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Abstract—In this paper, we derive an analytical model for the
estimation of the overhead introduced in a file transfer procedure
by three different reliable protocols, namely TCP, SCTP, and
Saratoga. The model estimates the introduced overhead down to
the IP layer, taking into account uncorrelated packet loss on the
channel. The model distinguishes between the overhead on the
forward link (server to client), mainly due to packet headers and
retransmissions, from the overhead on the return link (client to
server), which is mainly due to acknowledgments. By carrying
out experimental tests, we show that the model predictions match
very well with the trial results. Further, Saratoga shows the lowest
overhead costs, especially for the smaller files sizes; nevertheless,
on the expense of removing mechanisms like flow control and
congestion control.

I. INTRODUCTION

Transmission Control Protocol (TCP) [1] is the Transport-layer

(TL) protocol extensively used by many of the Internet’s most

popular applications like Hypertext Transfer Protocol (HTTP)

and File Transfer Protocol (FTP) . It gains its fame from being

the first end-to-end TL protocol that provides reliable, ordered

delivery of a stream of bytes from a program on one computer

to another, over a network.

Stream Control Transmission Protocol (SCTP) [4] was

originally designed to send telephony signaling [2]. As a

TL protocol, it solved a number of TCP limitations while

borrowing extra beneficial features from the User Datagram

Protocol (UDP) [3]. SCTP provides features for high avail-

ability, increased reliability, and improved security for socket

initiation.

Lastly, with the aim to transfer remote-sensing imagery from

a Low Earth Orbiting (LEO) satellite constellation, Saratoga

[5] was developed. Saratoga is intended for use when moving

files between peers, with high throughput [6], which may

have intermittent connectivity and can simply cope with highly

asymmetrical links.

What unites the above mentioned protocols, regarding the

topic of this work, is their ability to overcome transmission

errors, occurring on the channel, leading to reliable transmis-

sion of files.

As specified in literature, file transfer is a generic term for

transmitting files over a computer network or the Internet. Its

applications have the client-server architecture. There are 2

types of file transfers:

1) Pull-based file transfers where the receiver initiates a file

transmission request, and

2) Push-based file transfers where the sender initiates a file

transmission request

When transmission capacity and time are scarce and costly,

they have to be used efficiently; e.g. in satellite communica-

tions, where the return link resources are limited, or in LEO

satellite communications, where the short visibility time of the

satellite (almost 10 minutes) has to be used in the most efficient

way to download as many data as possible from the satellite.

For this reason, the overhead introduced by the protocols used

for a file transfer has to be considered carefully. In particular,

when considering the transmission of small-sized files that

we believe they match aeronautical communication messages

(e.g. Air Traffic Services (ATS) and Aeronautical Operational

Control (AOC) messages).

To the best of our knowledge, no work has been done to

carefully estimate the overhead introduced by the protocols

used for file transfer. So, the objective of this paper is to

estimate the overhead introduced by a file transfer application

for the three above stated protocols (i.e. TCP, SCTP, and

Saratoga).

For the aim of this work, we consider every packet header,

non-data packet the COOKIE in SCTP, for example, or the

non-data chunks such as control chunks, and any retransmitted

packets (including payload) as an overhead.

In the next Section, we briefly introduce the protocols. In

Section III, we present our analytical models that will be

evaluated by obtaining experimental results using the testbed

we setup in Section IV. Results are shown in Section V and

Section VI concludes the paper.

II. PROTOCOLS

In the context of this work, we study three protocols that are

considered fully reliable in the sense of complete delivery of

the requested object from a file server to the calling endpoint,

i.e. Pull-based file transfer, even when link errors exist. In this

respect, we will consider packet-level errors, with given Packet

Error Rate (PER).

TCP, SCTP and Saratoga share the above property. While

TCP is vastly used, SCTP still needs sometime to find its place

in the market to grow-up, and finally, despite the fact that
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Saratoga is not yet a public standard (only an Internet Draft),

it is inaction since 2004, thus it is worth to be considered.

A. TCP

For being fully reliable, TCP as a TL protocol constructs

for each transmitted packet a basic header of 20 bytes. In

addition to that, some header options are used. A number

of these options is used only once at the negotiation period

before the connection establishment phase to signal some

requirements to the other communicating end, while others,

such as Timestamps are employed during the actual data

transfer.

