap is a situation 

where households or firms do not perform an investment in a new energy saving technology, although from an 

economic point of view the investment is profitable and sustainable. We think that from a microeconomic point 

of view the term technology gap is more appropriate, because it is broader and refers to a new technology. 
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Figure 2: Technical progress 

 

From this discussion, it is clear, that the level of energy consumption for the production of a 

predefined level of energy service can change over time because of an increase of the level of 

the productive efficiency, input specific efficiency and/or technical progress. However, as 

Kumbhakar and Lovell (2000) note, when using parametric methods to estimate production 

frontier functions the distinction between the impact of the increase in the level of productive 

efficiency and the impact of the introduction of new technologies on output can be difficult.  

Finally, it is worth noting that the potential explanations for the presence of inefficiency in the 

use of energy or the presence of a technological gap tend to fall into two categories: market 

failures such as information problems, misplaced incentives and behavioural failures such as 

heuristic decision making, inattentiveness and bounded rationality.7 

 

This section has focussed on the theoretical underpinnings of defining energy efficiency from an 

economics perspective. The following section therefore builds on this by considering the range 

of empirical parametric methods that could be considered for estimating energy efficiency based 

on this definition. 

 

 

3. Parametric methods to energy efficiency estimation  

                                                 
7 See Gillingham et al. (2009) for an interesting presentation of the different type of market and behavioural 

failures. 
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In order to estimate the level of overall productive efficiency, the level of efficiency in the use 

of a single input and the level of technical progress it is possible to use parametric and non-

parametric frontier analysis.8 In non-parametric approaches the production or cost frontier 

function is considered as a deterministic function of some variables but no specific functional 

form is imposed. Moreover, non-parametric approaches can be applied on small datasets. On the 

other hand, parametric approaches based on econometric methods are able to take into account, 

at least partially, unobserved heterogeneity among different economic agents but need to specify 

a functional form for the cost, production or input demand function. The main advantage of 

parametric approaches over non-parametric approaches is the separation of the inefficiency 

component from the statistical noise due to data errors and omitted variables, and accommodates 

formal statistical testing. Moreover, using panel data and some specific stochastic frontier 

models it is possible to reduce the unobserved heterogeneity bias because for the estimation of 

empirical frontier models some explanatory variables are usually not observed. The non-

parametric methods’ assumption of a unique deterministic frontier for all production units is 

strong. In this paper, we suggest that parametric methods are more attractive to analyse the level 

of efficiency in the use of energy, because of the presence in the modelling of unobserved 

heterogeneity in the production of energy services; nevertheless, we do recognize the possible 

advantages of using the non-parametric approach.9 However, in the following sections the use 

of parametric methods for the estimation of frontier functions only are discussed and, given the 

majority of the parametric methods have a stochastic element in their frontier function, this group 

of methods are generally known as Stochastic Frontier Analysis (SFA). 10  

 

For the estimation of an input specific technical efficiency measure, e.g. a measure of the 

efficient use of energy, three approaches can be used. Reinhard et al. (1999) show how to obtain, 

through a two-step procedure, an indicator of input specific technical efficiency from the 

estimation of a production frontier. Kumbhakaker and Hjalmarrson (1995), on the other hand, 

propose the measurement of input specific technical efficiency from the estimation of an input 

                                                 
8 See for instance, Murillo-Zamorano (2004) for a general presentation of different methodologies. 

9 In the literature it is possible to find several applications of non-parametric approaches such as Data 

Envelopment Analyis (DEA) that attempt to measure the efficient us of energy; see for example, Hu and Wang 

(2006), Zhou and Ang (2008) and Zhou et al. (2012). 

10 See Kumbhakar and Lovell (2000) and Greene (2008) for a discussion on the estimation of production, cost 

and input distance functions. 
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requirement function. This function indicates the minimum amount of an input that is necessary 

to produce a given level of output, given the technology and the quantity of other production 

factors. Finally, Zhou et al. (2012) propose the estimation of a Shephard energy input distance 

function, and Boyd (2008) has shown that this type of input distance function is equivalent to 

the input requirement function.11 Furthermore, it is worth highlighting that all three approaches 

are able to estimate only the level of technical efficiency in the use of an input; however, from 

an economic point of view it is important to also have information on the level of overall 

efficiency in the use of an input, i.e. a measure that includes both technical and allocative 

components of inefficiency.  

 

Filippini and Hunt (2011) suggested that the estimation of a measure of the efficient use of energy 

could also be based on the estimation of a single conditional input demand frontier function, such 

as the demand function for energy.12 This function indicates the minimum amount of energy that 

is necessary to produce a given level of output (energy services), given the technology, input 

prices and other factors. In this context, actual energy demand differs from the energy frontier 

demand due to the presence of both allocative and technical inefficiency and not just technical 

inefficiency, as in Kopp (1981).13  Nonetheless, it should be noted that the approach proposed 

by Filippini and Hunt (2011) should be considered an ad-hoc approach because it does not 

completely consider the theoretical restriction imposed by production theory and just estimates 

one input demand frontier function.14 Therefore, this approach can only estimate an 

approximation of the inefficiency in the use of energy, determined by the presence of both 

allocative and technical inefficiency. However, in principle, this approach provides information 

on the difference between the optimal use of energy that corresponds to a cost minimizing input 

combination to produce a given level of energy services and the observed use of energy. This 

indicator of the efficient use of energy, measures the ability of an economic agent to minimize 

                                                 
11 Sometimes, the Shephard energy distance function is also called sub-vector energy distance function  

12 Schmidt and Lovell (1979) use the self-duality of the Cobb-Douglas production function to derive a system of 

log-log stochastic cost-minimizing input demand equations, which are also known as input frontier equations.   

13 See Kumbhakar and Lovell (2000) for a discussion on this point. 

14 Schmidt and Lovell (1979) propose the estimation of a cost frontier function together with all input demand 

frontier functions. This approach satisfies the theoretical restriction imposed by production theory and 

simultaneously takes into account the fact that the input allocative efficiency can be different in each input 

demand frontier function. That said the other approaches to measuring energy efficiency are also based on the 

estimation of just one equation and therefore should also be considered rather ‘ad hoc’ approaches. 
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the energy consumption to produce a level of energy services given input prices and one of the 

advantages of this approach is that it considers the cost-minimizing input combination.  

