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Abstract 

To be able to investigate an ageing concrete behaviour a material model is developed by this 

investigation in terms of tested material samples taken from the ageing concrete structure. The splitting 

tensile test is modified with a lateral expansion measurement rig to observe the load-displacement 

response in the splitting test. A set of material properties is determined based on experimental work and 

successfully used to create a material damage model for investigating the mechanical behaviour of the 

ageing concrete. A FEA model with this developed ageing concrete material model (ACMM) is used 

in simulation of selected concrete core sample tests including the splitting test. Comparison between 

tests and modelling simulations shows that the developed ageing concrete material model is working 

well. The outcomes from this investigation supplies an approach to widely investigate engineering 

materials with ageing problems.     
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1. Introduction  

The marine environment has severe effects on reinforced concrete structures. Concrete structures are 

subjected to different processes and mechanisms of deterioration and degradation based on the exposure 

conditions, ranging from aesthetic damage to severe structural deterioration. Around the globe, 

numerous marine structures and bridges are largely affected by structural capacity degradation due to 

ageing and environmental impacts [1]. In the UK, most of the existing reinforced concrete structures in 

the marine environment show signs of distress and have deteriorated over time.  
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Port operations are an important tool that support UK’s maritime trade and maintain its position as a 

world-leading maritime centre. The Hampshire coast covers one of the heavily urbanised and densely 

populated ports of Britain, containing major military, commercial and historical assets. Due to 

importance of these structures it is essential to regularly assess and monitor the port’s physical 

infrastructure to ensure smooth port activities. 

     The ageing concrete infrastructures in Hampshire coast (like other coast infrastructures in England) 

have experienced deterioration due to structural exposure conditions and ageing. For instance, the 

Floating Dock Jetty in the Portsmouth International Port on the Hampshire coast has suffered 

deterioration and ageing-related degradation. The jetty was built in 1906 and has now reached the end 

of its design life; the 110-year-old jetty is restrained in use due to ageing effects and must be demolished. 

The ageing concrete beam investigated in this research is from the valuable historic jetty in Hampshire 

coast. This is an over 70 years reinforced concrete jetty affected by ageing and aggressive environmental 

conditions which showed all signs of distress. From the site inspection, the most severe structural beam 

element is selected for this investigation.  

     Previous researchers have used different methods to investigate ageing concretes and assess the 

stiffness and strength degradation. Lakshmikandhan et al. [1] investigated the damages in reinforced 

concrete by observing the stiffness degradation in the damaged beam. They used static test approach to 

define the reduction in the load deflection response of the beam. Bourahla et al. [2] used stiffness 

degradation to investigate the influence of the reduction in structural capacities occurred due to ageing 

and material deterioration over time. They developed a mathematical model to simulate the damage in 

a concrete structure using both stiffness and strength with a degradation factor in the model, and found 

that the stiffness and strength degradation correlate to the ageing effect. Timothy and Dolen [3] also 

studied degradation due to ageing effects in the concrete structures. By a developed model to predict 

the changes in strength and stiffness, they found that the deteriorated structure no longer withstands the 

design load due to the ageing effect. Other researchers such as Zhu and Law [4], Sanayei and Onipede 

[5] and Cerri and Vestroni [6] also used similar approaches to define the level of the damage in 

structures. Their assessment approaches were based on the reduction of the load bearing capacity of the 

structural elements. 
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This paper presents both experimental and finite element modelling investigation on mechanical 

behaviour of ageing concrete. The samples of ageing concrete were taken from a marine infrastructure 

and tested to examine its basic mechanical behaviour. Corresponding tested data are used to create a 

numerical ageing concrete material model (ACMM) for analysing the ageing concrete performance. 

This model is implemented into a user subroutine UMAT in commercial FEA software ABAQUS to 

simulate the sample test. Because the determination of concrete properties is essential in the assessment 

of concrete structures, hence, to have a reliable estimation of in-situ material properties, the mechanical 

properties of the ageing concrete are obtained from experimental tests using core samples taken from 

the ageing infrastructure. Allen [7] stated that the only reliable method for measuring concrete 

properties is through drilling core samples from the structure. Testing the core samples are conducted 

according the standardized procedures of BS EN Standards to determine ageing concrete properties, 

which included tensile and compressive strength, Young’s modulus, Passion ratio and fracture energy. 

