

Interactive Visualization of Large Simulation Datasets

Andreas Gerndt, Rolf Hempel, Robin Wolff

DLR Simulation and Software Technology

EuroMPI 2010 Conference, Stuttgart, Sept. 13-15, 2010

Introduction

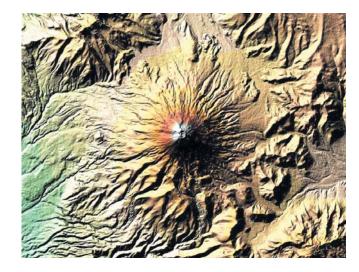
DLR

German Aerospace Center

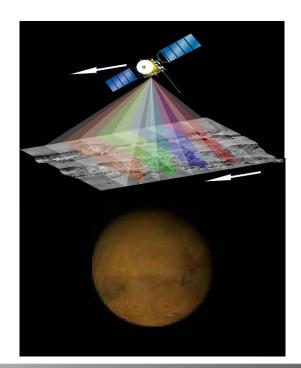

- ✓ Research on
 - ➤ Aeronautics
 - → Space
 - → Transport
 - → Energy
- ✓ Space Agency
- ➤ Project Management Agency

Locations and employees

6500 employees across 29 research institutes and facilities at



Offices in Brussels, Paris and Washington.



Visualization at DLR Applications in Experiment and Simulation

- Planetary science
 - ✓ Several space missions, e.g. Mars Express
 - ✓ High-resolution Stereo Camera
 - ✓ Multi-spectral data
 - → 10 100 meters / pixel

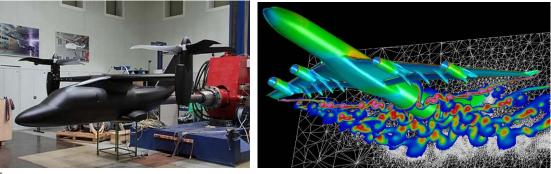
- Earth observation
 - National data repository
 - Technology development
 - ✓ Left: SAR image of Cotopaxi volcano
 - Atmospheric and climate research

Visualization at DLR

Applications in Experiment and Simulation

- ➤ Simulators for cars, aircraft, helicopters, ...
 - ✓ Left: Dynamic car simulator
 - Research into driver assistance systems
 - Visualization of external view

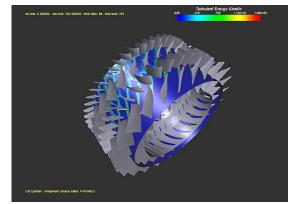
- Robotics / Mechatronics
 - Spacecraft design
 - ➤ On-orbit satellite servicing
 - → Astronaut training

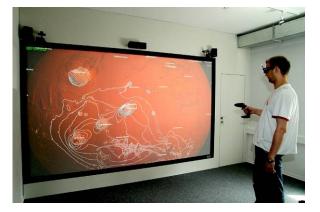

Visualization at DLR

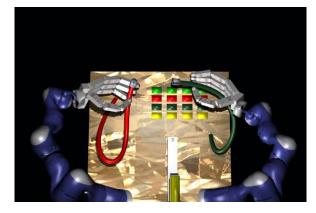
Applications in Experiment and Simulation

- Aerodynamics
 - ✓ CFD and experiment

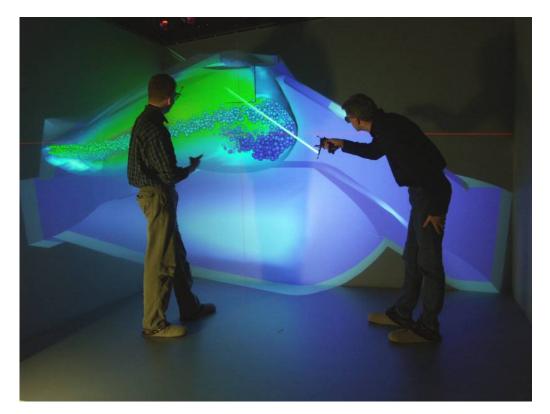
 - Development of CFD codes (TAU, TRACE)
 - Experiments used to validate simulations
- Prominent DLR institutes specialized in CFD
 - ✓ Inst. for aerodynamics and flow technology
 - Institute for propulsion technology


Deutsches Zentrum **G** für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft




