
Article 1

FSSteering: A Distributed
Framework for Computational
Steering in a Script-based CFD
Simulation Environment

Christian Wagner1,2, Markus Flatken1, Michael Meinel1,
Andreas Gerndt1, Hans Hagen2

1German Aerospace Center, Braunschweig, Germany
2University of Kaiserslautern, Germany

christian.wagner@dlr.de, markus.flatken@dlr.de,

michael.meinel@dlr.de, andreas.gerndt@dlr.de,

hagen@informatik.uni-kl.de

In order to get insight into interesting flow phenomena, the traditional
work-flow of computational fluid dynamics (CFD) consists of setting up
and computing the flow field followed by a consecutive post-processing
analysis. Only after this analysis one can identify parameters that may
have been set wrongly in a configuration stage. Once these param-
eters are corrected, another time-consuming loop has to be started.
To identify inadequate parameter settings already during the simula-
tion run, online monitoring concepts were introduced. Combined with
computational steering methods, parameter values can additionally be
adjusted which eventually reduces the number of required iterations to
yield satisfactory results.

At the German Aerospace Center, a comprehensive framework called
FlowSimulator has been developed to offer a generic Python-based in-
terface for the management of CFD simulations. It can easily be en-

9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/11143388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1.1. INTRODUCTION

hanced by add-ons. One of these extensions is FSSteering which is
described in this paper in more detail. As a computational steering en-
vironment, FSSteering provides functionalities essential for interactive
visualization and explorative analysis. Besides existing computational
steering environments and frameworks, a user-centred and domain-
specific view is proposed. Existing functionality can be reused without
rewriting simulation code to enable for effective steering in CFD.

To be more efficient, components of the architecture are distributed
across different resources. Whereas the CFD simulation typically runs
on a parallel supercomputer, the visualization is carried out on a high-
performance virtual reality system which allows interactive data ex-
ploration. The post-processing in between can be performed on the
supercomputer or on a separate parallelization cluster. But it is also
possible to switch between different existing post-processing toolkits.
This is just possible because of the very flexible configuration manage-
ment of the distributed steering framework. We will demonstrate the
steering capabilities and the system flexibility by two current research
examples. An outlook for future steps concludes this paper.

1.1 Introduction

In order to gain insights into complex flow situations, computational simulation is
a common tool for modern engineers. Therefore, a computational fluid dynamics
simulation is set up involving necessary parameters. After solving by a cluster or
supercomputer post-processing algorithms are applied to generate visual feedback.
Many parameters chosen wrong can only be identified at that point and potentially
the simulation has to be done again with tweaked parameters. With iteration
times of days or even weeks methods with higher productivity are desirable for
providing quick research insights. Therefore, being able to check if a simulation
was setup properly and is still on track is important. If possible, changes to guide
the simulation should be applied during runtime.

To tackle this situation, computational steering systems were developed to
interact with ongoing simulation runs. Most of the computational steering en-
vironments available are enhanced visualization tools and concentrate on data
management providing meaningful visualizations. Complicated instrumentation of
simulation codes is needed to make data available to those systems. Contrary,
computational steering frameworks concentrate on easy simulation coupling with
minimalistic interfaces. Visualization and analysis have to be implemented by the
user. However, main drawback of both approaches is that all steerable parameters
as well as callable methods have to be known at compile time.

10 Article 1. FSSteering: A Distributed Framework for Computational Steering in a
Script-based CFD Simulation Environment



1.2. RELATED WORK

In this paper, we introduce a domain-specific approach heavily depending on an
existing scripting environment. We developed the computational steering environ-
ment FSSteering as an extension to the German Aerospace Center’s computational
fluid dynamics system FlowSimulator. For this reason, simulation scripts can be
made steerable without internal knowledge by users. Nearly no instrumentation
and data conversion is needed. Furthermore, steering commands to be executed are
mostly interpreted by the FSSteering extension. Therefore, domain-specific tasks
provided by the FlowSimulator environment can be executed or parameters can
be changed during runtime without either being known to the simulation script or
having to be implemented by CFD engineers . For example, the underlying mesh
of any CFD simulation can be changed and adapted during runtime resulting in
better simulation convergence without changes to the simulation setup or script.

Since CFD data are multi-modal with complex features, we coupled our systems
with VRFlowVis, an explorative visualization systems including a parallel post-
processing system.

The remaining paper is structured as follows: In the next section, related work
in the field of computational steering environments and frameworks is reflected
including an overview of FlowSimulator and VRFlowVis. Then, the developed
FSSteering architecture is presented. In section 1.4, two steering examples are
shown, followed by final conclusion and future work.

