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Abstract

In this article we present the extension of thgosteriorierror estimation and goal-oriented mesh refinement approac
from laminar to turbulent flows, which are governed by the iegls-averaged Navier-Stokes akd turbulence
model (RANSkw) equations. In particular, we consider a discontinuousef&al discretization of the RAN8«
equations and use it within an adjoint-based error estonand adaptive mesh refinement algorithm that targets the
reduction of the discretization error in single as well asinltiple aerodynamic force cfiicients. The accuracy of
the error estimation and the performance of the goal-agbntesh refinement algorithm is demonstrated for various
test cases, including a two-dimensional turbulent flow atba three-element high lift configuration and a three-
dimensional turbulent flow around a wing-body configuration
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1. Introduction

The past few years have seen considerable progress in talgment of higher order and adaptive discontinuous
Galerkin (DG) methods for aerodynamic flows [9, 1, 2, 3, 4, 1( 6, 8]. For example, the European research project
ADIGMA [11] concentrated thefort of European scientists on the development of adaptiyedriorder variational
methods for aerospace applications. In this work we prakennethods and algorithms developed in this project for
an dficient and reliable prediction of aerodynamic forcefio&nts for two-dimensional (2d) and three-dimensional
(3d) turbulent flows.

Aerodynamic force cd@cients, such as the drag, lift and momentf&oents, are important quantities in aerody-
namic flow simulations. In addition to the accurate appration of these quantities it is of increasing importance,
particularly in the field of uncertainty quantification, tstienate the error in the computed quantities. By employing
a duality argument, estimates can be derived for the errasared in terms of an aerodynamic forcefo@ént. The
error estimate includes primal residuals multiplied by sbéution to an adjoint problem that is related to the force
codficient. The error estimate can be decomposed into a sum dfdd@aint-based indicators which can drive a
goal-oriented adaptive mesh refinement algorithm spebifitalored to the accurate andfeient approximation of
the aerodynamic force cficient under consideration.

The approach of error estimation and goal-oriented mesheraint for specific target quantities has been devel-
oped in [12, 13]. It has been transferred to compressiblesfiovthe context of discontinuous Galerkin methods in
[14, 15] for inviscid flows and extended in [16, 17, 18] to viss laminar flows; we refer to [19] for related work based
on finite volume methods. Subsequently, this approach hars tembined with anisotropic hierarchic refinement for
laminar compressible flows in [20, 21, 22] and with a regeti@maof output-adapted meshes using anisotropic mesh
metrics in [23], see also [26, 24, 25] for related work. Farthore, the adjoint-based error estimation and mesh
refinement approach has been extended from single to neuteipet quantities in [27, 28]. Usually being based on
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body-aligned regular meshes, the adjoint-based mesh medintehas also been applied to embedded-boundary Carte-
sian meshes [29, 30], and it has been extended to the simplecelt approach in [3]. It has been extended to 2d
turbulent flows, which are governed by the RANS and Spaldrédras equations in [23].

In this article we extend the approach of adjoint-basedrestimation and adaptive mesh refinement in several
aspects. We present it for the discontinuous Galerkin eliggation of turbulent flows as governed by the Reynolds-
averaged Navier-Stokes amelw turbulence model equations. We demonstrate it for aeradim#iow problems,
including a turbulent flow around the L1T2 three-elementhHi§ configuration and a turbulent flow around the
DLR-F6 wing-body configuration. Furthermore, we combineith the approach of adjoint-based error estimation
and adaptive mesh refinement for multiple forcefiogents as previously developed for 2d laminar flows in [28].

This article is structured as follows: In Sections 2 and 3 &l the RANSkw equations and give reference
to the discontinuous Galerkin discretization employedem,hin Section 4 we recall the approach of adjoint-based
error estimation and goal-oriented mesh refinement thgetarsingle and multiple aerodynamic force fti@éents.
Then, in Section 5, the main section of this work, we demamstihe performance and accuracy of these methods
and algorithms for three aerodynamic test cases of inergasimplexity. Finally, we give some conclusions and an
outlook in Section 6.

2. The Reynolds-averaged Navier-Stokes anklw turbulence equations

We consider the steady-state Reynolds-averaged Navikessequations and the Wilcdxw turbulence model
equations [31, 32],
V- (Fu) - FY(u,Vu)) - S(u,Vu) =0 inQ, (1)

on the domai2 c RY, d = 2,3. Similar to [1, 2] the equations are considered in term&efauxiliary variable,™=
In w instead ofw for a more moderate near-wall behaviour of the variable. i#althlly, this variable transformation
guarantees positivity ob. Then, the vector of conservative variabless R%* and the convective fluxeg® =
(f3,....f5) are given by

e pVj
PV pVivj + (P + §pK)5ij
u=| pE |, ff(u) = (oH - 30k) v, . j=1,....d,
pk Pkv;
oW PWY;

whereo, v = (v1,...,Vg)", pandE denote the density, velocity vector, pressure and specthténergy, respectively.
Additionally, H is the total enthalpy given b = E + g and the pressure is determined by the equation of state of
an ideal gas,

p=(y-Lp(eo— 3v7),
with &g = E — k. Here,y = cp/cy is the ratio of specific heat capacities at constant pressyrand constant volume,
cy; for dry airy = 1.4. Furthermore, the viscous fluxes are given by