After setting up the connection between the client and the

server, a file, or many, may be transferred between the peers. A

TCP server implements flow control to send packets according

to its sliding window size, which is updated based on the

received acknowledgments (ACK). It also implements delayed

acknowledgment, in such a way that in a stream of full-sized

segments there should be an ACK for at least every second

segment.

B. SCTP

Just like TCP, SCTP is full-duplex, reliable and offers in-

sequence transport messages. Moreover, it honors message

boundaries like UDP. In addition to that, SCTP supports Multi-

streaming and Multi-homing which are beyond our interests

in this paper.

SCTP makes use of chunks as containers to send infor-

mation. For that, SCTP places data messages and control

information into separate chunks (data chunks and control

chunks), each identified by a chunk header. SCTP chunks

are bundled into SCTP packets. The SCTP packet, which

is transported by the Internet Protocol (IP), consists of a

packet header (common header) of 12 bytes. SCTP control

chunks, when necessary, followed by SCTP data chunks, when

available.

To facilitate the acknowledgment of the received DATA

packets, the SCTP receiver uses a Selective Acknowledgment

(SACK) chunk to inform the file sender about the missed gaps.

As stated in Section 4.2 in [7], the delayed acknowledgment

algorithm is applied by SCTP; an ACK (in SCTP a SACK)

should be generated for at least every second packet received.

Besides, in [4] it is declared that an SCTP receiver can send

additional SACKs to update the sender on the status of its

receiving buffer.

C. Saratoga

Saratoga is a novel file transfer protocol proposal still in the

Standardization process at the IETF, particularity as an Internet

Draft within the Transport Area Working Group (TSVW). It

is a reliable protocol because it moves files without any loss

thanks to the Selective Negative Acknowledgment (SNACK)

mechanism.

On the other hand, Saratoga is a command-line Application-

layer protocol built on top of UDP, so it is not properly

a TL protocol. The client sends a request (command) with

the desired file path/name to the server, which replies by

sending the file’s content (DATA). Saratoga defines five packet

types, namely; BEACON, REQUEST, METADATA, DATA and

HOLESTOFILL of different headers sizes.

Saratoga uses a BEACON to identify the sending peer. Any

node can make a REQUEST for a file from any other endpoint.

If the file exists, the file server sends a METADATA containing

the file’s properties, and then it waits for a HOLESTOFILL

packet to begin the actual DATA packets transfer. Once fin-

ished, the receiver sends another HOLESTOFILL informing

the server about the missing packets that should be retrans-

mitted.

More to the point, a file-receiver can send HOLESTOFILL

packets in two ways: either on the other peer’s request, for in-

stance as in the above scenario, or unsolicitedly. In this paper,

we use the latter approach in order to make results comparable

to the other two protocols. However, basic Saratoga uses only

two HOLESTOFILL packets for any transaction, in order to

avoid congestion on the return link and because it is designed

to cope with highly asymmetrical links. Consequently, accord-

ing to the first setting, the protocol will show a constant value

of overhead from the receiver side in case of no errors.

III. ANALYTICAL MODELS

As pointed in Section II, each protocol has a different approach

to follow for a file transfer operation. For instance, while

we have to establish a connection in TCP or an association

for SCTP before starting sending a file, in Saratoga we only

need to send request for that file without any handshake or

shutdown procedures, as for the other two protocols. These

same protocols also behave differently on the receiving side.

The MTU of the Ethernet technology is 1500 bytes. Layer 3,

when using IPv4, uses 20 bytes of header size without options.

These 1500 bytes are entirely filled when sending a data packet

and partially loaded for transmitting handshake/shutdown mes-

sages or control information. In this Section, we build analyt-

ical models to estimate the overhead for each protocol defined

above, for the Network, Transport and Application (in case

of Saratoga) layers using Ethernet frames. In Section I, we

defined the overhead as being any information byte on the

transmission medium, due to layer-3 and higher layers pro-

tocols, excluding the actual non-retransmitted file-data. From

this, we can describe the relative overhead of a transmitted file

as:

HX = HX(OHX , F ) =
OHX

OHX + F
(1)

where, OHX is the absolute overhead (the price in bytes)

of the X protocol (including retransmissions) and F is the

total file size in bytes. Table I gives a brief overview of the

parameters used in the model.
The subscript or superscript of FW and RT, in Table I,

denote the load on the Forward (server to client) and Return

(client to server) links, respectively. Further, all headers sizes

are measured in bytes.