1.2 Related Work

Since steering simulations is of interest for many years now, a lot of work has
been done. An overview of earlier systems can be found in [Mulder et al., 1998].
Online monitoring is essential to identify in what kind a simulation has to be
steered. Therefore, most steering systems concentrate on visualization or are even
enhanced visualization tools, like [Parker et al., 1997] and [Eickermann et al.,
2005]. Native frameworks like [Jenz & Bernreuther, 2010] are available to enable for
computational steering, but having high adaptation overhead to specific problems.
[Coulaud et al., 2003] uses XML descriptions of simulation scripts to handle data
and concurrency at instrumentation points. Only few existing systems try to tackle
domain-specific requirements, one CFD-specific is [Kreylos et al., 2002].

The FlowSimulator is an open and efficient framework to unify massively par-
allel and multidisciplinary CFD simulations independantly from the tools incor-
porated [Meinel & Einarsson, 2010]. This is achieved by a layered approach. The
FlowSimulator DataManager (FSDM) forms the common backbone and provides
a common interface to store and exchange data in memory. Written in C++ it
provides a number of classes that hold structured data typical for CFD-related
numerical simulations. Using the automatic interface generator SWIG [Beazley,

Proceedings of the 6th High-End Visualization Workshop,
Dec. 8th– 12th 2010, Obergurgl, Austria

11



1.3. COMPUTATIONAL STEERING ARCHITECTURE

1996] all of FSDM’s interfaces are also provided in Python.
Explorative and interactive visualization is supported using the VRFlowVis

application, a visualization frontend for steady and unsteady CFD data sets based
on ViSTA and ViSTA FlowLib [Schirski et al., 2003]. ViSTA allows the frontend
to scale from simple desktop systems to high-end immersive VR environments.
ViSTA FlowLib is a specialized library that provides particular interaction meth-
ods [Wolter et al., 2007a][Wolter et al., 2006] and efficient rendering techniques for
working with time-dependent CFD data.

The rendered features are extracted from the raw data and mapped to visual-
ization components by a post-processing application based on Viracocha [Gerndt
et al., 2004][Wolter et al., 2007b]. It is decoupled from the visualization frontend
and distributed to High Performance Computing (HPC) resources, preferably the
same resource used by the simulation to be steered. Visualization features are ex-
tracted in parallel, and as soon as first results are available the extracted geometry
data is sent back to VRFlowVis to be rendered.

1.3 Computational Steering Architecture

The developed computational steering architecture aims on enabling computa-
tional fluid dynamics simulations to be steered with little impact on already ex-
isting simulation scripts. Therefore, FSSteering was developed as an extension to
the FlowSimulator system providing easy access to existing functionality and cou-
pling simulation scripts with parallel post-processing back-end as well as front-end
systems.

In the target work-flow different connected computing systems are involved,
c.f. figure 1.1. A supercomputer or cluster system is supporting a set of simulation
tasks in batch-processing. To steer one of the running simulations on-demand dif-
ferent front-end and back-end systems need to be attached in a flexible connection
topology dealing with heterogeneous networks.

1.3.1 System Architecture

The overall FSSteering-architecture can be seen in figure 1.2.
Although FSSteering makes use of the scripting interface offered by FlowSimu-

lator, performance-critical tasks need to be implemented efficiently. For this reason,
a core module provides connection handling and data transfer methods. Access to
these functions is provided by lightweight APIs. The Python-API is also bound
to the FlowSimulator-API allowing inheriting its functionality and providing it to
the connected applications via command requesting.

Both, Python- and C++-API, are used in the runtime examples in section 1.4.

12 Article 1. FSSteering: A Distributed Framework for Computational Steering in a
Script-based CFD Simulation Environment



1.3. COMPUTATIONAL STEERING ARCHITECTURE

Figure 1.1: CFD simulations can be connected by multiple post-processing and
front-end visualization systems on-demand. TCP/IP- as well as MPI-connections
can be used for data communication.

1.3.2 Runtime Execution

At runtime a steerable simulations act as servers waiting for connections by clients.
Clients again can act as servers allowing arbitrary connection topologies.

A connected client sends commands to the simulation server and waits for re-
sponse. A set of predefined system commands exists for registration and updating
variables and sending geometry or field data over connections. Calling domain-
dependent FlowSimulator functionalities like mesh adaptation offer the possibil-
ity to change simulation behavior without being implemented in the application
scripts in the first place. All commands unknown to FSSteering are assumed to be
user-commands and are returned to the caller, e.g. the simulation script. For sim-
ple handling commands are represented as Python dictionaries including necessary
parameters and are mapped to dictionaries of strings in the C++-API. Commands
are sent through the system in a serialized representation. The interpretation oc-
curs when triggered by the simulation.