0
ij
fiu,vu) =| 7ivi+ KTy |,
(u+ O—kl’lt)ka
(u + O-C()/’tt)a)Xj

where the thermal conductivity ciient K is given by K = cp(§r + S_E) and the temperatur€ by ¢,T = e =

E- %vz —k. Here Pr= 0.72 and Pr= 0.9 are the molecular and turbulent Prandtl numbers yeardy; = C,,%k with
C, = 1 are the molecular and turbulent viscosities.
The stress tensaris given by following relation

T+1° =T Gkl =1+, okl = (u+m)S — Fokl,
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wherer = uS is the viscous stress tensor, atfo= 1S — %pkl is the Reynolds stress tensor wigh= Vv + (Vv)T —
%(V -V)1. We note, that the viscous flux can be rewritterids, Vu) = Gy (u)du/dx, k = 1,2, 3, where the matrices
Gui(u) = af/(u, Vu)/duy, fork,I = 1,2,3, are the homogeneity tensors defineo(ﬁ;f))i (u, Vu) = (Gu(u));; au;/ax;,
k=1,23,i=1,...,d+4. Finally, the source ter#8(u, Vu) is given by

0
0 ~
S(u, Vu) = —TﬁVi,x,- + Broke” ,
Tﬁvi,)(j _ﬁkpkeur

a’w%‘rﬁvi,xj — Bup€ + (/.t + U—w/lt)a)&&)Xk

with iy = ,,pke“f'r and g, = maxa, @ro}, Wheredwyq fulfills following realizability conditions for the turbeint
stresses,

e@ro_%cﬂsnzo, i:l,...,d,
. N2 - i i i
(€™)" - 3Cu(Si + Sjj)e™ + 3CX(SiSj; - S5) = 0, i,j=1,....di#],

similar to the realizability conditions given in [1, 2]. Wete that the use of the logarithm of turbulence variables has
beenintroduced in [33] and results in an equivalent refdatan of the Wilcoxk-w equations [31, 32]. In the context
of DG discretizations it has first been used in [34]. Furthamek in the source and destruction terms as well as in the
expression foy is kept non-negative. We note, that the limitationsk@ndd avoid unphysical values and have been
found in [1, 2] to have an stabilizinglect on the numerical scheme. Finally, the values oktheclosure parameters
@y = 2, Bk = 195 Bu = 5, 0k = 0, = 5 are those of the high-Reynolds Wilcexw model [31, 32].

3. The discontinuous Galerkin discretization

In this section we describe the discontinuous Galerkinrdiszation used to discretize the RANG equations
(1). In particular, we employ the second DG scheme propogd@hissi & Rebay [35, 36], modified according to the
adjoint-consistent treatment of boundary terms and fooefficients as given in [38, 37].

We assume tha® can be subdivided into shape-regular meshes: {«} consisting of (possibly curved) quadri-
lateral or hexahedral elementsFurthermore, we assume that each 7}, is an image of a fixed reference element
k, that is,k = o() for all k € 71, where<'is the open unit square iR? and the open unit cube iR® ando, is a
smooth bijective mapping. In order to allow boundary eleta¢m be curved the mapping, is constructed based on
employing a higher degree polynomial representation o€tmeputational boundary (e. g., see [14, 39, 40]). Further-
more, we allow interior elements to be curved in order to @voe intersection of curved boundary lines with interior
elements [7], which might occur for meshes with highly stheid elements as typically used for turbulent flows.

On the reference elementve define the space of polynomials of degpee 0 as follows:

Pp =spanXx®: 0< |a] < p}.

We now introduce the finite element spaég, consisting of discontinuous vector—valued piecewise patyial
functions of degre@ > 0, as follows:

~]d+4
Vip = {Vh € [La(@)]%* : vil, 0 o € [2o®)] ™ k€ T,

An interior face of7y, is defined as the (non-empty) two—dimensional interia#«dfn dx~, wherex* and«~ are two
adjacent elements df,. A boundary face of' is defined as the (non-empty) two—dimensional interiofoh T,
wherex is a boundary element 6f,. We denote by the union of all interior faces ofy,. Furthermore, we define
some jump and mean value operators for vector- and mattiedaunctions. To this end, let" and«~ be two
adjacent elements of, andx be an arbitrary point on the interior fade= d«x* N d«~ c I'y. Moreover, letv and
7 be vector- and matrix-valued functions, respectivelyt #ra smooth inside each elemefit By v* := v|s- and
7 = 1|5+ We denote the traces of, respectivalyandr on f taken from within the interior ok*, respectively.
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Then, we define the averagesxat f by {v} = (v* +v7)/2 and{r} = (z* + £7)/2. Similarly, the jump ak € f
isgivenby v] = v-®n: +v- ®n,-. On a boundary facé c T, we set{v} = v, {r} = rand [v] = ven. For
matriceSQ,E R™" mn > 1, we use the standard notation: = = >, >, owtu; additionally, for vectors
v € R™Mw € R", the matrixv @ w € R™" is defined by(vew),, = vw. Furthermore, we use the notation
GT(U)VVv i u®n = (Gu(u))ij dvi/dxcujn;.

