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ABSTRACT 
 
The TanDEM-X Mission has as primary objective to 
generate a high resolution global Digital Elevation Model. 
This paper proposes a new method for multibaseline Phase 
Unwrapping which is the critical point of this generation. 
We propose to combine both Minimum Cost Flow (MCF) 
and Maximum a Posteriori (MAP) estimation. The latter is 
used to solve phase gradient ambiguities. The problem is 
posed as an energy minimization one and solved using 
Belief Propagation (BP) which is an iterative process. 
Nevertheless, although very good results are obtained on 
loopy graphs, it is not guaranteed to converge. Thus, phase 
unwrapping of the most accurate interferogram is finally 
performed with the MCF algorithm and takes as input the 
unwrapped gradients. 
 

Index Terms— TanDEM-X, multibaseline phase 
unwrapping, Minimum Cost Flow, Belief Propagation 
 

1. INTRODUCTION 
 
The TanDEM-X Mission started in June 2010. Its primary 
objective is the generation of a consistent global Digital 
Elevation Model (DEM) with an unprecedented accuracy. 
The whole land mass will be mapped with two different 
baselines in order to reduce the difficulty of phase 
unwrapping while achieving the required accuracy. Phase 
unwrapping is a crucial step to obtain this high quality 
DEM. 
Classically DEMs have been generated from a single 
interferogram. Constantini [1] proposed a branch cut based 
phase unwrapping algorithm (Minimum Cost Flow, MCF). 
However, problems could arise in this process. One of the 
novelties of the TanDEM-X Mission is its dual baseline 
approach. Several methods for multibaseline phase 
unwrapping based on Maximum Likelihood Estimation 
(MLE) have been developed like in [2]. Most of them work 
on a pixel-by-pixel basis, not accounting for overall 
structural information. Reconstruction quality could be 
increased using and a prior [3]. Nonetheless computation is 
heavily increased. Moreover, in our case where only two 

interferograms are available during the first two mission 
years, this method is still not robust enough. Frey [4] 
proposed a new phase unwrapping method (for a single 
interferogram) using loopy Belief Propagation (BP, [5]) to 
solve the MAP problem. Although BP is guaranteed to 
converge only in trees, he showed it can produce excellent 
results in very loopy graphs. 
The method we propose here combines both MCF and 
MAP. Firstly, MAP is used to unwrap phase gradients 
because the required search interval is much smaller than 
for the phase. Once the problem of MAP is rewritten as an 
energy minimization one, we can apply BP to solve it. 
However, due its possible non-convergence on loopy 
graphs, we couple it to the MCF. It unwraps the most 
accurate interferogram, i.e. the one with the larger baseline. 
Since gradient MAP has already solved or reduced the 
ambiguity error in gradient estimates, phase unwrapping 
becomes quite trivial. As a consequence, the advantages of 
both MCF and MAP are efficiently combined into a single 
robust framework. 
 

2. MULTIBASELINE GRADIENT AMBIGUITY 
RESOLUTION TO SUPPORT MCF ALGORITHM 

 
The objective of phase unwrapping is to derive an estimate 

of the true phase),(ˆ ki ),( ki given its wrapped values 

    ,),(),(  kiW
ˆ

ki . Our objective is to enhance 

gradient estimates of ),( ki ),( ki using MAP. If 

necessary, these estimates are corrected and then integrated 

to determine with the help of the MCF algorithm.  ),(ˆ ki
 
2.1. Unwrapped gradient estimation 

 
2.1.1. Multibaseline gradient likelihood 
The multibaseline gradient likelihood consists of combining 
the gradient estimates of two or more interferograms 
   Lll ,...,1   in order to reduce the gradient ambiguity. 

Gradients  are estimated by computing partial 

derivatives of ψ(i,k) which are wrapped back if they exceed 
),( kî
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±π. Their probability density function  pdf
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 (in i-

direction) is [6] 
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where ),;( Lpdf   is the pdf of an interferogram sample 

given by (2) and * stands for convolution. 
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Once one of the interferograms has been selected as 
reference (c=1), the gradient distributions of the other 
interferograms may be scaled by the baseline ratios 
ac=B1/Bc, where Bc is the baseline of the interferogram c. 
The multibaseline gradient likelihood function or joint pdf 
of the gradient is (in i-direction) then  
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(3) 
where C is the number of interferograms.  
Since it is very unlikely to have a very high gradient, the 
considered interval is then reduced to three or five cycles of 
the reference interferogram i.e. the one with the smallest 
baseline. As a result, the likelihood calculation is much 
faster than on the phase.  
Nevertheless, although the maximum of this likelihood 
(Maximum Likelihood Estimate) eliminates or at least 
reduces the ambiguity problems due to the wrapping 
operator, it amplifies the noise contribution. Fig. 1 shows 
how much the joint pdf can change regarding the coherence 
and the shifts between every gradients of a pixel. Thus, 
depending on the difference of the acquired gradients, the 
number of significant peaks of the joint distribution may 
considerably vary (fig.2) and therefore leads to a wrong 
estimate.  
 
2.1.2. Prior and energy minimization 
Another point to be taken in consideration is the link 
between gradients in both directions. In this sense, the 
conservative condition of a gradient field helps us and leads 
to the affirmation: we want to find the unwrapped gradients 
with the constraint that the sum of the gradients around 
every loop must be zero which is called the zero curl 
constraint and is written  

]1,[],1[],[(  kikiki
kiki  ki  (4). 