To calculate the payload size (MSS) in a data packet for a
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TABLE I
PARAMETERS FOR ANALYTICAL MODELS

Parameters Description

ε Error probability

MSS Maximum Segment Size in bytes

Ndpkt = ⌈ F

MSS
⌉ Number of data packets

Hx Header size of an x-type packet

HIP Header size of the IP protocol

Px (Hx + HIP) for the x-type packet

(PDATAX)i (HDATAX + HIP) is the i-th data packet in the
transfer for protocol X

OHFW
X

, OHRT
X

Header sizes (prices) of the X -protocol from
server and client, respectively. [absolute overhead]

SFW
HANDSHUT The handshake/shutdown header size at the

forward link

SRT
HANDSHUT The handshake/shutdown header size at the

return link

LREP Length of the ack. information (report)
about missing packets other than header in bytes

specific protocol X , we use:

MSSX = MTU − (HDATAX + HIP) (2)

where, X can be TCP, SCTP or Saratoga.

The general models to calculate the headers sizes on both

FW and RT channels for the three selected protocols is:

OHFW
X

= SFW
HANDSHUT +

Ndpkt
∑

i=1

(PDATAX)i

+(⌈Ndpkt · ε⌉ · (PDATAX + MSSX))

(3)

and

OHRT
X

= SRT
HANDSHUT + (⌊Ndpkt/y⌋) · Px

+(⌈Ndpkt · ε⌉ · (Px + LREP))
(4)

where, MSSX is calculated from (2) accordingly, and

ε =

{

0, if Ndpkt < 1
PER

PER, otherwise

TABLE II
PROTOCOLS PARAMETERS

Protocol (X ) x y LREP

TCP ACK 2 0

SCTP SACK 1.5 4

SAR HOLESTOFILL 2 8

PER is the packet error rate value on the link, and SAR stands

for Saratoga. Table II shows the parameters x, y and LREP to

be used in (3) and (4) according to the protocol X . Further, a

few points need to be highlighted concerning the models:

1) In (3) we use (PDATAX)i, this is because it may happen

that in the last data packet sent the payload size does

not add up to the MSS value.

2) For the three protocols an acknowledgment to the file

sender is sent every y-DATA packets. Since in TCP the

receiver acknowledges every second received packet we

exploit this in the RT model by having y = 2 and thus

Ndpkt/2. However, an SCTP receiver responds not only

with SACK packets for determining gaps but also with

SACK packets for updating the receiver buffer for at

least 1 SACK per transmitted packet, as in Section II-B,

and that is reflected by setting y = 1.5 in (4) for X as

SCTP. As for Saratoga, we consider a voluntary SNACK

is sent every two data packets and this is shown by

Ndpkt/y, where y = 2 for a fair comparison with the

other two protocols.

3) Models in (3) and (4) compute the absolute overhead.

Thus, in order to calculate the relative overhead from

(1) for a particular link direction (i.e. FW or RT), we

always refer to:

HFW
X

= HX(OHFW
X

, F ) (5)

and

HRT
X

= HX(OHRT
X

, F ) (6)

A. TCP Model

TCP connection initiation is not secure, thus headers are of

small sizes. Table III shows the TCP handshake and shutdown

headers sizes.

TABLE III
TCP PACKETS HEADERS SIZES

Packet header Size [Bytes]

HSYN, HSYN−ACK 40

HACK, HFIN, HDATATCP 32

From Table III and [1] we conclude that:

SFW
HANDSHUT = PSYN−ACK + PFIN + PACK,

and

SRT
HANDSHUT = PSYN + PFIN + 2 · PACK

To be accurate in evaluating our models, we take the

handshake and shutdown procedures into account. We also

split the load between the two links for enhanced analysis.

Thus, the relative TCP overhead HTCP estimation values

for both FW and RT are retrieved from (3) and (4), then

from (5) and (6), respectively by setting X to TCP. MSSTCP

is automatically calculated from (2). Finally, we consider

LREP = 0 because TCP uses simple ACKs and it performs

Head-of-line blocking; so if any segment is lost, TCP will

hold up delivery of consequent bytes, thus there is no gaps.

Nevertheless, the SACK option will be used once gaps or

correlated error losses exist.