Then the discontinuous Galerkin discretization of (1) iegiby: Finduy, € Vi such that

N(up,V) = f (=F(up) + FY(Un, Vhun)) : Vhv — S(Un, Vhup) - vdx + Z H(uf,up,n™)-vds
Q

k€Th oK\l
—jr‘{TV(uh,thh)}:Mds—ﬁ{GT(uh)th}:Mds+£ O(up) : [Vl ds+ Nr(up,v) =0 (2)

for all vin Vi p. Here,H denotes any consistent, conservative and two-point moeatamerical flux function; we
note that in Section 5 the local Lax-Friedrichs flux is empldy For the penalization term we consider the second
scheme of Bassi and Rebay (BR2), [35, 36]:

(Un) = 8%2(Un) = Comal L] (U}, 3)

where the local lifting operatd_rg(uh) €Zip is defined by:

f Ll (un) = f [ud : (G (Urlds Vel
Qf | A— ’

whereQ¢ = «} U «; for the interior facef = d«kj Nok; € I'z.
Finally, the boundary terms included M-(up, v) are given by

Nr(up, V) = f'}(r(u;, ur(uy),n*) - vt ds+ f(_ir(u;;) vends

' ' (@)

~ fn S FYU, Vaut) vt ds — f(G}(u;)th;)  (uf - ur(uf)) @ nds.
r r

The penalization term on the boundary is givervpfuy) = CBRZL;(uh) where the local lifting operatd_r;(uh) €y,
is defined by:

fg;(uh) srdx = ff(uh —ur(up))®n: (G;(uh)z) ds Ve,

forall k € 7h, such thatk N T" = f. Furthermore, the viscous boundary flEX and the corresponding homogeneity
tensorGr are given by

7 (Un, Vup) = F(ur(un), Vun) = Gr(un)Vun = G(ur(un))Vun. )

Furthermore, on adiabatic boundar®g$andGr are modified such that- VT = 0. Finally, the numerical flug at
the boundary is given by
Hr(up, ur(up), n) = n- Fr(up) = n- F(ur(uy)), (6)

where the boundary function ig-(u) = (uy, 0,0, 0, us, 0, Uyw,.) . Here, the value ab,,, is determined by Menter’s

boundary condition (see [41]), with,,, = %, wherey = ‘;‘ is the kinematic viscosity, angl denotes the value of
1

the first wall boundary layer grid spacing.

4. Error estimation and adjoint-based refinement

In this section we recall the adjoint-based error estinmediod adaptive mesh refinement approach for single target
guantities (e. g., see [13, 15]) and for the treatment of ipleltarget quantities (see [27, 28]).
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Given a target quantity(u) such as the aerodynamic drag, lift or momentfiioent, a duality argument can be
employed, to obtain following error representation, [15], 1

J(u) = I(un) = =N (Un, 2) = R(Un, 2) = R(Un, Zn) (7

where the exact adjoint solutianis replaced by the solutio@, to the following discrete adjoint problem: Find
Zn € Vhp such that B
N'[unl(Wh, Zn) = J'[un](Wh)  YWh € Vip. (8)

A possible choice of the adjoint discrete function spachj§ = Vhp+1 (see also the Remark below). The approximate
error representation in (7) can then be localized

3(U) = I(urn) ~ R(un,Z0) = D i 9)

KETh

whererj, are the so-called adjoint-based indicators which inclhe@ddcal residuals multiplied by the discrete adjoint
solution. These indicators can be used to drive an adaptaghmefinement algorithm tailored to the accurate and
efficient approximation of the target quantitgu) under consideration. Finally, the approximate error @spntation

(9) can be used to enhance the computed target quaiity as follows:

J(up) = I(un) + R(Un, Zn). (10)

Remark 1. We note that in Galerkin finite element methods the Galerkihagonality can be used to subtract any
discrete functiorz, € V,p from the adjoint solution in the error estimate (7) resgtim J(u) — J(un) = =N (Un, Z—zp)
(e.g., see [13]). In order to avoid a vanishing error estam(@), the discrete adjoint solutiaf € \7,Lp must be
computed in aricher space (e.ﬁhp = Vhp+1) than the flow solutiomi, € Vy, p. In continuous finite element methods
it is required to choosg, to be an approximation afin order to ensure that the local indicators in (9) are of thbtr
order of convergence [13]. For continuous finite elementm@s$ Galerkin orthogonality is a global property (i.e., it
holds true on the whole domain). In addition to that discomius Galerkin methods satisfy a Galerkin orthogonality
on a local, element-wise level. Therefore, for DG methndsan be omitted without changing the local indicators.