The standard splitting test method is modified with a supplemental rig to monitor the lateral movement 

and determine the tensile strain which was not investigated by previous researchers. The data from 

splitting test are used to determine the fracture energy of ageing concrete. Fracture energy is essential 

to investigate damage behaviour of materials and fracture process. As Ghaemmaghami and Ghaemian 

[8] stated that fracture energy is an important nonlinear parameter of concrete in studying and predicting 

fracture behaviour of concrete. 

     A bilinear cohesive damage model is assumed to define a stress–strain relationship of the ageing 

concrete in conjunction with experimental data. The cohesive damage model assumes a linear stress 

softening until collapse point where stress becomes zero. This simple approach corresponded 

reasonably well with the behaviour of concrete under tension testing [9]. Petersson [10] stated that it is 

accepted to use a linear descending to define the stress softening behaviour in concrete. The advantage 

of the bilinear cohesive damage model is that it can be simply adjusted in accordance with concrete 

properties obtained from the test of ageing concrete. Some material damage models are available in 

ABAQUS such as concrete damaged plasticity and concrete smeared cracking model. These models 

would have problems for mesh sensitivity and convergence if refinement mesh is applied in the FEA 

analysis of plain concrete [11].  
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The summary of the research contribution includes developing an FEA model to perform a numerical 

investigation of the damaged beam. Correspondingly, a mechanical constitutive model of the aged 

concrete material is established in conjunction with the experimental tests on aged concrete samples 

obtained from the ageing structure. The basic mechanical property of the ageing concrete materials is 

obtained through material sample tests. This founding can be used to further investigate the ageing 

concrete behaviour. 

 

2. Experimental Work 

Compressive strength of plain concrete is an important property that can be used to assess the quality 

of concrete. Seven core samples subjected to a uniaxial compression specified in BS EN 12390-3 [12] 

are tested to determine the compressive strength of the ageing concrete. The core sample has various 

diameter D ranged from 93 to 100 mm, its length L ranged from 93 to 106 mm [13]. Figure 1 shows a 

satisfactory compression failure of a core sample. The average compressive strengths fc of seven core 

samples is 67 MPa. 

 

 

 

 

 

 

 

Three core samples are tested by compression to determine the elastic modulus of the ageing concrete. 

The samples are subjected to a uniaxial cyclic compression load with a maximum load applied equal to 

one-third of the compression failure strength determined experimentally. The core samples, sized 100 

mm in diameters and 200 mm in heights, are complied with the requirements of BS EN 12390-1 [14] 

at the ratio range of 2 to 4 between height and diameter. Preload of 4 kN or 0.5 MPa is applied to the 

core samples as an initial load. Loading steadily increases at a rate of 0.5 MPa/s until a peak load 175.32 

Figure 1, Satisfactory compression failure.  
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kN or 22.33 MPa is reached as specified in BS EN 12390-13 [15]. The average elastic modulus 38728 

MPa is worked out from three samples. 

      Tensile strength is an important property of concrete to determine the load capacity of concrete 

structures at which cracks would possibly form and propagate [16]. The standard splitting test method 

specified in BS EN 12390-6 [17] only measures the failure load or failure strength, it does not include 

monitoring lateral movement which is important to investigate fracture processes of concrete. As Akita 

et al. stated [18] that defining tension softening behaviour is essential to analyse the fracture process of 

concrete. Therefore, the splitting test method is adjusted with a supplemental feature added to the 

original tensile testing apparatus to control lateral displacement and define tension softening response 

of the core samples. 

     A rig designed for lateral expansion measurement of splitting samples is made of S275 steel. The 

designed rig shown in Figures 2 and 3 includes: two curved steel plates for holding the samples, a 14 

mm steel plate for holding the linear variable displacement transducer (LVDT) and two stainless steel 