We introduce then a prior modeled by a Markov Random 
Field Ω(xi,xj) which introduces a compatibility between 
neighboring variables. According to Bayes’ rule, the 
posterior P(x,y) can be written as the product of a likelihood 
Λ(xi,yi) and a prior Ω(xi,xj) i.e.  
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Fig. 1. Example of pdf (dashed) and joint pdf (solid) for two 
different configurations of the gradients pdf for =0.3 and =0:8 

 
Fig. 2. Expected numbers of significant peaks according to the 
difference between both gradients for different  (from left to right, 
first line: 0.2, 0.4, 0.6; second line: 0.7, 0.8, and 0.9). 

 
For our problem, in (5) the likelihood is then the product of 
the joint pdf of both directions and the prior is represented 
by a probability model on the gradients that satisfies the 
zero curl constraint. The posterior probability can be 
written as 
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with ],)[( and ],)[( kiPkiP
ki    follow (3) and  
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Taking the negative logarithm of (5), we obtain  
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To find the most likely solution of (5), we need to minimize 
the energy  
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The first term Ed is the data energy or data penalty. The 
second term is Es is the prior energy or discontinuity cost. 
 
2.1.3. Belief Propagation 
The joint distribution (6) can be described by a graphical 
model shown in fig 3. Red (dark) points are the partial 
derivatives over range and azimuth between two purple 
(light) points which are the phase measurements. Black  
points are the zero curl constraint and are connected to their 
respective four gradients that they constraint to sum to 0. 
 

 
Fig. 3. Graphical model for the zero curl constraint 

 Belief propagation computes messages which are passed 
both directions on every edge in the network. The elements 
of the vectors correspond to the different log likelihood 
values. There are two types of messages: the constraint to 
gradient message (fig. 4a) and the gradient to constraint 
message (fig. 4b). 

          
      (a)              (b)          (c) 
Fig. 4.  Message passing: (a) constraint to gradient message (b) 
gradient to constraint message (c) resulting message 

Constraint to gradient messages are calculated following this 
equation 
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 is 0 if the sum of the 

gradients is 0 and + if not.  
Gradient to constraint message are simply  

iii mpdfm 45 log   (11) 

Finally, the final belief of a gradient is the sum of all 
incoming messages in that gradient node (fig. 4c) and the 
minimum gives the estimate of the unwrapped gradient.  
The message updating schedule is a “up-down-left-right” 
[7].  
 
2.3. Minimum Cost Flow algorithm supported by 
unwrapped gradients 
 
The multibaseline gradient estimates do not exactly 
correspond to any of the ambiguities of the original 
interferograms. In order to allow the application of the MCF 
in the second stage of the algorithm, gradient estimates are 
rounded to their nearest ambiguities. 
At DLR, a new MCF implementation optimized both in 
terms of memory and time consumption had been developed 
[8]. Its efficiency has been proved during the SRTM 
mission. This algorithm follows a global approach 
incorporating the prior that the gradient of the unwrapped 
phase should be a conservative field (but does not take any 
probability into account). It is based on gradient estimates, 
whose ambiguities are corrected according to a given cost 
function. The MCF approach solves the following global 
minimization problem 
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In the usual MCF approach, di(i; k) and dk(i; k) are the 
residue fields and have values equal to 0;+2π; -2 π. They are 
used to correct the gradient estimate, making it 
conservative. In our approach, new residue fields are 
calculated with the help of the unwrapped gradients. Since 
the interval of possible gradient estimates has been 
extended, their values can be now integer multiples of 2 π. 
Finally, adapted cost functions ci(i; k) and ck(i; k) have been 
developed.  
 

3. RESULTS 
 
Multibaseline interferograms have been simulated using a 
DEM obtained from a repeat-pass TerraSAR-X (TSX) 
interferogram and real TSX geometrical parameters. Hence 
our data is realistic regarding geometrical aspects, but 



without any atmospheric artifacts. Moreover, the level of 
noise has been controlled. We simulated interferograms 
with two different baselines. The first interferogram has a 
height of ambiguity of 40.1 m/cycle and the second one of 
27.0 m/cycle, analogous to TanDEM-X operational 
configuration. Search interval for gradient MAP is three 
cycles of the interferogram which is taken as reference. 
Multibaseline gradient estimation has been performed in 
order to remove the gradient ambiguity for each 
interferogram (see fig. 4a). The unwrapped gradients in 
range and azimuth are used as inputs to MCF. New residue 
fields are obtained (fig. 4c and 4d). It can be observed that 
most of the long branch-cuts are successfully removed. 
Hence the resulting unwrapped phase exhibits less errors. 
Concretely, in fig. 4c, there is a long and obviously 
erroneous branch cut in the lower part. It has been 
efficiently corrected by our approach (fig. 4d). 
 

    
(a) (b) 
 

    
         (c)    (d) 

Fig. 5. Results obtained with simulated data from a TSX DEM 
(γ=0:8): (a) dual-baseline unwrapped gradient in range, (b) derived 
costs obtained from the pdf distributions, (c) residues and branch-

cuts obtained from the MCF algorithm without unwrapped 
gradient 
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