The extension of the adjoint-based error estimation anchmefinement approach to multiple target quantities
has previously been considered for the inviscid Burgergagign in [27] and has been extended to two-dimensional
viscous laminar compressible flows in [28]. Estimating thr@ein multiple quantities of interesg;(u),i = 1,..., N,
would require the computation of the solutidis € \N/h,p to N discrete adjoint problems:

N [Up](Wh, Znj) = JTunl(Wn)  Ywh € Vip, i=1,...,N,
and the evaluation of the error representation for eacheftlantities,
J(u) = I(un) = R(un, Znj), i=1,...,N
Instead, we compute the solution to the following discretereequation: Find, € \7,Lp such that
N [Un](8n, Wh) = R(Un,Wh)  YWh € Vip, (12)
and evaluate the following approximation&{u) — J(up),
3i(u) - Ji(un) ~ J[unl(e) » F[unl(@&). i=1....N, (12)

wheree = u — u,. Furthermore, based on a suitable combinafig(n) of the original target quantities, we compute
the solution to the following discrete adjoint problem: &fiiap, € Vi p such that

NTUR(Wh, Zep) = Ji[unl(Wh) VWi € Vi, (13)



and evaluate the error estimate

3e(U) = Je(un) = R(Un, 2) ~ R(Un, Zon) = ), 7. (14)

KETh

The combined target quantifig(u) can be defined [28] such that the error with respeck(9 represents the sum of
relative errors in the original target quantitiQﬁil [Ji(u) = Ji(un)l/1Jdi(un)l, or a weighted sum of absolute errors

N
> ail3(u) = J(un) (15)
i=1

with weighting factorsy > 0. The adjoint-based indicatorg, dbtained by localizing the estimate (14), can be used to
drive an adaptive algorithm for the accurate afictEnt approximation of all the target quantitidgu),i = 1,...,N,
under consideration.
Finally, we note that the error estimates of (12) can be useshhance the computed target quantitigsy),
i=1...,N, as follows: _
Ji(up) = Ji(up) + JTunl(&),  i=1....N. (16)

5. Numerical results

In this section we consider the application of the adjoiasdx error estimation and goal-oriented mesh refinement
approach described in Section 4 to three aerodynamic tess @d increasing complexity which have been considered
in the EU project ADIGMA [11]. In particular, we consider hulent flows around a three-dimensional streamlined
body, the three-element L1T2 high-lift configuration and DLR-F6 wing-body configuration. In the following,
adjoint-based mesh refinement is always combined with &ojsic mesh refinement. On elements which are flagged
for refinement by using the adjoint-based indicatprsc™e 74, (see Equations (9) or (14)) an anisotropic jump
indicator is employed to decide along which direction thenent shall be refined. In particular, a quadrilateral or
hexahedral element is refined along a specific directioneifaferage jump of the discrete functiop € Vi, over
the two opposite faces in that direction is not significastiyaller than the average jumps over the remaining pairs of
opposite faces. As a result an element is refined isotrdpifdahe average jumps are of similar size; otherwise the
element is refined anisotropically. This anisotropic refieat strategy has previously been developed for 2d and 3d
laminar flows in [21, 22]. Including all flow variables in thgeaage jumps it can also be applied to the 2d and 3d
turbulent flows considered in the following.

5.1. Turbulent flow around a streamlined body

We begin by considering a turbulent flow around a streamliheele-dimensional body based on a 10 percent
thick airfoil with boundaries constructed by a surface aftation. In particular, we consider the streamlined body
at a Mach numbeM = 0.5, an angle of attack = 5°, and a Reynolds number Re 10- 10° with adiabatic noslip
wall boundary conditions. This is the ADIGMA BTCO test cadeieth has been defined in the ADIGMA project [11]
in order to enable grid convergence studies. Based on etatagn of higher order computational results and of the
results on very fine locally adapted meshes, following mfee values of the total drag, lift, and pitching moment
codficients,Cq, C; andCry have been obtainedg, (u) = 0.00663,Jc,(u) = 0.00858 andlc,, (u) = 0.00588.

In the following the total drag, lift, and pitching momentetiaicients will be computed up to a predefined error
tolerancerOL. Let us consider the following accuracy requirements:

1J,(u) — g (up)] <TOLc, =3-107%
ey (u) = Je,(un)l < TOLg, =1-107% (17)
|JCmy(u) - JCmy(uh)| < TO:LCmy = 2 . 104

In the following we compare the performance in meeting tteeseiracy requirements for higher order discretiza-
tions against second order discretizations on globallyeefimeshes. We also compare against the performance of
the two goal-oriented refinement strategies presenteddtic®e4. In particular, we consider the single-target error
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Figure 1: ADIGMA BTCO test case at turbulent conditions: Bairface, symmetry plane and cut through the domain of theseomesh with
6656 curved elements. The lines are given by polynomialegfek 4.

estimation and mesh refinement approach for each d@ith@y, andCy,y, codticients, separately. This results in three
different sequences of locally refined meshes where on each rflesh@oblem (2) and a discrete adjoint problem
(8) are solved, and the error estimate (7) is evaluated hEurtore, we consider a multi-target error estimation and
mesh refinement approach for reducing a weighted sum of atlesetrors of theC;, Cqy andCy,y values. This yields
one sequence of locally refined meshes that targets at regltine error in all three céicients simultaneously. Here,
on each mesh a flow problem (2), a discrete error equationaid a discrete adjoint problem (13) are solved, and
the error estimates (12) and (14) are evaluated. The wamfdctors in the weighted sum (15) might account for the
different tolerances in (17). In fact, in the following, the mitdtrget approach will be based on the weighted sum