The execution of commands is based on message queues. For command exe-
cution with centralized request management [Esnard et al., 2004] a simple, yet
efficient synchronization scheme is used. All commands are gathered at a clients
master node and are send to the servers master node. When a simulation triggers
the processing of upcoming commands, the server broadcasts all new commands
to the servers slaves. This choice perfectly fits to the single program multiple data
programming model used in FlowSimulator scripts.

Special care was taken managing different connections in order to provide a flex-
ible connection topology. Although command communication is always gathered

Proceedings of the 6th High-End Visualization Workshop,
Dec. 8th– 12th 2010, Obergurgl, Austria

13



1.3. COMPUTATIONAL STEERING ARCHITECTURE

Figure 1.2: FSSteering ’s main functionalities are implemented in the core module
and made accessible by lightweight APIs. The Python-API can also use functions
of FlowSimulator.

and scattered through the master nodes this does not hold for data communica-
tion. As depicted in figure 1.3, additional to 1-to-1 connection via master to master
connection it is possible to establish n:m connections, where each server node is
connected to an arbitrary client node. This setting is used in the steering examples
of section 1.4. For general purposes, geometry and field data can be sent as raw
binary data, the VTK file-format is also supported.

14 Article 1. FSSteering: A Distributed Framework for Computational Steering in a
Script-based CFD Simulation Environment



1.4. COMPUTATIONAL STEERING RESULTS

(a) 1:1-connection: Data and commands are
gathered at master nodes and redistributed
to slave nodes.

(b) n:m-connection: While commands are
gathered and redistributed, data is dis-
tributed in parallel.

Figure 1.3: Commands are always gathered and redistributed in master nodes. For
data, each data node can be connected to arbitrary client nodes.

1.4 Computational Steering Results

This section demonstrates the effective usage of FSSteering in two examples. A
FlowSimulator simulation running on four computational nodes is made steerable
using the FSSteering Python-API. The parallel post-processor Viracocha connects
to the computational nodes via parallel data channels, one to each simulation
node. Simulation and post-processor are controlled using a ViSTA front-end. In
this setup we will show two frequent steering applications.

1.4.1 Numerical Steering

Since the underlying simulation mesh is essential for numerical convergence to
physical meaningful results, the additional possibility to influence the mesh during
runtime can prevent restarting simulation runs. Figure 1.4 shows the effect of
additional adaptation runs initiated in the FlowSimulator environment. Note, that
no additional code adjustment are needed since mesh adaptation is one of the
algorithms provided in FlowSimulator and FSSteering.

1.4.2 Simulation Steering

Contrary to the first example, this example shows how a simulation script is en-
riched with user-defined code, see figure 1.5. The used simulation script has the
ability to change aileron, rudder and elevator angles in a synthetic aircraft model.

Proceedings of the 6th High-End Visualization Workshop,
Dec. 8th– 12th 2010, Obergurgl, Austria

15



1.4. COMPUTATIONAL STEERING RESULTS

(a) Initial mesh. (b) Adapted mesh.

Figure 1.4: For an initial computational mesh (a) background adaptation is trig-
gered improving numerical correctness.

FSSteering ’s abilities to schedule user-defined steering commands during runtime is
used to successfully deform the mesh. Mesh deformation is controlled and viewed
by the front-end application. Two wire-frame and a virtual reality view of the
front-end is shown in figure 1.5.

(a) Initial configuration. (b) Changed angle. (c) Explorative view with
changed angle in VR front-
end.

Figure 1.5: In simulation steering a command to change elevator angle was trig-
gered, (a) and (b). The influence on the flow field is analyzed in the explorative
visualization environment, (c).

16 Article 1. FSSteering: A Distributed Framework for Computational Steering in a
Script-based CFD Simulation Environment



1.5. CONCLUSION AND FUTURE WORK

1.5 Conclusion and Future Work

In this paper we presented FSSteering, a flexible computational steering environ-
ment. As an extension to the FlowSimulator framework domain-specific needs of
CFD engineers are addressed. A flexible connection and data management be-
tween the simulation on the one hand and front-end as well as post-processing
back-end modules on the other hand was demonstrated. Existing FlowSimulator
functionalities are inherited and can be used with very little programming effort.
Simulation-specific functions can be added by users with a convenient Python-API.
The combination with an existing parallel post-processor and a virtual-reality en-
vironment provides a rich set of analysis and explorative tools.