Visualization at DLR DLR Simulation and Software Technology

- Research on software / computer science topics
- Co-operations with engineering institutes in advanced software projects
- ✓ Main topics include HPC and Visualization
- ✓ Visualization projects with DLR institutes on
 - ✓ CFD around airplanes / in turbomachines
 - ✓ planetary surface data
 - → on-orbit servicing of satellites



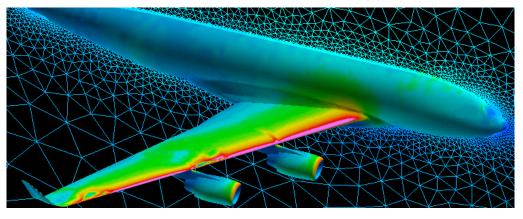
Objectives of Virtual Reality (VR) Research

- ✓ Important aspects
 - → Immersion
 - → Interactivity
 - ➔ 3D Visualization
 - ➤ Multi-modality

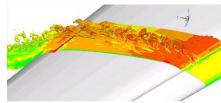
Interactive CFD data exploration in a virtual environment

Overview

- → Problem Description
- ✓ Pipeline Distribution / Parallelization Framework
- → Large-scale Dataset I/O
- Multi-Resolution and Data Streaming
- Co-Execution of Simulation and Post-Processing



What is a "large" simulation dataset?


- CFD calculations at the Institute for aerodynamics and flow technology with the TAU code
 - Solution of the Raynolds-averaged Navier-Stokes equations
 - **\checkmark** HPC system: C²A²S²E (see next slide)

Simulation of the air flow around a complete transport airplane configuration

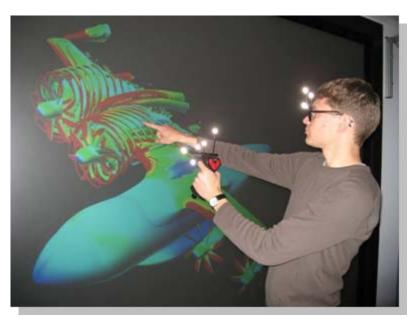
- - ✓ 80 mio. pnts., 6.7 GB, 10,000 time steps
 - ✓ 19 minutes / time step on 2048 cores

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

The C²A²S²E Supercomputer

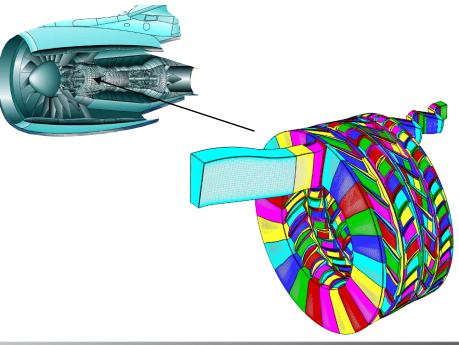
- \checkmark C²A²S²E Cluster (SUN)
 - ✓ 16 compute racks, 48 blades each
 - 2 AMD Opteron quad core processors, 1.9 GHz (Barcelona)
- → 768 nodes, 6144 cores
 - ✓ 46.6 TFlop/s Peak performance
 - ▼ TAU 1 core: 1 GFlop/s all cores: 3 TFlop/s
- ✓ 12288 GB Main memory

 - → 32 GB per node (10 nodes)
- ✓ SUN Mega Switch
- → Parallel file system (GPFS)
- → High speed link to Airbus Bremen (100 Mbit/s)
- Dedicated to aircraft research
- 2010 performance update by factor 3



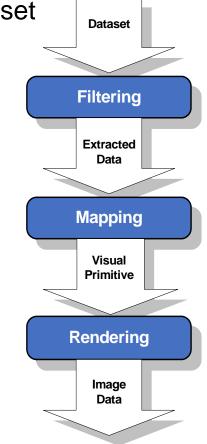
First Experiences with Virtual Reality

- 2007: VR system set up at Institute for aerodynamics and flow technology
 - Powerwall 2.7m x 2.0m
 - ✓ 2 projectors
 - ✓ IR tracking system
 - → 2 dual-core Opteron processors
 - Visualization software: Ensight Gold 8.2
- → Problems
 - ✓ System cannot handle full-resolution datasets
 - Visualization is too slow
 - Missing interaction metaphors
- ➤ System mostly used for "Colorful pictures for visitors"

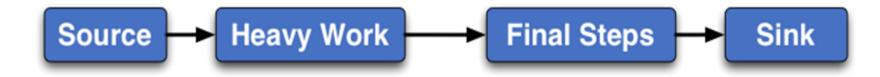

CFD Simulation of a Turbo-Engine Compressor Section

- ➤ Four-stage compressor section
- ✓ Simulation of the transition point between laminar and turbulent flow → instationary problem
- Computational domain split into blocks (colored)
- National Supercomputer HLRB-II (SGI Altix 4700) at the Leibnitz-Rechenzentrum in Munich