2|3, (u) = Jc, (un)l + 613, (U) — ey (Un)l + 3| Ic,,, (U) — Ic,,, (Un)l-

Figure 1 shows the starting mesh of this computation with@&@&8ved elements. The edges are given by polyno-
mials of degree 4 based on additional points taken from firidsgvith straight edges. On this mesh we first compute
the flow solutionsuy, € Vi, for the polynomial degreegs = 1,.. ., 4. Additionally, for the lower polynomial degrees,
we compute the solutions on globally refined meshes. Thétimgtorce codficientsC;, Cq andCry plotted over the
number of degrees of freedom are given in Figures 2(a), 2@ Rée), respectively. We note that here and throughout
this work numbers of degrees of freedom always refer to tted tmmber of degrees of freedom (including all com-
ponents) of flow solutionan € V. In Figure 2(a) we see that thee= 2, 3 and 4 solutions are within the prescribed
accuracy tolerance of tHg value on the coarsest mesh, and they require significarsitydegrees of freedom than
thep = 1 solution on the twice globally refined mesh. A similar babavis observed in Figure 2(e) for ti@, value.
Furthermore, from Figure 2(c) we see that fhe 3 and 4 solutions on the coarsest mesh are within the prestcrib
accuracy tolerance of th@y value.

Let us now consider the adjoint-based error estimation avad-griented mesh refinement that targets the lift
codficientC; (i.e., the single target quantity Iu) = Jc (u)). To this end we compute the solutiop € V1 to the
flow problem (2) and the solutidh, € V,» to the discrete adjoint problem (8). We then evaluate thecqmate error
representation (9) and obtain the adjoint-based indisgtowhich we employ for adaptive mesh refinement. Starting
on the coarse mesh of 6 656 curved elements shown in Figuresfjueesce of locally refined meshes specifically
tailored to the accurate approximation of fievalue is obtained. In Table 1 we collect the number of element
the (total) number of degrees of freedom (DoF)uafe Vp 1, the true erroidg, (u) — Jg,(un) in the lift codficient,
the estimated erroR(un, Z,), and the quotien = R(un, Zn)/ (I, (u) — Jc, (un)) of the estimated and the true error,
which is also called thefectivity index. Here, we see that the estimated errors arg clese to the true errors.
This is also indicated by theffectivity indices which are very close to one. In fact, froma third mesh onwards the
rounded index equals one. We note that this represents arsparfect error estimation. Given the complexity of
the governing RANSw flow equations this might seem surprising. However, theulert flow considered here is
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Figure 2: ADIGMA BTCO test case at turbulent conditior®;, Cq andCpy values in the top, middle and bottom row, respectively. t[&he
single-target and multi-target adjoint-based refined regesh

p = 1,2,3 solutions on globally refined meshes; (right) The forceffocients J(un) and the enhanced force dbeients, (10) and (16), on the
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#Elements| #DoF | Jo(u) - Jc(un) | R(Un.Zn) | 6
6656 186368 -1.320e-02 -1.338e-02| 1.01
11919 333732 -5.622e-03 -5.661e-03| 1.01
23894 669032 -2.200e-03 -2.203e-03| 1.00
49478 1385384 -8.007e-04 -8.011e-04| 1.00

Table 1: ADIGMA BTCO case at turbulent conditions: Errorimsition for theC; value.

| | ]
- | T
NN *-U“_ | Wﬁg

Figure 3: ADIGMA BTCO test case at turbulent conditions: Megth 47497 curved elements after 3 multi-target adjoimsénl refinement steps.

particularly smooth. So we expect the error estimation tckwery well in this case.

Figure 2(b) shows th€, values on the sequence of adaptively refined meshes. Forc@opit also includes the
C values of theu,, € V3 flow solutions on the globally refined meshes already showkigare 2(a). Furthermore,
Figure 2(b) includes the enhanced target quantities (18luated based on the computédvalues and the error
estimatesR(un, Zp) given in Table 1. Here, we see that the enhanced quafui(yh) = Jg,(Un) + R(un, Zn) on the
coarsest mesh is already very close to the refer€ngalue. Due to the high accuracy of the error estimates ineTabl
1, we see that the error estimation significantly improvesdbimputed force cdigcients. In fact, while the adjoint-
based refinement reduces the number of degrees of freedanh istrequired for meeting the accuracy tolerance,
by a factor of 4 compared to global mesh refinement, thereashan factor of about 16 gained by using the error
estimation. Figures 2(d) and 2(f) show the respective fitotthe error estimation and goal-oriented mesh that target
the drag and pitching moment déeients,Cq andCpy, respectively. Here, the behaviour is similar to that déscr
before for the lift cofficient. In fact, here the enhanced force fi@@&nts meet the accurarcy requirements on the
second but coarsest mesh, which again corresponds to aaedyegror estimation.

Additionally, Figures 2(b), 2(d) and 2(f) show the converge of the force cdBicients on the sequence of multi-
target refined meshes. Targeted at reducing the erraBs, i€y and Cr,y simultaneously, the resulting values are
not expected to be as accurate as for the single-targetetiapshes. However, we see that thegénces for this
test case are marginal. This demonstrates that by the taudit mesh refinement about the same accuracy in the
force codficients is achieved for this test case as for the single-tangsh refinements (see also Figure 3). However,
this is accomplished with significantly reduced computihgfact, the multi-target approach requires only the flow
solution, the adjoint solution and the solution to the disererror equation oane sequence of adaptively refined
meshes. In contrast to that, the single-target approachiresgthe flow solutions and the adjoint solutions on three
different sequences of refined meshes. This results in a facddndhe number of flow solutions and a factor of 1.5
in the number of auxiliary problems to be solved. Note, thase factors and thus the gain of using the multi-target
approach increases with the number of target quantitiesrucmhsideration. Finally, we note that the multi-target
error estimation is comparable to the single-target estnation since the enhanc€d, C; andCy,y values of (16)
in Figures 2(b), 2(d) and 2(f) are close to the single-taegdianced values of (10).