316 bars with 10 mm diameters. Two stainless steel compression springs are also required to hold the 

specimens securely without affecting the load-displacement response [19, 20]. As shown in Figure 4, 

the test rig is mounted on the sample and the assembly is placed inside a Zwick/Roell Z250 universal 

testing machine to perform the splitting strength test. The spring-loaded devices are used to clamp the 

sample across its width with a small lateral compressive force of around 0.005 MPa applied. This lateral 

force used to hold and secure the curved steel plates is very low, which can be neglected in calculation 

of tensile strength. Three LVDTs are attached to one of the curved plates along the centre line of the 

specimen at the different positions along the cylinder length. The LVDTs aims to record the lateral 

expansions of the sample. A preload of 50 N is applied prior to starting the test. The test starts with 

applying a compression line load along the length of the sample with a displacement rate equal to 0.1 

mm/min, i.e. around 0.25 MPa/min. 
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Three core samples subjected to the adjusted splitting are tested. Two core samples have satisfactory 

split failures as shown in Figure 5, the third core sample has unexpected failure due to bulging at mid-

height of the sample. Bulging in the sample causes shear plane failure due to stress concentration at 

bulging plane during the loading process. The tested tensile failure loads together with dimension data 

Figure 3, Isometric view of the rig. 

Figure 2, Front elevation of the lateral expansion-measuring rig. 

Figure 4, Core samples subjected to splitting test. 
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of the core samples are given in Table 1. It can be seen from Table 1 that the average splitting tensile 

strength of the core samples can be 4.2 MPa. The splitting tensile strength ft at the centre of the core is 

determined using Equation 1 in accordance to BS EN 12390-6 [17]. 

 

 

 

 

 

 

 

 

 

 

2
t

p
f MPa

LD
                                                                                                 (1) 

Where, p is the applied load, L and D are the length and the diameter of the sample, respectively. The 

experimental data of applied load and lateral displacement recorded by the LDVTs are used to plot 

tensile stress-strain responses of two core samples as shown in Figure 6. From Figure 6 the adjusted 

splitting test method conducts an elastic modulus which is close to the average value of compressive 

elastic modulus 38728 MPa. The values of elastic modulus from tension and compression tests would 

not be exactly same due to differences in boundary conditions and existence of micro crack patterns 

[21].  

     The fracture energy of the ageing concrete is important in creating the ACMM, which can be defined 

as the amount of energy required to generate a tensile crack and failure of a unit area measured by 

N/mm [22]. In this study, fracture energy is determined experimentally from stress-displacement 

response of the splitting core tests. As showed in Figure 6 the post crack softening parts of the stress-

displacement responses recorded during the splitting tests does not reach the complete failure. 

Therefore, to determine fracture energy of the core samples the post crack stress softening curves are 

Test No. Size 

DxL(mmxmm) 

Applied load p (N) Tensile Failure 

Strength ft (MPa) 

1 100 x 200 133029 4.20 

2 100 x 200 131825 4.19 

Figure 5, Core samples with satisfactory failure. 

Table 1: Tensile failure results of the core sample. 
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extrapolated to meet the X axis where stress is zero as shown in Figure 7. The linear descending is an 

approximation that can be accepted for modelling of concrete [10]. The linear approximation is used as 

a linear softening model, in conjunction with the experimental data, to address a damage evolution in 

the post failure response.  

 

  

 

 

 

     The experimental results in Figure 7 agree reasonably with a linear tension softening model of typical 

concrete in ABAQUS [11], which assumes that the tensile strain at the initial damage point is around 

0.0001 and the tensile strain at a final failure point is approximately 10 times to its initial value, i.e. 

0.001. As shown in Figure 7 the initial damage strain for both cores is close to 0.0001 and the average 

final strain extrapolated from core sample responses is around 7.5 times to its initial strain. Figure 8 
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Figure 6, Stress-strain responses from adjusted splitting tests. 

Figure 7, Stress-strain for both core samples. Figure 8, Stress-lateral displacement curve. 
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shows stress-lateral displacement curves of two samples. The corresponding fracture energy Gf is equal 

to the area under the curves and can be determined using Equation 2 [9]. 

1
( )

2
f t cG f w                                                                                                      (2) 

Where, wc is the characteristic lateral displacement when cracks occurred. The value of wc is calculated 

as 0.071 and 0.08 for sample 1 and sample 2 respectively. Thus, the averaged fracture energy for the 

samples is calculated as 0.15 N/mm using Equation 2. Poisson’s ratio of the core samples is not 

determined experimentally due to some technical difficulties in this investigation. Previous researchers 

estimated the Poisson’s ratio as 0.17 based on the compressive strength of tested core samples between 

64 and 125 MPa [23]. Table 2 gives a summary of the ageing concrete properties.   

Table 2: Ageing concrete material properties. 