 

However, as discussed by Schmidt and Lovell (1979), the sign of the allocative efficiency in an 

input demand function can be positive or negative, i.e. the under or over use of an input can be 

observed. In order to reach an allocative efficient input combination the economic agent might 

have to change the proportions of inputs, given their relative prices. This change of the 

proportions could also determine an increase of the consumption of some inputs and not always 

a reduction. This implies that by using the approach introduced by Filippini and Hunt (2011) 

based on the estimation of just one input demand function, the optimal use of energy (E*) is not 

always necessarily lower than the observed use of energy (E1). For instance, point x2 in Figure 

1 is characterized by an inefficient input combination. In this case, in order to reach x* it is 

necessary to substitute capital with energy, i.e. energy consumption will increase. This means 

that in an empirical study, inefficient input combinations could be identified where energy is 

overused and combinations where energy is underused, i.e. the sign of the part of allocative 

efficiency can be positive or negative. Which situation dominates in order to reach a cost-

minimizing input combination (energy reducing and other inputs increasing or energy increasing 

and other inputs reducing) is purely an empirical question.  Of course, for the estimation of an 

input demand function using SFA, which is based on the presence of a strictly nonnegative 

component (a measurement of inefficiency), the presence of over use or under use of energy is 

likely to result in econometric problems, such as wrong skewness of the nonnegative component. 

That said, the fact that economic agents using obsolete technologies/appliances can be observed, 

tends to support the hypothesis that the optimal use of energy (E*) is generally lower than the 

observed use of energy (E1). Nonetheless, the potential limits of this approach should be always 

considered in any empirical analysis and in the interpretation of the results. 

 

In summary, it is believed that all four approaches just illustrated are a sounder basis for 

measuring energy efficiency based on economic foundations rather than relying on simple 

energy intensity indicators. However, as discussed in more detail later, the actual empirical 

studies that estimate the level of efficiency in the use of energy are generally based on the 

estimation of three functions: i) an input requirement function (Boyd, 2008); ii) a Shephard 

energy distance function (Zhou et al., 2012); and iii) an energy demand function (Filippini and 

Hunt, 2011).  Therefore, the following discussion is related only to these three functions and not 

on the approach proposed by Reinhard et al. (1999). 
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From an econometric perspective, the estimation of these frontier functions is based on variants 

of the SFA frontier function approach proposed by Aigner et al. (1977). This approach is based 

on the assumption that the level of energy inefficiency can be approximated by a one-sided non-

negative term. Below, therefore provides details of the econometric specifications of the three 

functions that can be used to estimate the level of energy efficiency. 

 

3.1 Input Requirement Function Econometric Specification 

Using a log-log functional form, considering panel data and adopting the panel version of the 

original SFA frontier function approach proposed by Aigner et al. (1977) an input requirement 

frontier function for energy can be specified as follows: 
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where i denotes the economic unit and t the year.   𝐸𝑖𝑡 is energy consumption,  𝒙𝑖𝑡 is a set of 

time-varying and time-invariant covariates such as the output and the inputs in logs. Further,  𝒙𝑖𝑡  

can also include a full set of time dummies or a time trend to capture technological change.15 β 

is the associated vector of parameters to be estimated. The error term  𝜺𝑖𝑡 in Equation (1) is split 

into two independent parts. The first part, uit, reflects the energy efficiency and is interpreted as 

an indicator of the level of inefficiency in the use of energy.  It is a one-sided non-negative 

random disturbance term that can vary over time. Moreover, in the empirical applications it is 

generally assumed that uit follow a half-normal distribution. The second part, vit, is the classical 

                                                 
15 In order to consider the effect of technological change on production, cost or input demands, all frontier models 

can be estimated by introducing a set of time dummy variables. Generally, it is assumed that these variables capture 

the shift in the frontier functions due to change in the technology. Indeed, as suggested by the energy demand 

literature, such shifts might also come about by changes in a range of exogenous impacts that cannot usually be 

measured explicitly, consistent with the idea of an Underlying Energy Demand Trend (or UEDT for short). The 

impact of such technological, organizational, and social innovation in the production and consumption of energy 

services on the energy demand can be also captured with a time trend, but this a more restrictive version of the 

UEDT (Hunt et al., 2003; Adeyemi et al.,20010). 
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symmetric disturbance capturing the effect of noise and as usual is assumed to be normally 

distributed.16   

 

3.2 Shephard Input Distance Function Econometric Specification 

In the case where the interest is in the estimation of a Shephard input distance frontier function, 

then the following model can be specified:  
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The differences between the input requirement functions and the Shephard input distance 

function are the dependent variables and the sign of the inefficiency term. 

 

3.3 Input Demand Frontier Function Econometric Specification 

Finally, researchers interested in the estimation of an input demand frontier function can use the 

following specification: 
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where in this case   𝒛𝑖𝑡 is a set of time-varying and time-invariant covariates such output,inputs 

prices and time dummies. As in the previous model, uit reflects the level of energy efficiency.  

The difference between the input requirement function and the input energy demand function is 

that the former includes the quantity of inputs whereas the latter the input prices. 

                                                 
16 This assumption allows the ‘identification’ of the efficiency for each economic unit separately. This is a 

standard assumption used in the estimation of production or cost frontier functions; see Kumbhakar and Lovell 

(2000, p. 148) for a discussion. 
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3.4 Econometric Specification and Estimation 

A common econometric specifications for equations (1), (2) and (3) is the log-log functional 

form, although there are other possibilities with a high number of alternative functional forms 

proposed in the literature.17  Generally, a distinction can be made between traditional and flexible 

functional forms; the most important difference being that the former imposes restrictions on the 

values of the first and second partial derivatives whereas the latter do not. One consequence of 

this being that for the log-log functional form used in equations (1), (2) and (3), the price and 

income elasticities are constant, not varying with demand; whereas flexible functional forms, 

such as the translog, allows for the elasticities to vary with demand.18 Still, it is worth noting that 

while the flexible functional forms such as the translog has many desirable attributes, the applied 

economists should always keep in mind the objective of their research when choosing a 

functional form; relevant considerations being the number of explanatory variables to be 

considered in the model, the number of observations and the multicollinearity problems that may 

arise using a flexible functional form. 