In the following, we investigate the performance of the flaver and of the solver for the additional discrete
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Figure 4: ADIGMA BTCO test case at turbulent conditions: @engence of the solver on the sequence of goal-orientecetefireshes that target
theCj, C4 andCy, values: the nonlinear residuals a@dvalues of the flow solutions and the linear residuals of tiserdie error equations and the
adjoint problems are shown.

error and adjoint equations. In particular, we are intee &t the computing time required for solving the additional
problems relative to the time spent for solving the flow peoh$ in a multi-target adjoint-based mesh refinement
algorithm. After initialization of freestream values orethoarsest mesh a flow solutioR € Vy, for p = 0 is
computed which serves as starting solution fioe 1. On finer meshes the flow solution and the solutions to the
discrete error and adjoint equations are initialized witteipolations of the solutions on the previous mesh. The
nonlinear residual of the flow solution is decreased basedroimplicifbackward Euler method where the CFL
number and thus the local time step size is driven by the bedteevolution relaxation (SER) method [42, 43].
In each nonlinear solution step a linear system is solvel thi¢ restarted and block-ILU-preconditioned GMRES
method with 60 Krylov vectors. The linear solver is stoppedethe linear residual is reduced by a factor of®10
or a maximum number of linear iterations is reached. On tlersast mesh the linear solver performs at most 120
iterations; under mesh refinement this number increaséstidtcube root of the number of elements. The nonlinear
solution process is stopped once the nonlinear residuatlisoed to 1¢f. Similarly, the linear problems arising from
the discrete error equations and the adjoint problems d&vedasing 120 GMRES iteration steps with a restart after
60 iterations. Again, under mesh refinement the number efliiteration steps increases with the cube root of the
number of elements.

Figure 4 shows the convergence of the flow solver on the seguafimulti-target adjoint-based refined meshes
that target theC,, C4 andC, values, i.e. on the sequence of the 5 adaptively refined mashesidered in the right
plots of Figure 2. In particular, Figure 4 shows the convaogeof the nonlinear residuals a@gvalues of the flow
solutionsu, € V1. As the flow solution to this test case is particularly smotik flow solver takes very few iteration
steps, only. In fact, the solver of the= 1 solution on the coarsest mesh requires 25 steps for caavegg This
number decreases to less than 10 on subsequently refinedsn&sfjure 4 also includes the convergence of the linear
residuals of the solutiong, andz, € \7h,2 to the discrete error and adjoint equations. Although tiserdie error
equation is solved with a higher polynomial degree than the firoblems, it takes less computing time than the flow
solver due to the linearity of the problem. In fact, approaiing the discrete error on the coarsest mesh takes about
18% of the computing time of the flow solution. The additiocamputing time for the adjoint problem is of similar
magnitude. We note that on finer meshes the computing timéhéadditional problems increases relative to the
time taken by the flow solver due to the decreasifigre of the flow solver. However, already the additional 18%
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7

Figure 5: L1T2 high lift configuration: (a) Geometry of the T2 three-element airfoil. (b) Coarse grid of 4740 curvedrelats. The lines are
given by polynomials of degree 4.

computing time spent on the solution to the discrete erraiaign on top of the flow solver on the coarsest mesh
yields an enhanceq, value that is within the prescribed accuracy tolerance Fsgare 2(b)). Furthermore, it results
in significantly improvedCy andCy, values (see Figure 2(d)&(f)). In contrast to that a higheten flow solution

Un € Vh2 on the coarsest mesh requires more than 5 times the timeeedar theun € Vi1 flow solution.

5.2. L1T2 high-lift configuration

In this section we consider a turbulent flow around the L1Tr2dkelement airfoil (see Figure 5(a)) at a Mach
numberM = 0.197, a Reynolds number Re 3.52- 10° and an angle of attack = 20.18°. This case has been
documented extensively in the literature (e. g., see [4), 45 particular, there are data of wind tunnel experiments
available [46]. Based on extrapolation of higher order cotafional results and of the results on very fine locally
adapted meshes, following reference values of the tota dral lift codficients,Cq andC; have been obtained:
Jc,(u) = 0.071 andJc, (u) = 3.961.

In the following the total drag and lift cdigcients will be computed up to a predefined error toleraruie Let us
consider the following accuracy requirements:

|‘]C| (U) - ‘]C| (uh)| < TO]-'C| =1 102,
|ch(U) - ch(uh)| < TOLCd =5.103.

Subsequently, we compare the performance in meeting tloeseaay requirements for higher order discretizations
against second-order discretizations on globally refineghas. In addition, a comparison against the performance of
the goal-oriented refinement approach that target€tlaedCy codficients is given.