 

 

 

 

 

3. An ageing concrete material model 

The material properties of ageing concrete determined from the experimental work are used to create 

an ageing concrete material model (ACMM). The model is implemented into a UMAT subroutine in 

FEA commercial software ABAQUS to verify the splitting tests and further investigate the ageing 

concrete behaviour. This concrete constitutive model is created as a three-dimensional linear softening 

damage model for plain concrete. The constitutive model includes linear elastic, damage initiation and 

damage evolution to the failure. Before the damage initiation, material is in the elastic stage, i.e. the 

stress-strain curve is defined using elasticity matrix based on Hooke’s law shown in Equation 3 [25]:

:eD   when 0                                                                                          (3) 

Where, De is elastic stiffness matrix for plain concrete, ε0 is tensile strain at initial damage, and σ, ε are 

current stress and strain, respectively. Damage initiation refers to the onset of material degradation, it 

will initiate if material tensile strength or compressive strength is reached. The damage initiation point 

Concrete property Experimental result 

Compressive strength MPa 67 MPa 

Modulus of Elasticity MPa 38728 MPa 

Poisson’s Ratio 0.17 

Tensile failure strength MPa 4.2 MPa 

Fracture energy 0.15 N/mm 
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is addressed in the UMAT subroutine using material damage initiation conditions for tensile and 

compressive stress given in Equations 4 and 5. 

0

t

eD


   when 

0

t                                                                                          (4) 

0

c

eD


   when 

0

c                                                                                          (5) 

Where, 𝜎𝑡
𝑜  and 𝜀𝑡

𝑜  are tensile stress and strain respectively when damage initiates; 𝜎𝑐
𝑜  and 𝜀𝑐

𝑜  are 

compressive stress and strain respectively at initial damage stage. After damage initiation, the material 

strength and stiffness begin to degrade as damage evolves. Material damage evolution can be expressed 

by the rate of material stiffness degradation. The degraded stress d can be formulated using damaged 

matrix given by Equation 6 [25].  

:d dD   when 0 f                                                                              (6) 

Where, 𝐷𝑑  is the damaged elasticity matrix formulated mathematically based on scalar damage 

approach defined in Equation 7, which was proposed by previous researchers including [27-33]

(1 )d eD d D                                                                                           (7) 

Where, 𝑑 is the material damage scale to describe damage evolution from damage initiation to total 

failure. It should be noted that concrete material would no longer behave isotropic feature, thus an 

anisotropic damage matrix given in Equation 8 is proposed to be used in the damage evolution. This 

anisotropic damage matrix is used to define the linear softening behaviour which is the function of three 

damage scales 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧, in the directions 𝑥, 𝑦 and 𝑧 respectively. The anisotropic damage model 

including the effects of different degradation in different directions is more reliable for simulating 

concrete damage behaviour compared to the isotropic damage model [31]. From Equation 8, only the 

damages in principal directions are considered to describe the damage behaviour. Whereas, for the 

coupled behaviour, the corresponding mixed damage parameters contributed to measure the damage 

behaviour in the coupling items. 
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 (8) 

Where, the damage scale di (i=x, y, z) given in Equation 9 has been used by a number of 

previous researchers to account for reduction of stiffness in terms a bilinear softening damage 

law shown in Figure 9 [32-36, 44, 45]. 

0

0

( )
, , ,

( )

fi di i

i

di fi i

d i x y z
  

  


 


                                                                   (9) 

In Equation 9, 0i is initial damage strain, di is current damage strain, fi is the final damage strain at 

zero tensile stress. The value of damage scale ranges from zero to one. Zero damage scale indicates no 

damage initiated. When the damage scale equals to 1, a fracture is raised. Equations 8 and 9 are used to 

create the ACMM through UMAT in ABAQUS. The flow chart of the ACMM is illustrated in Figure 

10.  

     

 

 

 

 

 

 

     The experimental properties given in Table 2 are used to determine the parameters required by 

Equations 8 and 9. The fracture energy obtained from Figure 7 & 8 (area under the curve) is used to 

describe the softening part of ACMM model and define the final damage strain shown in Figure 9. 

Tensile failure strength with modulus of elasticity is used to determine initial damage strain. 

 

Figure 9, A bilinear softening damage law 
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The ACMM has two main functions: updating the stresses and the solution-dependent state variables, 

and updating the material Jacobian matrix [11]. The constitutive Jacobian is required to define in the 

UMAT coding for governing the convergence rate while solving nonlinear equation systems [11]. 