B. SCTP Model

SCTP protocol avoids the security problem; SYN-attack,

observed in TCP, by adding a cookie mechanism to the

initial handshake before establishing an association. Also,

it prevents the half-closed state, as in TCP, when shutting

down an association. Table IV shows the SCTP handshake

and shutdown chunks headers sizes. It should be noted, that

SCTP defines a set of several other chunks that are beyond

purpose of this work.
The values in the first three rows of Table IV are variable

due the setup of the machines, such as number of IP addresses

used, etc..

As in TCP, SCTP [4] defines the chunks headers for

initiating and shutting-down an association as the following:

SFW
HANDSHUT = PINIT−ACK + PCOOK−ACK + PSHUT +

PSHUT−COMP,
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TABLE IV
SCTP CHUNKS HEADERS SIZES

Packet header Size [Bytes]

HINIT 60 + 12

HINIT−ACK 316 + 12

HCOOK−ECHO 264 + 12

HDATASCTP, HSACK 16 + 12

HSHUT 8 + 12

HCOOK−ACK, HSHUT−COMP, HSHUT−ACK 4 + 12

and

SRT
HANDSHUT = PINIT + PCOOK−ECHO + PSHUT−ACK

Not forgetting to mention that each SCTP packet header

Hx includes the Common header of 12 bytes, as explained in

Section II-B.

The same process, as in Section III-A, can be used for

computing the SCTP FW and RT channels absolute overhead

H values, and that is done by replacing X in (3) and (4) with

SCTP. Then, we refer to (5) and (6) to compute the relative

overhead HSCTP.

Finally, a LREP of 4 bytes only is considered because we

assume that for every missed data packet, the SACK will

report only one gap-start and one gap-end, each of 2 bytes,

as described in [4] and [7].

C. Saratoga Model

Saratoga differs from TCP and SCTP in the way of

transferring a file. Saratoga does not maintain a connection

or association with the other peer. Saratoga is built on UDP,

thus for every packet we have to add a UDP header size of

8 bytes. Table V shows the packets header sizes needed for a

file transfer using Saratoga.

TABLE V
SARATOGA PACKETS HEADER SIZES

Packet header Size [Bytes]

HBEACON 8

HREQUEST 9 + PATH
HMETADATA 21 + PATH
HDATASAR 16

HHOLESTOFILL 20

PATH is the file path on the server peer, here we consider it

0 bytes since, we assume that the server knows which file to

send for every request.

Although Saratoga has no connection handshake and shut-

down procedures, we use the same conventions as previously,

to avoid confusion and to split data transfer from other actions,

as well. Leading to:

SFW
HANDSHUT = PBEACON + PMETADATA,

and

SRT
HANDSHUT = PBEACON + PREQUEST

Following the methods as before, the estimation values for

absolute Saratoga overhead on both FW and RT links are

determined by setting X to SAR in (3) and (4), respectively.

Then, with (5) and (6), we can calculate the relative overhead

HSAR.

The LREP is considered only 8 bytes because the SNACK

in Saratoga uses 32 bits (4 bytes) descriptor to describe a hole-

begin and another 4 bytes for a hole-end description; bearing

in mind that within Saratoga a 32 bits descriptor allows us to

send files as big as 4 Gbytes.

IV. TESTBED

With the intention to study the overhead accumulated while

transferring a file between two entities. We built a small

testbed, as shown in Fig. 1, to do our experimental analysis.

Server

Client

Channel

Simulator

Fig. 1. Testbed used to transfer files

Between the client and the server we use a channel emulator

that can add a delay for each packet, we use a constant value

of 10 milliseconds (ms) as a round-trip time (RTT). Since TCP

performs poorly on longer delay links, we use short RTT to

keep focus on the overhead evolution for our study. In addition

to that this channel simulator can drop uncorrelated IP packets

randomly according to the PER given. If, for example, we set

the PER to 10−3 then, on average 1 out of (1/PER) 1000

packets will be randomly dropped. We ran simulations with

various PER values, ranging from 10−7 to 10−2.

The client and the server are running Linux as an operating

system, distribution of Opensuse 11.1 [8]. Capturing the pack-

ets for later analysis, at the server side, is done using Wireshark

[9], to check the server behavior. Files of different sizes have

been transfered, ranging from 10 Kbytes to 5 Mbytes.

The server and the client are running a TCP/SCTP server

and a TCP/SCTP client, respectively. The client requests the

file from the server which will respond by sending the required

object in terms of (TCP or SCTP)/IP packets. At this point in

time, we do not have a running Saratoga implementation for

performing experimental assessments for it.

For the TCP we use the Linux kernel 2.6.28 build-in

protocol stack with Cubic [11] congestion control algorithm.