An original block-structured mesh with 75 840 elements hleentagglomerated twice resulting in a coarse mesh
of 4740 elements. As seen in Figure 5(b), the additionaltpaifiithe original mesh have been used to define 4 740
curved elements, where the curved lines are representealyaygmials of degree 4.

On this mesh we first compute the flow solutiapse Vi, for the polynomial degreeg = 1,...,4. Addition-
ally, for the lower polynomial degrees, we compute the sohs on globally refined meshes. The resulting force
codficientsC; andCy are given in Figures 6(a) and 6(c), respectively. In Figui® @e see that the = 3 and 4
solutions are within the prescribed accuracy tolerancke(€i value on the coarsest mesh and are more accurate with
significantly less degrees of freedom than ghe 1 solution on the twice globally refined mesh. A similar bebav
is seen in Figure 6(c) for th@y value.
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Figure 6: L1T2 high lift configurationC; andCy values in the top and bottom row; (left) Thwe= 1,...,4 solutions on globally refined meshes;
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experimental data [46]. Thp = 1 solutions on the final; andCq targeted adjoint-based refined meshes are also includegsiigle line is the
p = 1 solution on the coarse mesh; all other lines lie virtualiytap of each other.

Let us now consider the adjoint-based error estimation avad-griented mesh refinement that targets the lift
codficientC,. As in the previous example, we compute the solutigre V3 to the flow problem (2), the solution
Zn € V2 to the discrete adjoint problem (8), evaluate the approtéraaror representation (9) and obtain the adjoint-
based indicatorsg, that we employ for adaptive mesh refinement. Figure 6(b) shbwe resultingC; values on the
sequence of adaptively refined meshes. We see that the ent@@nvalues of (10), which include the error estimation
(7), reach the accuracy tolerance with significantly leggreles of freedom than the adjoint-based and global mesh
refinement. In fact, after one refinement step the enha@cedlues are within the tolerance which corresponds to a
very good error estimation. A similar behaviour can be sadrigure 6(d) for theCy value. Here, we also see a good
error estimation.

In Figure 7 a comparison is made betweendhéistribution of thep = 1,2, and 3 solutions on the coarse mesh
of 4 740 curved elements with the experimental data [46]. k€l solutions on the final) andCy targeted adjoint-
based refined meshes are also included in the comparisorre@thihere is a ffierence between the = 1 solution
on the coarse mesh and the other solutions, there is virmaltiifference visible for the othey, distributions which
are in good agreement with the experiment. Figure 8 showsspective comparison of thog distributions. Here
the jumps of thep = 2 solution are smaller than in the = 3 solution (thep = 1 solution is omitted). The = 1
solutions on the adjoint-based refined meshes are closthargelowever, despite the accuracy in the computed force
codficients neither of the; distributions seem to be converged.

Finally, Figure 9 shows the adjoint-based refined meshdagdhget theC, andCy values in comparison to the
coarse mesh. We see that most of the refinement takes plaue ¥ictnity of the airfoil. In both cases we see that
the mesh has been refined in the neighborhood of the line veleighrates the recirculation zone behind the slat from
the flow which passes between the slat and the main elemenlitiéwhlly, the meshes have been refined in the
neighborhood of the stagnation streamline of the main elem&lthough not clearly visible in the given plots, we
note that there is refinement in the neighborhood of the stammlines of the slat and flap. Here, the adjoint solution
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Figure 10: L1T2 high lift configuration: Convergence of tldver on the sequence of goal-oriented refined meshes tiget theC, value: the
nonlinear residuals an@, values of the flow solutions and the linear residuals of thjeimdsolutions are shown. The adjoint solver takes about
12-16% of the time required for the flow solver.

indicates that the exact position of the stagnation poagtsyell as the flow upstream of them is particularly important
for an accurate prediction of the aerodynamic forceficients.

In the following, we investigate the performance of the flaver and of the solver for the additional discrete
error and adjoint equations. As in the previous test casgrevénterested in the additional computing time required
for solving the adjoint problems in an adjoint-based me$ineeent algorithm. The GMRES method applied to the
linear problems arising in the implicit flow solver now usésrmst 240 iterations on the coarsest mesh with a restart
after 120 iterations. For the linear adjoint problems 9é@ations are used with a restart after every 240 iterations;
under mesh refinement the maximum number of iterations aserewith the square root of the number of elements.

Figure 10 shows the convergence of the flow and adjoint selmethe sequence of adjoint-based refined meshes
that target th€, value, i.e. on the sequence of the 6 adaptively refined mesimsédered in Figure 6(b). In particular,
Figure 10 shows the convergence of the nonlinear residutCamalue of the flow solutionsy, € V1 as well as the
convergence of the linear residual of the adjoint solutibns V. First, we note that due to the complexity of the
flow solution the flow solver applied to this high lift test ea®quires significantly more iteration steps than for the
previous test case. In fact, Figure 10 shows that 90 solepssire required for thp = 1 solution on the coarsest
mesh. This number reduces to about 35 on finer meshes. Alhthegadjoint problems are solved with a higher
polynomial degree than the flow problems, the adjoint sal@kes only a small fraction of the computional time of
the flow solver. In fact, approximating the adjoint soludakes between 12% and 16% of the computing time of
the flow solutions on all meshes. This is due to the restrintedber of linear iteration steps allowed in the adjoint
solver. As we see in Figure 10, the linear residual is rediageabout 4 orders of magnitude only. Nevertheless, the
resulting error estimation gives a significant improvemeribe force cofficients as is seen in Figure 6(b). In contrast
to that the solutiom, € V2 to a higher order flow problem requires more than 4 times the 6f theu,, € V1 flow
solution.