Jacobian matrix can be calculated using Equation 10 [37] to determine the changes in the ith stress 

component at the end of the time increment caused by an infinitesimal perturbation of the jth component 

of the strain increment array. 

: : :
d d d d

yd d x z

x y z

dD D d D D d
D D

d d d


   

    

      
     

       
           (10) 

Where,   







 is stress increment caused by strain increment array; 

, ,

d

x y z

D

d




 is derivative of the damaged 

matrix in respect to the damage scales; , ,

( )

x y zd

I




 is derivative of the damage scales with respect to the 

strains, which can be further formulated to update Jacobian as given in Equation 11. 

, , (x,y,z) , , (x,y,z) ,

(x,y,z) ,

[ ( )] [( )( ) ]

( ) [ ( )]

x y z f d f t c f t c d t c f

d f t c

d

I

        

   

    


 
                                      (11) 

A nonlinear parameter of viscous regularization is incorporated in the UMAT to improve the numerical 

convergence rate. The viscous parameter is applied through Equation 12 [37]. 

1 (n 1),y,z , , , ,| [d ] | |n n

R R

x x y z x y zt t t

t
d d

t t



 
 


 

   
                                                          (12) 

Where,  is the viscosity parameter, 
,y,z

R

xd is regularized damage scale, tn+1 and tn means increment and 

last increment.  

4. Numerical verification of the ACMM using smeared concrete cracking model 

A standard smeared cracking model in ABAQUS is used to verify the ACMM. A plain concrete sample 

under tension and a McNeice reinforced concrete slab are simulated for this purpose. It should be noted 

that these two samples are fresh concrete with no ageing degradation. The concrete properties used in 

both smeared cracking model and the ACMM are given in Table 3. The nonlinear concrete properties 
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used in modelling for uniaxial tension and compression are given in Table 4 & 5, the initial tension 

softening strain in Table 5 is 0.002 used for both smeared cracking model and the ACMM [40].  

 

 

 

 

 

 

 

 

Table 4: Compressive properties of plain concrete. 

 

Post-cracking stages Stress MPa Plastic Strain 

Initial compressive yield 

stress point  
20.68 0 

Ultimate stress point 37.92 0.0015 

 

Table 5: Tensile properties in smeared cracking model. 

Post-cracking stages Stress MPa Strain 

Initial damage point at Cracking 
3.17 0.00011 

Final failure point at Collapse 
0 

0.00011 + initial tension 

softening strain 

 

 

 

 

 

Table 3: Elastic properties of concrete and steel bars. 

Elastic properties Values 

Elastic modulus of concrete, 𝐸𝑐 28600 MPa 

Passion’s Ratio of concrete, 𝑣𝑐 0.15 

Elastic modulus of Rebar, 𝐸𝑠 200000 MPa 

Yield stress of steel, 𝐹𝑦 345 MPa 

Density of Concrete 2400 kg/m3 

Density of Steel 7800 kg/m3 
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Figure 10, The flow chart of the ACMM 

Input material properties, include: 
 Young’s modulus E, Poisson ratio v 
 Tensile & comp. Failure stress (бt , бc), 

fracture energy Gf 
 Non-linear parameters, Viscose reg.  
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4.1. Concrete cube in tension  

A simple solid element of a plain concrete cube under tension is analysed using both the ACMM and 

smeared cracking model. Load-displacement responses generated by these two models are given in 

Figure 11. It can be seen from Figure 11 that both the ACMM and smeared model predict an almost 

same material failure response. This investigation indicates that the material is completely damaged in 

the pulling direction (X-axis), while damage scales in the other directions (Y & Z) are zero. 

 

 

 

 

 

 

 

 

4.2. Reinforced concrete slab 

A reinforced concrete slab tested by McNeice (1967) has been analysed by number of researchers [38-

41]. The reinforced concrete McNeice slab has a square shape with 44.45 mm thickness and 914.4 mm 

side length. Owing to the symmetry conditions, only one-quarter of the reinforced concrete slab is 

simulated using solid elements for concrete, with line elements representing reinforced steel bars. The 

slab is supported at its four corners and loaded at the centre. The steel bars are introduced in both 

directions at 25% of the slab depth from tension side as shown in Figure 12. The ratio of volumes for 

steel bars to the concrete is 0.085 in both directions. The load-displacement responses from 

experimental test, the ACMM and FEA smeared cracking model are shown in Figure 13. It can be seen 

from Figure 13 that the load-deflection response obtained from ACMM shows a good agreement with 

the test results and smeared crack modelling.  