 

Equations 1, 2 and 3 are specified for panel data but the estimation of such a stochastic frontier 

function can also be performed using cross-sectional data. However, panel data sets have the 

advantage that they allow the use of econometric models that can take into account the possible 

presence of unobserved heterogeneity in the model specification. Another econometric problem 

that should be considered, especially in the estimation of an input requirement function and a 

Shephard energy distance function, is the potential endogeneity problem of inputs and/or 

outputs.19 

 

The econometric models available for estimating a stochastic frontier model using panel data are 

numerous.20 In this paper, discussion on some of these models is restricted to those most 

                                                 
17 For a good overview of functional forms in applied production analysis, see Chambers (1988). 

18 Within a group of flexible functional forms it is possible to differentiate between those functional forms derived 

from second-order Taylor series approximations, such as the translog, the generalized Leontief and the quadratic 

or the functional forms derived from Fourier or Laurent series approximations.  The translog form provides a 

second-order approximation of the true function at a given point. Therefore, the independent variables are 

expressed as deviations from this point. Often, the sample mean or median of each of the explanatory variables is 

chosen. 

19 For a discussion on this issue, see Guan et al. (2009). 

20 For an overview of all the models for panel data, see Kumbhakar et al. (2012) and Filippini and Greene (2015). 
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commonly used and applicable to the task of estimating energy efficiency. These are: the pooled 

model (PM hereafter) that is basically the panel version of the model proposed by Aigner et al. 

(1977) and presented above;21 the random effects model (REM hereafter); the true random 

effects model (TREM hereafter);22 and the ‘Generalized True Random Effects’ (GTREM 

hereafter). As discussed in Filippini and Greene (2015), some of these models produce time 

invariant values of the level of efficiency (persistent efficiency), whereas others models estimate 

time variant values (transient efficiency). We believe that this distinction in the type of efficiency 

that so far has been partially neglected is relevant and will gain importance in future research. 

Table 1 summarizes the econometric specifications shortly discussed in this paper. 

 

Table 1: Econometric Specifications of the Stochastic Cost Frontier  

 

 

Model I 

 

PM 

(Pitt and Lee) 

 

Model II 

 

REM 

(Pitt and Lee) 

 

Model III 

 

TRE 

 

Model IV 

 

GTREM 

Firm 

effectsi 
None  N(,w

2) N(,w
2) 

Full random 

error it 



it=uit+vit 

uit~N+(0,u
2) 

vit~N(0,v
2) 

 

it=ui+vit 

ui~N+(0,u
2) 

vit~N(0,v
2) 





it=wi+uit+vit 

uit~N+(0,u
2) 

vit~N (0,v
2) 

wit ~N (0,w
2)

it=wi+hi+ 

         uit+vit 

uit~N+(0,u
2) 

hi  ~N+(0,h
2) 

vit~N (0,v
2) 

wi~N (0,w
2)

Persistent 

Inefficiency 

Estimator 
None E(ui |i1,…iT) None



(hiyi



Transient 

Inefficiency 

Estimator 
E(uit|it) None E(uit|it) (uityi

 

                                                 
21 Battese and Coelli (1995) proposed a basic pooled model where the inefficiency term uit is modified so as to 

have a systematic component associated with a vector of variables (zit) and a random component (eit):  u
it
 = η' z

it
 + 

v
it
 . using panel data. However, it should be noted that this model does not in fact exploit the panel aspect of the 

data set in order to deal with the unobserved heterogeneity. 

22See Greene (2008) and Farsi and Filippini (2009) for a discussion of these models.  
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The PM does not exploit the possibility given by panel data to control for time invariant 

unobserved heterogeneity variables. Therefore, the unobserved heterogeneity bias can be present 

in this model. On the other hand, the REM introduced by Pitt and Lee (1981) considers the typical 

panel data individual random effects as inefficiency rather than unobserved heterogeneity as in 

the literature on panel data econometric methods.23 The REM produces efficiency indicators that 

do not vary over time (persistent efficiency).  One problem with the REM is that unobserved 

time invariant variables are captured by the individual effects and, therefore, considered as 

inefficiency. As an alternative to the REM, Greene (2005a and 2005b) proposed the TREM 

whereby the PM is extended by adding random individual effects .24 The TREM produces values 

of the level of efficiency that vary over time (transient efficiency). In these models the individual 

fixed or random effects take into account all unobserved variables that are time-invariant. In the 

TREM any time-invariant or persistent component of inefficiency is completely absorbed in the 

state-specific constant terms. Therefore, if the production of energy services is characterized by 

persistent inefficient use of energy (for instance by the presence of old production machines, old 

buildings or an old road system or systematic behavioural failures such as adjusting the room 

temperature or frequently opening the windows), the TREM will produce relatively high levels 

of estimated energy efficiency. These approaches have been further developed more recently 

with some scholars proposing the GTREM that allows for the possibility of estimating the level 

of persistent and transient efficiency of an economic agent at the same time. The GTREM 

recognizes that the level of productive efficiency can be split into two components and the 

importance of estimating both components at the same time.25 This is obtained by adding, to the 

TRE model, a time persistent counterpart to uit in the time varying stochastic frontier. Therefore, 

                                                 
23 Several variants of the Pitt and Lee (1981) model have been proposed to accommodate time variation in the 

inefficiency term. Generally, in these models, the inefficiency term is represented as a product of a deterministic 

function of time and the random effects, ui. For instance, Kumbhakar (1990) specifies the inefficiency term as 

2 1[1 exp( )] | |,it iu bt ct U   Battese and Coelli (1992) as exp[ ( )] | |,it iu t T U   Battese and 

Coelli (1995) as  exp[ ( , , )] | |it it iu g t T U z .  

24 Greene (2005) has also proposed the True Fixed Effects Model. A model similar to the TREM with the 

difference that the individual effects are fixed and not random. 

25 For instance, Kumbhakar et al. (2012) and Colombi et al. (2014) have proposed a relatively complex approach 

that provide separate estimates of the two components of efficiency. More recently, Filippini and Greene (2015) 

have proposed a relatively straightforward estimation method.  
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this model includes a four-part disturbance with two time varying components and two time 

invariant components as presented in Table 1.  

