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Abstract:

A threedimensional numerical model (MESOSCOP) is formulated for the simulation of mesoscale (and
microscale) atmospheric processes. Presently, three versions are used to study clouds and
precipitation processes above flat terrain, airflow over mountains and turbulent boundary layers. The model’s
equations describe non-hydrostatic flows for an incompressible or a compressible fluid. Entropy is used as
prognostic variable for a general thermodynamic treatment of dry and moist air. Turbulent fluxes are
parametrized by closures of first or second order. The cloud microphysics section takes into account five
classes of liquid and ice phase constituents. Various numerical and technical features aliow to operate with
large numbers of grid cells and also permit versatile combinations of boundary conditions.

Five validation examples demonstrate the scope of the model: a rising thermal, gravity waves over mountains,
retardation of an idealized coid front at 4 mountain ridge, convective boundary layer and precipitating
cumulus convection. The model is quantitatively validated by comparisons to reference solutions, which are
exact or numerical or stem from dimensional analysis. Furthermore, recalculations are presented for a
laboratory experiment and for an stmospheric case in which detailed cioud physical field observations are
available. .

Zusammenfassang: Ein Mesoskalen-Modell zur Berechnung von Tusbulenz, Wolken und GebirgsGberstromung:
Formulierung und Beispicle zur Modelliberprifung

Ein dreidimensionales numerisches Modell {MESQSCOP) wird beschricben, mit dem mesoskalige (und mikro-
skalige) atmosphirische Prozesse simuliert werden konnen. Es existiert gegenwiirtig in drei Versionen und er-
laubt, Wolken und Niederschlagsbildung iiber ebenem Gelinde, Gebirgsiberstzdmungen und turbulente Grenz-
schichten zu untersuchen. Die Modellgieichungen beschreiben nicht-hydrostatische Strémungen mit wahl-
weijse inkompressiblem oder kompressiblem Fluid. Entropie wird als prognostische Variable zur einheitlichen
Behandlung der Thermodynamik in trockener und feuchter Luft benutzt, Fiir die Parametrisierung turbulen-
ter Flisse stehen SchlieBungsansitze erster oder zweiter Ordnung bereit. Das Wolken-Mikrophysikmodell
enthilt Ansitze fir finf Klassen flissiger oder eisfSrmiger Bestandteile. Numerische und programmtechnische
Komponenten ermdglichen grofle Gitterpunktzahlen und vielseitige Kombinationen von Randbedingungen.
Die Anwendungsbreite des Modells wird anhand von fiinf’ Beispielen demonstriert: aufsteigende Warmluft-
blase, Schwerewellen #iber einem Berg, Verzdgerung einer idealisierten Kaltfront an einem Berg, konvek tive
Grenzschicht und Comulus-Konvektion mit Niederschlagsbildung. Das Modell wird quantitativ Gberpriift
durch Vergleiche mit dimensionanalytischen, exakten und numerischen Referenzldsungen. Weiterhin werden
Nachrechnungen eines Laborexperiments und eines atmosphiarischen Falles vorgestellt, fir den detaillierte
Beobachtungsdaten zur Wolkenphysik vorliegen.
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Résumé: Un modéle i mésoéchelle pour Iz simulation de la turbulence, des nuages et de I'écoulement en
montagne: formulation et exemples de validation

On formule un modéle numérique (MESOSCOP) & trois dimensions pour la simulation de processus
atmosphériques de mésoéchelle (et de microéchelle). Trois versions sont actuellement utilisées pour étudier
les nuages et les précipitations en terrain plat, Pécoulement de I'air au-dessus de montagnes et les couches
limites turbulentes. Les équations du modéle s'appliquent & des écoulements non hydrostatiques d'un fluide
compressible ou incompressible. Afin de traiter de maniére générale lair sec et I'air humide, on utilise
I'entropie comme variable pronostique. Les flux turbulents sont paramétrisés par fermetures de premier et
second ordre. La microphysique des nuages prend en compte cinq clasges de constituants en phase liquide
ou sous forme de glace. Divers artifices nurnériques et techniques permettent de travailler avec un grand
nombre de cellules de grille ainsi que I'usage de divers types de conditions aux limites.

Cing exemples de validation fllngtrent les objectifs du modéle: une thermique ascendante, des ondes de
gravité au-dessus de montagnes, le ralentissement par une montagne d’un front froid idéalisé, une couche
limite convective et la convection de cumulus précipitants, Le modéle est validé quantitativement par com-
paraison avec des solutions de référence exactes ou numeériques ou résultant d’analyse dimensionnelle. De
plus, on présente des calculs complémentaires relatifs 2 une expérience en laboratoire et & un cas atmosphéri-
que pour lequel des observations détaillées de 1a physique des nuages sont disponibles.