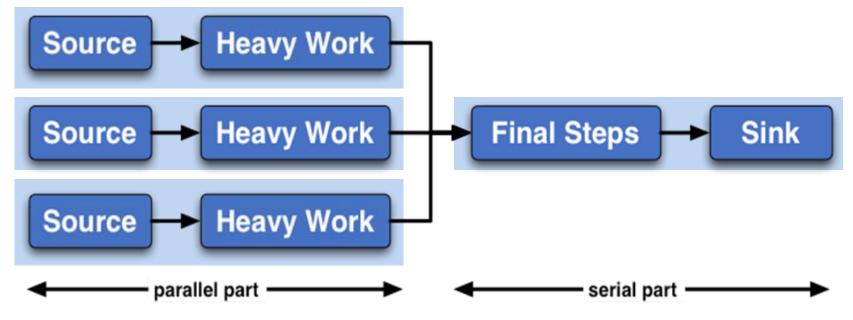
- ✓ In total 15 Terabytes generated
- ✓ Compute time: 210,000 CPUh
- ✓ Example is two years old
- Today: Intention to run a problem three times as large



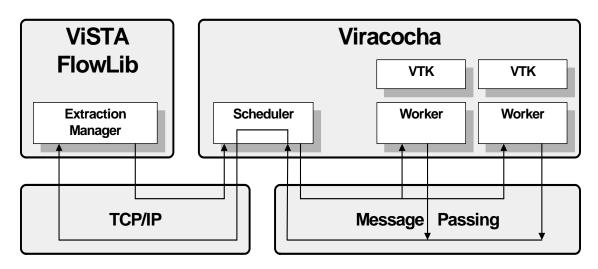
Visualization Pipeline


- Visual analysis of simulation data is organized as a post-processing pipeline
- Pipeline input: large-scale grid-based CFD dataset
- Filtering stage processes the data
 - Produces more manageable data sizes (cutting, clipping, converting, merging, re-sampling, ...)
 - Extracts features of interest (isosurfaces, particle tracing, vortices, topology information, ...)
 - May contain multiple processing steps and can be organized as a data flow network (multiple inputs and outputs)
- Mapping
 - Creates visualization objects
- ✓ Rendering

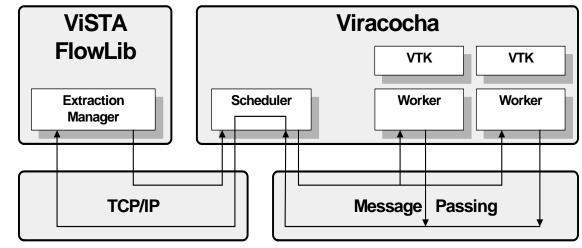
Data Parallelization


- ✓ Several parallelization approaches possible
- By nature of the post-processing pipeline, heavy work is usually located at the beginning of the pipeline
 - ✓ Data parallelization is the most efficient approach in most cases
 - Communication costs are reduced to a minimum

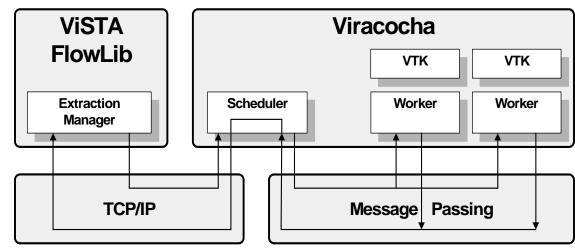
Pipeline Distribution Data Parallelization


- Determine heavy work and parallelize these pipeline sections
- Split data and allocate sections to parallel processes
- Combine partial results and execute remaining steps

Distributed Post-Processing Framework

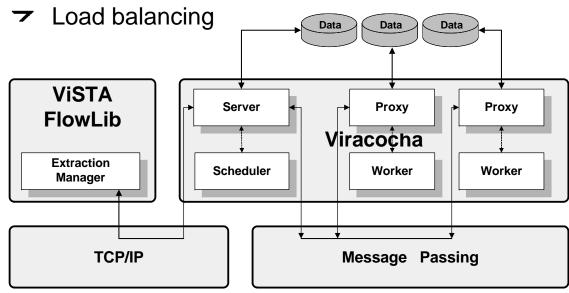

- ➤ Distributed post-processing framework Viracocha
 - ✓ Uses data parallelization approach
 - Has been developed in co-operation with the VR Group at Aachen University (RWTH)
 - ✓ Message-passing best choice for parallel post-processing
 - ✓ TCP/IP for communication in heterogeneous hardware systems