 

Finally, it is worth noting that all the econometric approaches outlined above can suffer from 

‘unobserved variables bias’, because the unobserved characteristics may not be distributed 

independently of the explanatory variables.  In order to address this econometric problem Farsi 

et al. (2005b) proposed that a version of these models should be estimated using the procedure 

proposed by Mundlak (1978), whereby the correlation of the individual specific effects and the 

explanatory variables are considered in an auxiliary equation.26 

 

Given, this discussion the following section considers some of the published work that has 

attempted to apply some of these techniques for estimating the efficient use of energy.  

 

4 Empirical applications and extensions 

The literature on the econometric estimation of the efficient use of energy is relatively new, but 

several studies have now been published based on the approaches outlined in the previous 

sections – some using aggregate date and a few using disaggregate data.27 The previous section 

detailed that there are effectively three approaches to econometrically estimating the level of 

efficiency in the use of energy. The first approach involves the estimation of an energy 

requirement function28 (that provides information only on technical efficiency), the second 

involves the estimation of a Shephard energy distance function29 (that provides information only 

on technical efficiency) and the third involves the estimation of an energy demand frontier 

function30 (that provides information on both technical and allocative efficiency).  A selection of 

                                                 
26 See Filippini and Hunt (2012) for an application of this approach. 

27  There are also examples of studies that estimated the level of efficiency in the use of other natural resources 

such as water and nitrogen, such as Reinhard et al. (1999) and Karagiannis et al. (2003), but they are not 

considered here given the focus on measuring energy efficiency. 

28  Note that in the previous section this was referred to an input requirement function, but in this section as an 

energy requirement function given the focus of this review. 

29  Note that in the previous section this was referred to a Shephard input distance function, but in this section as a 

Shephard energy distance function given the focus of this review. 

30  Note that in the previous section this was referred to an input demand frontier function, but in this section as an 

energy demand frontier function given the focus of this review. 
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papers using all three approaches are reviewed below.31 As is shown, the empirical studies 

discussed in this section differ in several dimensions; such as in the type of function used, in the 

type of data (cross sectional or panel) employed and in the type of efficiency (persistent and 

transient) estimated. In fact, the majority of these studies provide a measure of energy efficiency 

that does not distinguish between transient and persistent energy efficiency given that, as 

discussed previously, this differentiation has only recently been introduced into the literature on 

the measurement of productive efficiency. 

 

4.1 Examples of Energy Requirement Function Estimation 

Boyd (2008) is an early example of research estimating an energy input requirement using SFA 

to analyse the efficient use of energy in the industrial sector. Boyd (2008) estimates a cross 

section model with 37 observations (plant years) based on data spanning 1992 to 1997 for a non-

public micro-dataset of wet corn milling plants.  Boyd (2008) specifies primary energy use as 

being dependent upon variables representing the amount of corn processed, the amount of 

modified starch produced, the amount of anhydrous dextrose, the amount of glucose syrup 

sweeteners and solids, the total amount of alcohol, the moisture content of gluten feed, and 

capacity utilization.  In addition, a white noise error term and a non-negative error term capturing 

the inefficient use of energy are included in the equation and assumed to be truncated normal.  

From this Boyd (2008; p. 40) claims that this approach “is an important contribution to the 

measurement of energy efficiency, particularly in manufacturing where plants may produce 

products that vary in their energy requirements.” 

 

Another example of using an energy requirement function is Lin and Wang (2014) who estimate 

a translog specification as follows:32 

 

𝑙𝑛 𝐸𝑖𝑡 = 𝛽0 + 𝛽𝑦𝑙𝑛𝑌𝑖𝑡 + 𝛽𝑘𝑙𝑛𝐾𝑖𝑡 + 𝛽𝑙𝑙𝑛𝐿𝑖𝑡 +
1

2
𝛽𝑦𝑦(𝑙𝑛𝑌𝑖𝑡)2 +

1

2
𝛽𝑘𝑘(𝑙𝑛𝐾𝑖𝑡)2 +

1

2
𝛽𝑙𝑙(𝑙𝑛𝐿𝑖𝑡)2 +

1

2
𝛽𝑘𝑙(𝑙𝑛𝐾𝑖𝑡 ∗ 𝑙𝑛𝐿𝑖𝑡) + 𝛽𝑦𝑘(𝑙𝑛𝑌𝑖𝑡 ∗ 𝑙𝑛𝐾𝑖𝑡) + 𝛽𝑦𝑙(𝑙𝑛𝑌𝑖𝑡 ∗ 𝑙𝑛𝐿𝑖𝑡) + 𝛽𝑡𝑇 +

1

2
𝛽𝑡𝑡𝑇2 + 𝛽𝑡𝑦(𝑇 ∗

𝑙𝑛𝑌𝑖𝑡) + 𝛽𝑡𝑘(𝑇 ∗ 𝑙𝑛𝐾𝑖𝑡) + 𝛽𝑡𝑙(𝑇 ∗ 𝑙𝑛𝐿𝑖𝑡) + 𝜐𝑖𝑡 + 𝑢𝑖𝑡 (4) 

 

                                                 
31  Note, the notation used in this section is wherever possible as close as possible to the notation used in the 

papers that are reviewed.  
32 Note, Lin and Wang (2014) start by specifying an input distance function, but their estimated equation appears 

to be consistent with an input requirement specification outlined in the previous section. 
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Where, 𝐸𝑖𝑡 is total energy consumption, 𝑌𝑖𝑡 is industrial output, 𝐾𝑖𝑡 represents fixed capital, and 

𝐿𝑖𝑡 is the number of employees. 𝐷1𝑖, 𝐷2𝑖, and 𝐷3𝑖are dummy variables for the Eastern China, 

North Eastern China and Central China regions respectively and 𝑖 represents 26 Chinese 

provinces and the period covered, T, is 2006 to 2011. 𝜐𝑖𝑡 is a white noise error term and 𝑢𝑖𝑡 a 

non-negative error term capturing the inefficient use of energy, with their measure of efficiency 

given by 𝐸𝑓𝑓𝑖𝑡 = exp(−�̂�𝑖𝑡).33 

 