To serve typical batch processing systems running many simulations at the
same time, future work will include management of running simulations to allow
for a convenient selection of which simulation to steer. For simulations running with
high counts of computational nodes additional data redistribution and streaming
methods are needed to provide quick insights. Further research includes investiga-
tion of adequate interaction techniques in the front-end visualization to allow best
usage of the functionalities provided for CFD simulations steered with FSSteering.

Proceedings of the 6th High-End Visualization Workshop,
Dec. 8th– 12th 2010, Obergurgl, Austria

17



BIBLIOGRAPHY

Bibliography

[Beazley, 1996] Beazley, D. M. (1996). Swig: an easy to use tool for integrat-
ing scripting languages with c and c++. In Proceedings of the 4th conference
on USENIX Tcl/Tk Workshop, 1996 - Volume 4 (pp. 15–15). Berkeley, CA,
USA: USENIX Association. URL: http://portal.acm.org/citation.cfm?

id=1267498.1267513.

[Coulaud et al., 2003] Coulaud, O., Dussere, M., & Esnard, A. (2003). Toward a
distributed computational steering environment based on corba.

[Eickermann et al., 2005] Eickermann T., Frings, W., Gibbon, P., Kirtchakova,
L., Mallmann, D., & Visser, A. (2005). Steering unicore applications with visit.
Philosophical Transactions of The Royal Society. Journal.

[Esnard et al., 2004] Esnard, A., Dussere, M., & Coulaud, O. (2004). A time-
coherent model for the steering of parallel simulations. In Europar 2004 (pp.
90–97).: Springer Verlag.

[Gerndt et al., 2004] Gerndt, A., Hentschel, B., Wolter, M., Kuhlen, T., & Bischof,
C. (2004). Viracocha: An efficient parallelization framework for large-scale cfd
post-processing in virtual environments. In SC ’04: Proceedings of the 2004
ACM/IEEE conference on Supercomputing (pp.5̃0). Washington, DC, USA:
IEEE Computer Society.

[Jenz & Bernreuther, 2010] Jenz, D. & Bernreuther, M. (2010). The computa-
tional steering framework steereo. In Para 2010.

[Kreylos et al., 2002] Kreylos, O., Tesdall, A. M., Hamann, B., Hunter, J. K., &
Joy, K. I. (2002). Interactive visualization and steering of cfd simulations. In
S. Müller & W. Stärzlinger (Eds.), VISSYM ’02: Proceedings of the symposium
on Data Visualisation 2002 (pp. 25–34).

[Meinel & Einarsson, 2010] Meinel, M. & Einarsson, G. O. (2010). The flowsimu-
lator framework to unify massively parallel cfd applications. In Para 2010.

[Mulder et al., 1998] Mulder, J. D., van Wijk, J., & Liere, R. V. (1998). A survey
of computational steering environments. Future Generation Computer Systems,
13.

[Parker et al., 1997] Parker, S. G., Weinstein, D. M., & Johnson, C. R. (1997).
The scirun computational steering software system.

18 Bibliography

http://portal.acm.org/citation.cfm?id=1267498.1267513
http://portal.acm.org/citation.cfm?id=1267498.1267513


BIBLIOGRAPHY

[Schirski et al., 2003] Schirski, M., Gerndt, A., van Reimersdahl, T., Kuhlen, T.,
Adomeit, P., Lang, O., Pischinger, S., & Bischof, C. (2003). Vista flowlib -
framework for interactive visualization and exploration of unsteady flows in
virtual environments. In EGVE ’03: Proceedings of the workshop on Virtual
environments 2003 (pp. 77–85). New York, NY, USA: ACM.

[Wolter et al., 2007a] Wolter, M., Bischof, C., & Kuhlen, T. (2007a). Dynamic
regions of interest for interactive flow exploration. In Proceedings of Parallel
Graphics and Visualization 2007 (pp. pp. 61–68).

[Wolter et al., 2006] Wolter, M., Hentschel, B., Schirski, M., Gerndt, A., &
Kuhlen, T. (2006). Time step prioritising in parallel feature extraction on un-
steady simulation data. In Proceedings of Eurographics Symposium on Parallel
Graphics and Visualization 2006.

[Wolter et al., 2007b] Wolter, M., Schirski, M., Kuhlen, T., Bischof, C., Bücker,
M., Gibbon, P., Joubert, G. R., Mohr, B., (eds, F. P., Wolter, M., Schirski,
M., & Kuhlen, T. (2007b). Hybrid parallelization for interactive exploration in
virtual environments.

Proceedings of the 6th High-End Visualization Workshop,
Dec. 8th– 12th 2010, Obergurgl, Austria

19



BIBLIOGRAPHY

20 Bibliography