Distributed Post-Processing Framework


- → Generic Viracocha layer architecture
 - ✓ Application-independent
 - ✓ Easy integration of new functions
 - ✓ Parallel concept (scheduler, workers) stays untouched
 - Visualization Toolkit (VTK) is used for most of the basic postprocessing algorithms
 - ✓ Algorithms from own research added to Toolkits

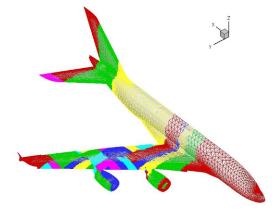
Distributed Post-Processing Framework

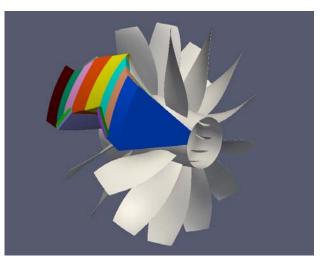
- ✓ ViSTA FlowLib is used as frontend
 - Optimized for visualization of unsteady simulation data
 - ✓ Interactive visualization using Virtual Reality technologies
 - Real-time interaction by decoupling heavy data handling and post-processing work
 - More features can be requested from backend without disrupting interactive exploration


Large-scale Dataset I/O

Large-scale Dataset I/O

Viracocha Data Management System

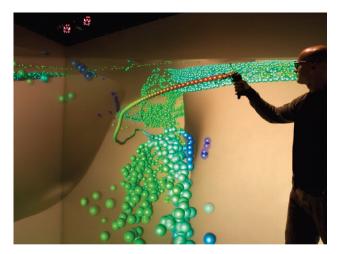

- - Caching (primary / secondary)
 - ✓ Prefetching
 - Optimized loading strategies
 - Data services
 - → Ask scheduler for next data



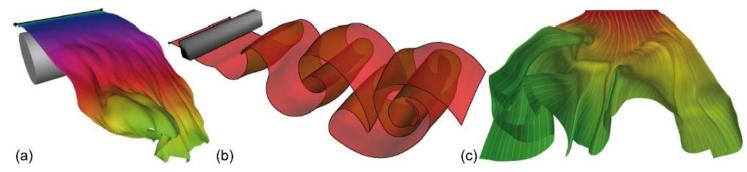
Large-scale Dataset I/O Domain Decomposition

- Multi-block datasets
 - ✓ Can easily be distributed among several processes
 - ✓ One block per time level = one file on disk
 - ✓ Sufficient for cell-based (local) algorithms
- ✓ Unstructured datasets
 - ✓ Make use of TAU's partitioner
 - ✓ Online Monitoring: no I/O required

Domain decomposition for a simulation using TAU



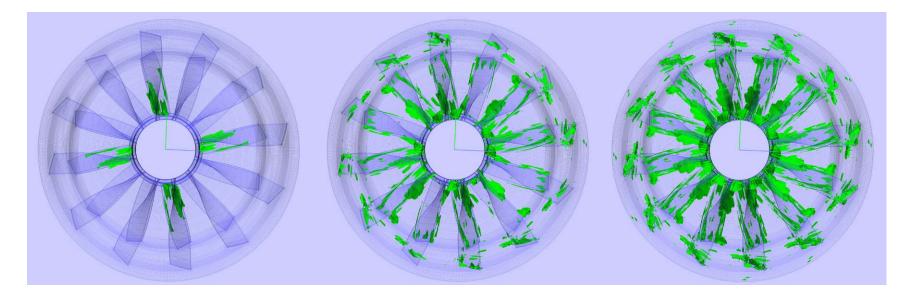
Blocks of a *Propfan* dataset, block-wise colored



Large-scale Dataset I/O Loading on Demand

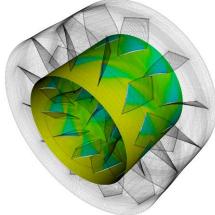
- - Only block containing current particle position needs to be loaded into main memory
 - Metadata about block connectivity helps to identify next block when particle leaves current block
 - Load on demand considerably reduces I/O load