In addition, Lin and Wang (2014) attempt to explain the inefficiency term 𝑢𝑖𝑡 from Equation (2) 

based on the Battese and Coelli (1995) approach by assuming that it has a systematic component 

associated with a vector of policy measures (𝑧𝑖𝑡) consisting of industry concentration and 

ownership structure plus a random component (휀𝑖𝑡) given by: 

 

𝑢𝑖𝑡 = 𝑧𝑖𝑡𝛿 + 휀𝑖𝑡  (5) 

 

Lin and Wang (2014) conclude that there was an increasing trend in the efficient use of energy 

in the Chinese iron and steel industry across all regions, although they suggest that there is greater 

potential for energy savings in the Central and Western regions of China.  Moreover, they find 

that the structural defects in the economic system acts as an impairment to improving the efficient 

use of energy in the Chinese iron and steel sector.  However, Lin and Wang (2014) appear to 

have ignored the econometric issue related to the presence of unobserved heterogeneity bias that 

could have been considered given their use of a panel data set. Furthermore, the specification 

used by Lin and Wang (2014) did not distinguish between persistent and transient efficiency.  

 

4.2 Examples of Shephard Energy Distance Function Estimation 

An example of research applying the Shephard Energy Distance Function is Zhou et al. (2012) 

who estimate a SFA PM cross section economy wide model for 21 OECD countries using 2001 

data.34  The log-linear estimated equation is given by: 

 

𝑙𝑛(1 𝐸𝑖⁄ ) = 𝛽0 + 𝛽𝐾𝑙𝑛𝐾𝑖 + 𝛽𝐿𝑙𝑛𝐿𝑖 + 𝛽𝑌𝑙𝑛𝑌𝑖 + 𝜐𝑖 + 𝑢𝑖   (6) 

                                                 
33 Lin and Wang (2014) do not state the software they used for their estimation nor do they appear to have stated 

the assumption made for the distribution of 𝑢𝑖𝑡, but nor we assume that they have used a truncated normal 

distribution . 

34 They actually also estimate a DEA version for comparison. 
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Where, 𝐸𝑖 is energy consumption, 𝐾𝑖 is the capital stock, 𝐿𝑖 is the labour force , and 𝑌𝑖 is GDP 

in country 𝑖 respectively and 𝜐𝑖 is a white noise error term. 𝑢𝑖 a non-negative error term capturing 

Zhou et al.’s measure of energy inefficiency and assumed to be distributed either half-normal or 

truncated- normal.35 With what they called the economy-wide energy efficiency index given by 

𝐸𝐸𝐼𝑖 = exp (−�̂�𝑖).  

 

The results show a close correlation between those obtained assuming a half-normal distribution 

and a truncated-normal distribution; the correlation coefficient and the Spearman rank 

correlation of the 𝐸𝐸𝐼 estimates both being 0.98.36 The results for the estimated 𝐸𝐸𝐼 are 

illustrated in Figure 4 and it is interesting to compare these with the IEA estimates for energy 

intensity for 2001 illustrated in Figure 5.37  These show that there appears to be a reasonably 

close correspondence with the correlation coefficient for energy intensity and the estimated 𝐸𝐸𝐼 

being about –0.8 and the Spearman rank correlation coefficient being about –0.9. Perhaps this is 

not surprising given the limited number of cross section observations for the one year. Moreover, 

the econometric specification did not make an allowance for taking into account the possible 

unobserved heterogeneity bias across the countries included in the cross section sample. That 

said there are still instances where energy intensity appears to overestimate a country’s relative 

 𝐸𝐸𝐼 position.  For example, Austria and Finland are ranked 12th and 20th respectively according 

to energy intensity, whereas the 𝐸𝐸𝐼 measure suggests that they are ranked somewhat higher at 

6th/7th and 14th respectively.  Whereas, Norway, Spain and Switzerland are ranked 13th, 5th and 

1st respectively according to energy intensity, whereas the 𝐸𝐸𝐼 measure suggests that they are 

ranked somewhat lower at 20th, 9th and 6th/5th respectively.  

 

                                                 
35 Zhou at al. (2012) used the FRONTIER 4.1 software for the estimation (Coelli, 1996). 

36 Although the correlation between the 𝐸𝐸𝐼 estimates from the SFA and DEA were somewhat lower, with the 

correlation coefficient ranging from 0.65 to 0.73 and the Spearman’s rank correlation coefficient ranging from 

0.41 to 0.65. 

37 Energy intensity is measured as Total Final Consumption/GDP, i.e. toe per thousand 2005 USD PPP (IEA, 

2014). 
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Figure 4: Estimated 𝐸𝐸𝐼 for 2001 from Zhou et al. (2012) 
 (Ranked according to the Half-Normal estimates) 

 

 
Figure 5: Energy Intensity for 2001 (Source: IEA, 2014) 

 

Lin and Du (2013) also use the Shephard energy distance approach in order to analyse the 

efficient use of energy across China’s 30 administrative regions over the period 1997 to 2010.  

Lin and Du (2013) also employ a translog specification using energy consumption, GDP, labour 

and capital, similar to Lin and Wang (2014); however, differ by excluding the technical progress 

term (T) and utilising −𝑙𝑛 𝐸𝑖𝑡 as the dependent variable; effectively equivalent to Zhou et al.’s 

(2012) dependent variable specification of 𝑙𝑛(1 𝐸𝑖⁄ ).  Although Lin and Du’s (2013) data set 

includes China’s 30 administrative regions they actually estimate their model for three groups 
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within the 30 regions based not on geographical regions (such as the east, central and west 

provinces) but by using energy intensity38, stating that the “differences of energy intensity among 

groups are profound” (p. 532). 39  This however, is arguably a problem since it pre supposes that 

energy intensity is a good indicator of energy efficiency which is what Lin and Du (2013) are 

actually attempting to estimate. Nevertheless, they do also estimate what they call a pooled 

model that includes all the groups but, based on a likelihood ratio test, argue that the frontiers of 

the three groups are not the same.  However, Lin and Du (2013) appear to have ignored the 

potential econometric problem of unobserved heterogeneity bias and perhaps rather than 

grouping according to energy intensity their pooled model should have included additional 

variables to address the possible heterogeneity of the groups and/or use appropriate econometric 

models for panel data as outlined in Section 3.  Furthermore, Lin and Du (2013) (and Zhou et al., 