5.3. Subsonic turbulent flow around the DLR-F6 wing-bodyfigomation

In this final example we consider a turbulent flow at a Mach neinb = 0.5, a Reynolds number Re 5- 10°
and an angle of attaagk = —0.141 around the DLR-F6 wing-body configuration without fagri(see Figure 11). This
is a modification of the DPW lll test case, where a fixed anglatts#ick has been assumed instead of a given target

16



Figure 11: Geometry of the DLR-F6 wing-body configurationhweit fairing.

8y

)
s
-
777

%
(

/7

Figure 12: The DLR-F6 wing-body configuration: Mesh with 38&urved elements shown close to the nose and the wing.

lift. Also, the Mach number has been reduced from the oritingl = 0.75 toM = 0.5 in order to obtain a subsonic
flow.

The original DPW mesh of about 3.2 million hexahedral eletwdras been agglomerated twice resulting in a
coarse mesh of 50618 hexahedral elements. The additioivgkspaf the original mesh have been used to define
50618 curved elements (see Figure 12), where the curvesldireerepresented by polynomials of degree 4.

On this mesh we first compute the flow solutieRss Vi, for the polynomial degregs = 1, 2 and 3. Additionally,
for p = 1 and 2 we compute the solutions on a once globally refined nidshresulting drag cdicients are given
in Figure 13. Due to the complexity of the problem, no rig@@onvergence study and thus no reference value is
available for this case. Nevertheless, we clearly see tharadge in terms of accuracy and degrees of freedom of
using discretizations with higher polynomial degrges 2 and 3 over the discretization with the low polynomial
degreep = 1.

Figure 14 shows the surface mesh near the wing-body jundfierc, distribution, and wall streamlines of the
p = 1,2 and 3 solutions on the coarse mesh. Forgke2 andp = 3 solutions we clearly recognize the separation of
the flow. The resolution of thp = 1 solution on the coarse mesh is too low to capture the séparat

Let us now consider the adjoint-based error estimation aad-griented mesh refinement that targets the drag
codficientCy. As an example, Figure 15 shows the density adjoint (i.e.fitlst component of the discrete adjoint
solutionZ,) on the locally adapted mesh after two adjoint-based mefgferaent steps. Finally, th&y values and
the enhance@y values on this sequence of adjoint-based refined meshesvareig Figure 13. As in the previous
examples, we see here a significant decrease in the numbegdes of freedom required for computing the force
codficient up to a specific accuracy. A further significant improeat can be seen in the enhanced forcefument,
which again corresponds to a good error estimation.

As already seen in Figure 14(b) tipe= 1 solution on the coarse mesh does not capture the separ@fidrout
showing details, we note that the= 1 solution on the twice adjoint-based refined mesh has art ofseparation
which is then fully captured on the three times adjoint-baséined mesh.
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Figure 14: Turbulent flow around the DLR-F6 wing-body confagion: (b)-(d)cp distributions and wall streamlines of tipe= 1, 2 and 3 solutions




Figure 15: Turbulent flow around the DLR-F6 wing-body confaion: Density adjoint distribution, i.e., the distribrt of the first component of
the discrete adjoint soluticZy, on a twice adjoint-based refined mesh.

6. Conclusions

In this article we applied higher order and adaptive disomutus Galerkin methods to turbulent aerodynamic test
cases as governed by the RAK&-equations. In particular, we considered three test casiesi@asing complexity,
including turbulent flows around a three-dimensional stigzed body, the three-element L1T2 high lift configuration
and the DLR-F6 wing body configuration.

For each of the test cases we showed that DG discretizatfdmgleer polynomial degrees are advantageous in
terms of accuracy and number of degrees of freedom overetizations of lower polynomial degrees. Furthermore,
we showed that using adjoint-based refinement specific acguequirements on the aerodynamic forcefitcoients
were met with a significantly reduced number of degrees eidfoen. Adjoint-based error estimation has been shown
to give accurate and reliable error estimates for each afetstecases. In particular, it was shown that using the error
estimates the force cfiixients can be significantly improved. Finally, it was dentoated that the multi-target error
estimation and adjoint-based mesh refinement approactucaassfully be applied to 3d turbulent flows. In fact, for
the case considered, the force fiméents and the error estimation on the multi-target refinedhms was comparable
in accuracy to the single-target adapted meshes with &fisignily reduced computationaffert.

In this work the &ect of using higher order discretizations on the one handaaijmint-based error estimation
and mesh refinement approaches on the other hand have bestthered separately. Ideally, the computational mesh
and the polynomial degree should be adapted simultanedeatling to so-calleti p-adaptive methods. Whilep-
refinement in the context of compressible flows has been ssftdly applied to 2d inviscid and laminar flows [8, 47],

a significant researchffert is required for transferring these approaches to 3dutari flows, in particular, with
respect to the required stability of the turbulent flow solmeh p-refined meshes.
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