Interactive particle seeding in an immersive environment


Multi-Resolution and Data Streaming Data Streaming

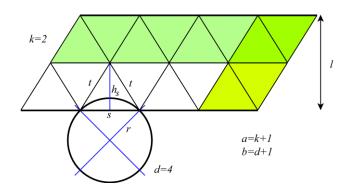
- Decouple frontend and backend
 - Improvement of interactivity within virtual environments
- However: Extraction still needs time
- → Solution: Data streaming
 - ➤ Motivation: Progressive JPG >>>
 - Immediate feedback
 - → Fast impression of the final result
 - Exploit first approximate results
 - Quick start of data exploration
 - Possible to abort running comp. and restart it with new parameters
- → Problem
 - Additional communication and more computation time
 - ✓ Appropriate CFD algorithms
 - Progressive approaches hardly available

Multi-Resolution and Data Streaming Data Streaming

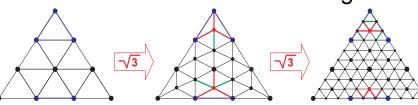


Multiple streaming steps of Lambda-2 vortex extraction computed by 4 workers and then streamed independently to the visualization frontend

Progressive Streaming


- Analytical cut function
 - Intersections on cell edges have to be found
 - Geometry of cut mesh unknown in advance
 - → Fast

Triangulation parameters of a cut cylinder (right), resulting cut through the propfan (top)


- Sampling
 - Geometry is already known everywhere in advance
 - Cut surface can be visualized immediately
 Interactivity!
 - Only scalars sampled at vertices are transmitted
 - Computed in parallel on backend

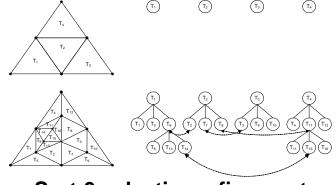
Progressive Streaming

- ✓ Progressive approach
 - Realized as surface sub-division
 - Dyadic split: classical approach for triangle meshes
 - ✓ Sqrt-3 refinement
 - ✓ Fewer points to add

 - Smoother streaming

Sqrt-3 refinement steps with special boundary treatment

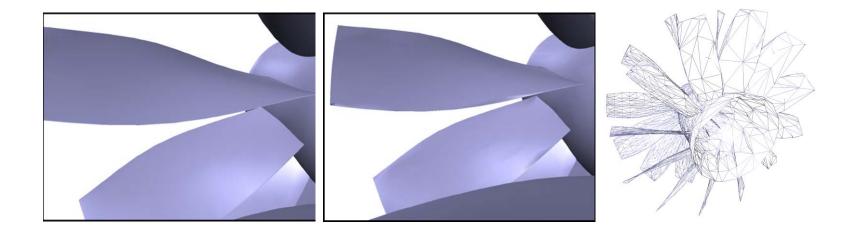
Sqrt-3 refinement (Level 1)


Sqrt-3 refinement (Level 2),

initial grid (red)

Multi-Resolution Geometry

- Adaptive rendering
 - Cache multi-level streaming data for Level-of-Detail switch
 - Increase frame rate by using different LODs selected by priorities
 - E.g. context geometry vs. extraction data
 - Handled by multi-resolution manager

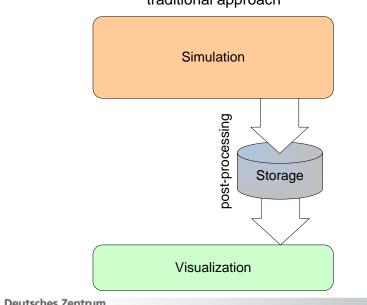

- ✓ Selective refinement
 - ✓ Get viewpoint of the user
 - Close parts of objects are rendered with higher resolution
 - Requires adaptive meshes
 - Main advantage of Sqrt-3 data structure
 - Approach can also be applied for polylines (e.g. particle trajectories)

Sqrt-3 selective refinement

Multi-Resolution and Data Streaming Multi-Resolution Geometry

View-dependent optimized view of propfan blades, original with 340,000 triangles (left), view-dependent optimized with 8,532 triangles (mid), and wireframe presentation of the entire view-dependent optimized model (right)

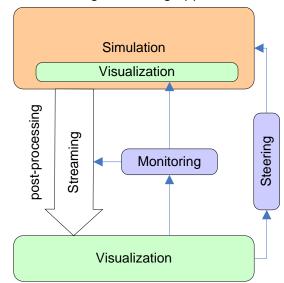
Co-Execution of Simulation and Post-Processing


Co-Execution of Simulation and Post-Processing Online Monitoring and Computational Steering

- → Goal: Interact with the simulation during the run
- → Approach:

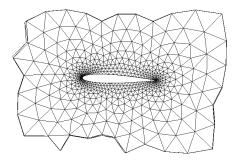
Luft- und Raumfahrt e.V.