 

Figure 11, Load-displacement responses from both the ACMM and smeared crack model 
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5. Modelling of splitting tensile test 

The developed ACMM is used to simulate the splitting tensile test of the core samples, and the cohesive 

element in ABAQUS is used for comparison in this example. The test sample is ageing concrete since 

concrete properties determined from laboratory tests given in Table 2 are used for both the ACMM and 

cohesive element model. In the ACMM based approach, standard solid elements with a combination of 

C3D8 and C3D6 are used in simulation. A compressive load is applied along the length of the cylinder 

of the curved surface shown in Figure 14. The cylinder is supported vertically at the base opposite the 

loading line. Meanwhile, an ABAQUS based cohesive element model is used in this example for 

comparison [42]. A quarter of the sample is simulated as shown in Figure 15. Linear elastic properties 

are used to define concrete material through standard plane strain element CPE4R. The cohesive 

element (COH2D4) in ABAQUS is introduced at the splitting zone to define cracking behaviour of the 

Figure 11: A quarter model of the concrete slab. 

Figure 13, Load-deflection responses given by the ACMM, test and smeared crack model. 

 

Figure 12, A quarter model of the concrete slab. 
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failure plane. Figure 16 shows a cohesive element simulated splitting failure of ageing concrete sample, 

presented by the maximum principal strain contour. The failed cohesive elements start from the centre 

of the cylinder and moves up towards the loading position on the top surface. This is reflected by the 

strain variation from 0.05 at the centre to 0.01 at the top surface along the failed cohesive element zone 

shown in Figure 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 shows the load-displacement curves given by the ACMM, cohesive element model and 

experimental work. It can be seen from Figure 17 that the initial readings attained for the experimental 

Figure 14, The ACMM simulated splitting failure of the ageing concrete 

Figure 15, A quarter modelling of ageing concrete sample in splitting test 

Figure 16, A cohesive element simulated splitting failure of the ageing concrete 
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results can potentially be inaccurate. This is simply caused by the unstable positions in the testing 

machine. The load-displacement curve of the core sample 1 is almost linear response since 10 kN load 

applied, with a slight direction change around 80 kN possibly due to micro cracks occurred. When the 

ultimate load about 130 kN is reached the load-displacement curve begins to drop down. The response 

of core sample 2 initially moves horizontally in the negative direction, then, followed by a good linear 

response in elastic stage up to the ultimate point where it begins to drop down. At the peak point, the 

predicted ultimate load is almost same with that from sample 1. The maximum principal stress generated 

at the centre of the sample under the ultimate load has reached the tensile failure strength of concrete, 

therefore, cracks initiate and propagate. At post failure stage the core sample 1 is slightly softer than 

the core sample 2. In general, the load-displacement responses from experimental test, the ACMM and 

cohesive element modelling have a reasonable agreement at the elastic stage. The failure load given by 

the ACMM is slightly lower than the tested failure load about 130 kN and cohesive element prediction 

by 5%. The responses in post failure stage, the predictions from both the ACMM and cohesive element 

are not completed due to convergent problems in nonlinear analysis, however, they have a trend to test 

results.   

 

 

 

 

 

 

 

 

 

              Figure 17, Load-lateral displacement curves from test, the ACMM and cohesive element 

  

6. Conclusion 

Basic mechanical properties of the ageing concrete are obtained using test methods specified in BS EN 

standards. Standard splitting test method specified in BS EN 12390-6 is adjusted with a lateral 
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expansion measurement rig for generating tensile strength and fracture energy. A 3D ageing concrete 

material model (ACMM) is created in terms of tested data. This ACMM model is developed through 

the UMAT in ABAQUS, and validated by selected ageing concrete core samples and fresh concrete 

samples together with smeared crack modelling and cohesive element modelling. 

     The approach of investigating ageing concrete in this paper provides a general approach to study 

ageing material properties. The developed ACMM can be used for simulating the behaviour of ageing 

concrete structures in the future. Future work would also consider the effect of year-length scale on 

degradation of concrete material properties, thus an ageing concrete material model with scaling effect 

would be developed for residual life prediction of ageing concrete structures.  
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