2012) did not distinguish between persistent and transient efficiency.40 

 

 

4.3 Examples of Energy Demand Frontier Function Estimation 

The final group of examples estimate energy demand frontier functions. Filippini and Hunt 

(2011) estimated an energy demand frontier function for the whole economy with an unbalanced 

panel of 29 OECD countries over the period 1978 to 2006, which was extended and updated in 

Evans et al. (2013) for the period 1978 to 2008.  The specification used being: 

 

𝑒𝑖𝑡 = 𝛼 + 𝛼𝑦𝑦𝑖𝑡 + 𝛼𝑝𝑝𝑖𝑡 + 𝛼𝑝𝑜𝑝𝑝𝑜𝑝𝑖𝑡 + 𝛿𝑡𝐷𝑡 + 𝛼𝐶𝐷𝐶𝑂𝐿𝐷𝑖 + 𝛼𝑅𝐷𝐴𝑅𝐼𝐷𝑖 + 𝛼𝑎𝑎𝑖 +

𝛼𝐼𝐼𝑆𝐻𝑖𝑡 + 𝛼𝑆𝑆𝑆𝐻𝑖𝑡 + 𝜐𝑖𝑡 + 𝑢𝑖𝑡 (7) 

 

                                                 
38 Their first group included eight regions in the east area (Fujian, Guangdong, Guangxi, Hainan, Shanghai, 

Zhejiang, Shangdong, Jiangsu) and two regions in the central area (Anhui and Jiangxi). Their second group 

included three regions in the east area (Beijing, Liaoning, Tianjin), six regions in the central area (Hebei, Henan, 

Heilongjiang, Hubei, Hunan, and Jilin), and four regions in the west area (Shaanxi, Sichuan, Yunnan, and 

Chongqing). And their final group included two regions in the central area (Inner Mongolia and Shanxi) and five 

regions in the west area (Gansu, Guizhou, Ningxia, Qinghai, Xinjiang). 

39 Lin and Du (2013) appear to have used the FRONTIER 4.1 software for the estimation (Coelli, 1996) and used 

a truncated normal distribution for the inefficiency term 𝑢𝑖𝑡. 

40 Lin and Du (2013) do however go on to estimate a metafrontier based on linear programming, but this is beyond 

the scope of this review so is not considered here.  
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where eit is the natural logarithm of aggregate energy consumption (Eit), yit is the natural 

logarithm of GDP (Yit), pit is the natural logarithm of the real price of energy (Pit), popit is the 

natural logarithm of population (POPit), DCOLDi is a cold climate dummy variable, DARIDi is 

a hot climate dummy, ai is the natural logarithm of the area size of a country (Ai), ISHit is the 

share of value added of the industrial sector, and SSHit is the share of value added for the service 

sector. The time variable Dt is a series of time dummy variables.41  Once again the error term is 

composed of two independent parts: vit and uit.
 42 The level of energy efficiency for each country 

in each year being given by 𝐸𝐸𝑖𝑡 = 𝐸𝑖𝑡
𝐹 𝐸𝑖𝑡 = 𝑒𝑥𝑝(−�̂�𝑖𝑡)⁄ . 

 

Given the relatively long time period, Filippini and Hunt’s (2011) preferred estimated model and 

the one presented in Evans et al. (2013) is an energy demand frontier with time dummies to 

represent the UEDT using a PM.43 The results show that the estimated 𝐸𝐸 is generally negatively 

correlated with energy intensity for most countries but with some exceptions. As Filippini and 

Hunt (2011) and Evans et al. (2013) argue, this is generally to be expected, but if this technique 

were to be a useful procedure for estimating ‘true’ energy efficiency then a perfect, or even near 

perfect, negative correlation would not be expected since all the useful information would be 

contained in the standard energy intensity measure.  This is confirmed, given that in Evans (2013) 

the average correlation coefficient between the estimated 𝐸𝐸 and energy intensity across all 

countries over the whole estimation period is −0.48. Moreover, within this, there is a relatively 

high negative correlation for some countries, such as the Czech Republic, Denmark, Germany, 

Greece, Hungary, Ireland, Luxembourg, the Netherlands, New Zealand, Poland, Portugal, 

Slovak Republic, the UK and the USA, whereas for some countries the (negative) correlation is 

somewhat less, such as Canada, Finland, France, Korea, Norway, Spain and Sweden. 

Furthermore, for Australia, Austria, Belgium, Italy, Japan, Mexico, Switzerland and Turkey, 

there appears to be a positive relationship between energy intensity and estimated energy 

                                                 
41 Note, that this model specification does not include the price of capital due to the lack of consistent data. 

42 Filippini and Hunt (2011) and Evans et al. (2013) used the LIMDEP and NLOGIT software for the estimation. 

43 Filippini and Hunt (2011) also estimated a PM with a time trend and a TREM with a time trend for 

comparison. The PM with the time dummies was preferred to the PM with the time trend given its non-linear 

representation of the UEDT. For the TREM, they argue that given certain sources of energy inefficiency that 

result in time-invariant excess energy consumption, the estimates from the model provide imprecise estimates 

resulting in overestimated levels of energy efficiency.  However, recent developments as discussed in Section 3 

suggest that estimates from the TREM might in fact represent transient energy efficiency. 
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efficiency. This suggests that for some countries energy intensity is a reasonable proxy for ‘true’ 

energy efficiency, whereas for others it is a very poor proxy.  