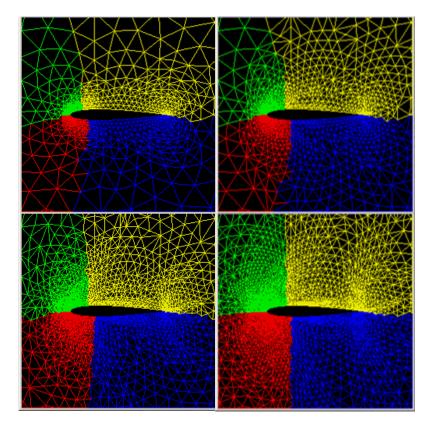
in der Helmholtz-Gemeinschaft


- ➤ Interactive post-processing
- ➤ Integrate steering module
- Attach streaming visualization pipeline

traditional approach

→ Challenges:

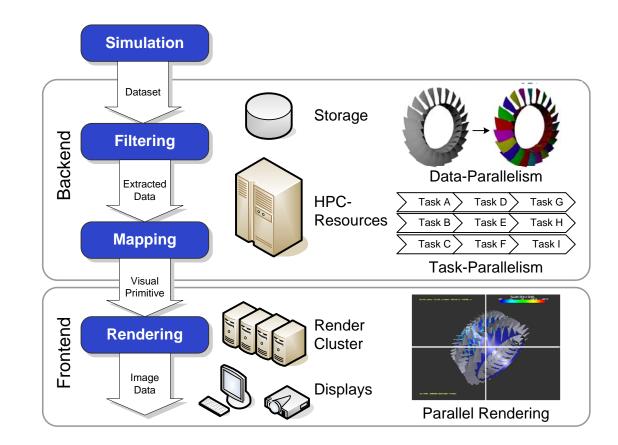

- Steer simulation and maintain data coherence
- Integration of interactive postprocessing


monitoring & steering approach

Co-Execution of Simulation and Post-Processing Online Monitoring and Computational Steering

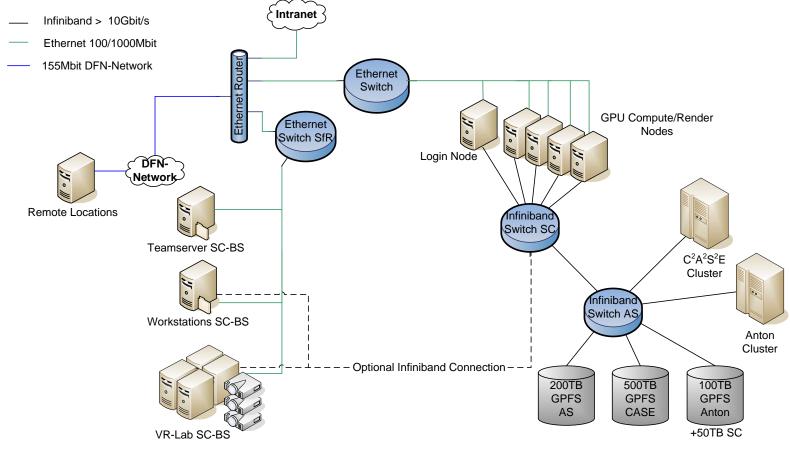
- ➤ First results of prototype
 - Mesh adaption while simulation runs
 - Processing done in parallel (shown by color)

original mesh


refined mesh

Co-Execution of Simulation and Post-Processing Distributed Post-Processing Infrastructure

Goals:


- Exploit parallelism using various techniques and resources
- Reduce amount of data communicated across pipeline
- Rendering in parallel on GPGPU cluster (integrated in HPC environment)
- "Light-weight" frontend sufficient

Co-Execution of Simulation and Post-Processing Distributed Post-Processing Infrastructure

✓ Planned Infrastructure at DLR:

Summary

- ✓ Growing importance of visualization in large-scale numerical simulation
- ➤ Today VR techniques mainly used for "pretty pictures"
- Fast processing of large datasets required for interactive visualization
 HPC (parallel execution) for first stages in visualization pipeline
- Close integration of application and postprocessing requires dedicated hardware / software infrastructure
- ✓ Pure batch execution model for HPC no longer feasible