Please, keep in mind that the behavior of the congestion

control mechanism is out of the scope of this work. On the

other hand, for SCTP we use the Linux Kernel SCTP (lksctp-

tools-1.0.10) [10] implementation.

V. RESULTS

To validate our models, we run some tests using our testbed

from Section IV. Each file, from the set of files we have at

our server, is transferred to the client upon a request after the

connection establishment, afterwards the connection is closed.

Here, we assume that the server knows which file to send upon

each request. Simultaneously, we are capturing all the packets

at the server side for the analysis afterwards. The captures are

split between server load and client load, respectively.
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Figures 2 and 3 show the comparison of the analytical model

from (5) and (6), for all protocols i.e. TCP, SCTP and Saratoga,

to real tests without and with link errors, respectively.

As it can be clearly seen in both Fig. 2(a) and 2(b), where no

link errors are placed on the link, the overhead decreases as the

file size increases. Also, the experimental tests results (shown

in discrete squares and circles) for both TCP and SCTP are

well fitting with the TCP (lined) and SCTP (dashed) analytical

models. In addition to that, SCTP shows higher overhead for

small sized files i.e. less than 1 Mbytes, than both TCP and

Saratoga model (dash-dot), this is due to the large SHANDSHUT

on FW channel. However, this behavior changes for medium

and large sized files, where it shows lower overhead than TCP

but still higher than Saratoga. On the other hand, in Fig. 2(b),

SCTP shows the highest overhead due to the additional SACKs

for receiver buffer size update. Finally, Saratoga shows the

lowest overhead values for all files sizes on both FW and RT
channels. Please, recall that for Saratoga we made y = 2 on the

RT link i.e. we send a SNACK every second packet in order

to make the results comparable to those of TCP and SCTP, as

explained in Section II-C.

Fig. 3, demonstrates the models approximation to the tests

results with PER of 10−2. Fig. 3(a) and 3(b) both show that

Saratoga exhibits the lowest overhead among all files tested,

while SCTP exhibits the same behavior as when errors do

not exist. What is interesting to focus on is the sharp edge in

Fig. 3(a), in simple words; on PER = 10−2 we have to drop

at least 1 packet from every 100. Having this in mind, this

edge happens at the file that needs a minimum of 100 packet

(i.e. file size ∼= 150 KBytes) to be transferred, and later the

overhead decreases as expected.

Fig. 3(a) shows that the overhead increases for a given PER

value. Complementary to this, Fig. 4(a) illustrates that for

different files sizes and a specific protocol the overhead does

not change until a certain PER value revealing the number of

packets to be transmitted. After that, the overhead increases

with the PER that is represented on the X-axis.

The results in Fig. 4(a) conform with the previous ones

in such a way that as the PER increases on the FW link,

the overhead of Saratoga keeps its lowest value among the

other protocols while SCTP is positioned as the second lowest

overhead value.

However, on the RT channel due to the receiver buffer

update SACKs, SCTP shows the highest overhead cost while

Saratoga keeps its lowest values. A look at Fig. 4(b), will

show that as a result of small reports, held by different

acknowledgments mechanisms, even with high PER values

overhead keeps almost a constant value.

VI. CONCLUSION

In this paper we present analytical model for three protocols

(TCP, SCTP and Saratoga) to estimate the overhead due to

headers, control information and retransmissions produced

while transferring a file from a server to a client taking the

handshake and the shutdown procedures into account for more

precise results. We show that the analytical model derived can

reliably predict the experimental results.

Into the bargain, we can say that the intention behind

Saratoga design was to focus on high link utilization while

neglecting the congestion and flow control mechanisms, since

it is believed that these two algorithms limit the throughput

of an application as observed within the other protocols.

However, Saratoga achieved its goal and as a plus it kept the

lowest overhead among the three protocols for all files sizes.

On the other hand, TCP and SCTP showed fine results in

terms of overhead although they implement the above control

mechanisms that bound their good-put. From this perspective,

we showed that a protocol like Saratoga is able to guarantee

reduced overhead and improved throughput compared to other

file transfer protocols like SCTP and TCP. But, this is achieved

at the price of removing congestion and flow control that could

be worthy and less tedious for small files transfer.
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Fig. 2. Testbed results vs. Analytical model approximation with No Errors
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Fig. 3. Testbed results vs. Analytical model approximation with PER of 10−2
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