 

 
Figure 6: Estimated 𝐸𝐸 compared to Energy Intensity 2003 to 2007 from Evans et al. (2013) 

 

Figure 6 focuses on the Evans et al. (2013) results for the period 2003 to 2007 and shows that 

although there would appear to be a generally negative relationship between the rankings of 

estimated 𝐸𝐸 and energy intensity, there is not a one- to- one correspondence. For example, 

according to the energy intensity measure, Italy, Turkey and Japan are ranked 6th, 7th and 10th 

respectively whereas they are estimated to be 18th, 19th and 28th respectively according to the 

estimated 𝐸𝐸 measure; thus for these countries the simple energy intensity ratio would appear to 

overestimate their ‘true’ relative energy efficiency position. On the other hand, according the 

energy intensity ratio Sweden, New Zealand, Poland and the Slovak Republic are ranked 18th, 

20th, 21st and 27th respectively, whereas they are estimated to be 6th, 9th, 11th and 15th respectively 

according to the estimated 𝐸𝐸 measure; thus for these countries energy intensity would appear 

to underestimate their ‘true’ relative energy efficiency position. 
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Filippini and Hunt (2012) and Filippini et al. (2014) build on the approach suggested by Filippini 

and Hunt (2011)44 but use a shorter time period and attempt to further control for unobserved 

heterogeneity by estimating models with a Mundlak adjustment (Mundlak, 1978).  Filippini and 

Hunt (2012) estimate a US frontier residential aggregate energy demand function using panel 

data for 48 ‘states’ over the period 1995 to 2007 using the REM with the Mundlak adjustment.45  

They find that energy intensity is not necessarily a good indicator of their estimated levels of 

energy efficiency.46 

 

Filippini et al. (2014) also prefer a Mundlak corrected REM, but augment the energy demand 

frontier with an equation to assess the impact of various energy efficiency policies on the 

estimated 𝐸𝐸.  Filippini et al. (2014) use an unbalanced panel data set for a sample of 27 EU 

member states over the period 1996 to 2009 and estimate a log-linear residential equation given 

by: 

 

𝑙𝑛 𝐸𝐷𝑖𝑡 = 𝑎 + 𝑏𝑃𝐸𝑙𝑛𝑃𝐸𝑖𝑡 + 𝑏𝑌𝑙𝑛𝑌𝑖𝑡 + 𝑏𝑃𝑂𝑃𝑙𝑛𝑃𝑂𝑃𝑖𝑡 + 𝑏𝐷𝑆𝐼𝑍𝐸𝑙𝑛𝐷𝑆𝐼𝑍𝐸𝑖𝑡 + 𝑏𝐻𝐷𝐷𝑙𝑛𝐻𝐷𝐷𝑖𝑡 +

𝑏𝐻𝑂𝑇𝑙𝑛𝐻𝑂𝑇𝑖 + 𝑏𝑡𝑡 + 𝜐𝑖𝑡 + 𝑢𝑖𝑡  (8) 

 

where 𝐸𝐷𝑖𝑡 represents final residential energy consumption, 𝑃𝐸𝑖𝑡 the real energy price, 𝑌𝑖𝑡 real 

income, 𝑃𝑂𝑃𝑖𝑡 population, 𝐷𝑆𝐼𝑍𝐸𝑖𝑡 the average size of a dwelling, 𝐻𝐷𝐷𝑖𝑡 the number of heating 

degree days, 𝐻𝑂𝑇𝑖 a hot climate dummy variable, and 𝑡 a time trend to proxy a UEDT.  With 

𝜐𝑖𝑡, 𝑢𝑖𝑡 and 𝐸𝐸𝑖𝑡 defined as in Filippini and Hunt (2011) and Evans et al. (2013). Filippini et al. 

(2014) estimate their preferred model using the Battese and Coelli (1995) approach but with a 

Mundlak adjustment to their model, like Filippini and Hunt (2012).  Furthermore, in a similar 

way to Lin and Wang (2014), Filippini et al. (2014) assume that their  inefficiency term 𝑢𝑖𝑡 has 

a systematic component associated with a vector of policy measures (𝒁𝑖𝑡) and a random 

component (휀𝑖𝑡) given by: 

                                                 
44 Weyman-Jones et al. (2005) is another example of research attempting to estimate the efficient use of energy 

based on the Energy Demand Frontier approach, but for Portuguese electricity consumption. 

45 Filippini and Hunt (2012) used the LIMDEP and NLOGIT software for the estimation. 

46 Orea et al. (2015) is another example of research attempting to estimate the efficient use of energy using 

aggregate data for the US residential sector. Moreover, these authors propose an interesting method to estimate 

the rebound effect determined by an improvement in the level of efficiency.   
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𝑢𝑖𝑡 = 𝜂′𝑍𝑖𝑡 + 휀𝑖𝑡  (9) 

 

Several energy-efficiency policy measures are considered within 𝒁𝑖𝑡, such as performance 

standards of buildings and heating systems, performance standards of electrical appliances, 

financial incentives and informative measures. The model was therefore estimated in a single 

stage by the maximum likelihood procedure. 47 Similar to previous results discussed above, the 

estimated 𝐸𝐸 scores from the preferred model were found to be poorly correlated with energy 

intensity, measured by the average residential energy demand and with the average consumption 

per dwelling; again suggesting that energy intensity is a poor proxy or the ‘true’ level of energy 

efficiency. 

 

The results from Filippini et al.’s (2014) augmented equation show that a number of so-called 

energy efficiency instruments influence the level of 𝑢𝑖𝑡 of the residential sector. In particular, 

financial incentives have an important influence on reducing EU states’ inefficient use of energy. 

In addition, the results suggest that performance standards of buildings, heating systems and 

appliances also contribute to reducing the inefficient use of energy.  However, the results suggest 

that informative measures do not reduce energy inefficiency (and in fact, counter intuitively, 

suggest that they increase the level of energy inefficiency).  

 

It is worth highlighting that the energy demand frontier models used by Filippini and Hunt 

(2011), Evans et al. (2013), Filippini and Hunt (2012), and Filippini et al. (2014), given the 

understanding at the time, did not make a distinction between permanent and transient energy 

efficiency, as discussed in Section 3 above  However, more recently Filippini and Hunt (2015) 

attempted to measure persistent and transient 𝐸𝐸 for the whole economy of 49 states in the US 

using a stochastic frontier energy demand approach using two separate econometric models (as 

discussed in Section 3).48  They use data for 49 states over the period 1995 to 2009 using two 

panel data models: the Mundlak version of the REM (which estimates the persistent part of 

energy efficiency) and the Mundlak version of the TREM (which estimates the transient part of 

energy efficiency). Their basic log-linear equation is given by: 

 

                                                 
47 Filippini et al. (2014) used the LIMDEP and NLOGIT software for the estimation. 

48 But not the combined approach recently developed by Filippini and Greene (2015). 
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𝑒𝑖𝑡 = 𝛼 + 𝛼𝑝𝑝𝑖𝑡 + 𝛼𝑦𝑦𝑖𝑡 + 𝛼𝑝𝑜𝑝𝑝𝑜𝑝𝑖𝑡 + 𝛼ℎ𝑠ℎ𝑠𝑖𝑡 + 𝛼ℎ𝑑𝑑ℎ𝑑𝑑𝑖𝑡 + 𝛼𝑐𝑑𝑑𝑐𝑑𝑑𝑖𝑡 + 𝛼𝑆𝐻𝐼𝑆𝐻𝐼𝑖𝑡 +

𝛼𝑆𝐻𝑆𝑆𝐻𝑆𝑖𝑡 + 𝛼𝑎𝑎𝑖 + 𝛼𝑡𝑡 + 𝜐𝑖𝑡 + 𝑢𝑖𝑡    (10) 

 

where eit is the natural logarithm of aggregate energy consumption (Eit), pit is the natural 

logarithm of the real price of energy (Pit), yit is the natural logarithm of GDP (Yit), popit is the 

natural logarithm of population (POPit), hddit is the natural logarithm of the heating degree days 

(HDDit), cddit is the natural logarithm of the cooling degree days (CDDit), hsit is the natural 

logarithm of the household size (HSit), ai is the natural logarithm of the area size (Ai), SHIit is the 

share of value added of the industrial sector, and SHSit is the share of value added for the service 

sector, and t is a time trend that proxies the UEDT. Again, 𝜐𝑖𝑡, 𝑢𝑖𝑡, and estimated 𝐸𝐸𝑖𝑡 are defined 

as above.  

 

The results obtained by Filippini and Hunt (2015) suggest that the estimated average persistent 

𝐸𝐸 is greater than the transient part, with the variation in the estimated transient 𝐸𝐸 being 

somewhat lower than the variation in the estimated persistent 𝐸𝐸. Furthermore, consistent with 

above, their results suggest that energy intensity is not a good indicator of the ‘true’ level of 

energy efficiency, whereas, by controlling for a range of economic and other factors, their 

measure of persistent 𝐸𝐸 provides better a guide to the ‘true’ efficiency; illustrated in Figure 8. 

Moreover, the correlation coefficients between energy intensity and the estimated average 𝐸𝐸 

measure from the Mundlak adjusted REM and the Mundlak adjusted TREM are -0.46 and -0.21 

respectively. In addition, there is only a weak correlation between the rankings, with the 

Spearman rank correlation coefficients between energy intensity and the average 𝐸𝐸 measure 

from the two models being 0.18 and 0.21 respectively.  

 

Therefore, again consistent with the studies reviewed above, the Filippini and Hunt (2015) 

estimates suggest that although for some states energy intensity might give a reasonable 

indication of a state’s relative estimated 𝐸𝐸 this is not the case for all states, California being a 

prime example.  As Filippini and Hunt (2015) point out, this result is not consistent with the 

conventional wisdom of energy efficiency policymakers and professionals who generally regard 

California as being a highly energy efficient state as well as a number of research papers such as 

Howrowitz (2007) and Sudarsham (2013).  However, the view is normally based on energy 

intensity (or just electricity intensity) so a direct comparison with the analysis here is difficult if 

not impossible given the main idea of the estimated 𝐸𝐸 measure is that analysis based on energy 
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intensity is potentially biased and misleading for policymakers.  Thus, Filippini and Hunt (2015) 

argue that their results do not implicitly disagree with some of the previous research (such as 

Howrowitz, 2007) who suggest that California’s energy efficiency programs have contributed to 

reducing the state’s electricity intensity, just that there is still more to be done in order for 

California to increase its energy efficiency and move closer to the energy demand efficient 

frontier.  

 

 
Figure 7: Scatter diagram of average energy intensity and estimated persistent energy efficiency 

(1995-2009) from Filippini and Hunt (2015) 

 

 

5. Summary and Conclusion  

This paper attempts to present a clear theoretical background for measuring the level of energy 

efficiency based on economic foundations.  It is, as far as is known, one of the first attempts to 

provide a discussion on the relation between the concepts of productive efficiency and energy 

efficiency, to discuss the theoretical approaches that can be used and to present parametric 

econometric methods that can be applied in measuring the level of energy efficiency. 

Furthermore, we are of the view that definition of energy efficiency based on an economics 
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perspective outlined in this paper and resultant estimated economic based energy efficiency 

indicators are better than relying on simple energy intensity indicators. 

 

The theoretical section argues that the definition of energy efficiency should be based on the 

non-radial notion of input specific technical efficiency measure introduced by Kopp (1981).  This 

measure, in terms of the input energy, is defined as the ratio of minimum feasible amount of 

energy to the observed use of energy – conditional on the production technology and the 

observed levels of outputs and other inputs. Moreover, a variant of this measure was proposed 

by Filippini and Hunt (2011) whereby the function indicates the minimum amount of energy that 

is necessary to produce a given level of outputs given technology and input prices. In this context, 

actual energy demand differs from the estimated energy frontier demand due to the presence of 

both allocative and technical inefficiency.  

 

Furthermore, it is shown that from an empirical perspective, there are three approaches that 

would appear to be more appropriate for estimating parametric methods of the non-radial notion 

of energy efficiency: the energy requirement function; the energy demand function; and a 

shepherd energy distance function.  From these approaches, we believe that the estimation of an 

energy demand function is an interesting approach and perhaps more appealing than the other 

two options because it considers both allocative and technical efficiency. However, it is 

recognised that this approach has some limitations that should be considered in any empirical 

application and when interpreting results.   

 

Moreover, the paper illustrates the recent developments in the econometric empirical techniques 

used to estimate such models from the PM and the TREM to the GTREM. Some of these produce 

time invariant values of the level of efficiency (persistent efficiency), others models estimate 

time variant values (transient efficiency), whereas the more recent GTREM is a technique that 

allows for both components of efficiency concurrently. Moreover, we believe that this distinction 

in the type of efficiency is very relevant and will, in all probability, gain importance in future 

research on the estimation of the efficient use of energy. 

 

Although this does not pretend to be a definite view on the matter, it is hoped that this review 

will help stimulate further debate and the development of such models, such as the combined 

estimation of both transitory and persistent energy efficiency. It is therefore hoped that it will be 

seen as a step in the right direction rather than just relying on the poor proxy of energy intensity. 
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