1 Introduction

On the mesoscale the atmosphere exhibits a variety of interesting flow phenomena. In defining
this intermediate range in length scales between the macroscale of cyclones and microscale of pure
turbulence we follow the approach by ATKINSON (1981, 1984): typical frequencies of mesoscale pro-
cesses are larger than the Brunt-Viisila frequency N of free vertical oscillations in the stratified atmos-
phere and smaller than the inertial frequency due to the earth’s rotation f; the corresponding length
scales depend upon the flow velocity and typically range from 1 to 100 kilometres. Examples of interest-
ing phenomena are, e.g. severe local storms, thermals in boundary layers, mountain and lee waves, and
the orographic modification of fronts. This short list illustrates the wide band of scales which interact
within the mesoscale.

As described by PIELKE (1984) numerical models have proven to be powerful tools for enlarging the
basic knowledge of the dominant mesoscale processes and for applied studies. Any model is based on a
set of approximations, which stem from choices in at least four categories: the set of equations, the
prescription of boundary conditions, the kind of parametrizations and the numerical schemes. At
mesoscales typical simplifications of the equations concern the treatment of vertical accelerations
(hydrostatic or non-hydrostatic) and the continuity equation (non-divergent: div v =0; anelastic:
div pv=0; full continuity). Within the equations of motion, density can be treated variable every-
where or only in the buoyancy term (Boussinesq approximation). Such approximations simplify the
construction of the respective model and may improve the numerical efficiency considerably.

To characterize the state of the art we list some examples for three-dimensional mesoscale models:
MAHRER and PIELKE (1977) and NICKERSON et al. (1986) use the hydrostatic and non-divergent
approximations. The former model is applied inter aliz to the simulation of mountain-valley winds and
airflow over mountains, while the latter contains a microphysical parametrization for clouds and rain
and has been applied to flows over the Vosges and Black forest mountains. CLARK (1977 [dry version],
1979 [with cloud physical parametrizations]) and GROSS (1985; program FITNAH) published anelastic
models. The first one is applied, for instance, to airflows over mountains and to cumulus clouds, the
other to circulations in valleys and the propagation of isclated sand dunes. TRIPOLI and COTTON (1982)
provide an example for a full continuity model; it uses time step splitting to avoid noise amplification
by sound waves and incorporates detailed microphysical parametrizations.
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Moreover, several alternatives exist for the proper selection of the thermodynamic variable and the
related prognostic equation. For simulating dry air, potential temperature is the common choice because
it remains constant for adiabatic and reversible processes. For moist and cloudy air several generalized
potential temperature concepts have been proposed (e.g. ice-liquid water potential temperature by
TRIPOLI and COTTON, 1981). One advantage of such conservative variables is that they are smoothly
varying variables along streamlines even if clouds are forming and thus less susceptible to numerical
approximation errors. These temperature proposals are approXimations to a general entropy-temperature;
hence the entropy balance equation offers the most general concept (HAUF and HOLLER, 1987).

Returning to the atmospheric mesoscale as a whole, we see from the studies by OGURA and PHILIPPS
(1962) and WIPPERMANN (1981) that the mentioned approximations are not valid for the entire range
of length scales and for all processes of interest. The efficiency gained by the use of approximations
may be overcompensated by the limitations of the model’s accuracy. Moreover, the validity of the
approximations used is often difficult to examine, if non-linear interactions between scales dominate.

It seems, therefore, preferable to have a model, which provides the possibility to select from several
approximative levels. This opens the field to study flow/scale interactions and to check in concrete
situations the validity of approximations, which normally are based on scale analysis arguments.

The modelling effort reported here was started with the aim to build a rather general mesoscale model,
which allows to invoke more stringent approximations. The resultant code, termed MESOSCOP (acronym
for mesoscale flow and cloud model Oberpfaffenhofen), can deal with non-hydrostatic, anelastic as well
as with fully compressible flows, with variable or Boussinesq approximated density. The prognostic
equations are formulated in budget form and entropy is used as thermodynamic variable. A terrain
following coordinate transformation accounts for an irregular lower boundary in applications with
orography. Parametrizations for liquid and ice phase processes and a first or second order model re-
present cloud physics and turbulence, respectively. The numerical algorithm uses centred differences
and a combination of the Adams-Bashforth and the Smolarkiewicz integration schemes. All these model
design and technical aspects are described in Section 2. .

Section 3 is devoted to model validation. Furthermore, it demonstrates the feasibility of a mesoscale
model with a wide range of application. This is achieved by simulating in sequence flows for which
either non-linear analytical solutions are known, or which were measured in the laboratory or which
were observed in detai] in a field experiment. This climax seems a necessary step during the development
of a complex mesoscale model (see PIELKE, 1984, p. 421), yet we are not aware that a simiar study has
been published for any of the three-dimensional models mentioned. The range of flows, which can be
studied by applying MESOSCOP, is demonstrated by the fact that the validation examples comprise
microscale fiows (self similarity of a rising thermal, Jarge eddy simulation of a turbulent laboratory flow),
a non-hydrostatic mesoscale flow (development of a precipitating cumulus) and hydrostatic mesoscale
flows (mountain waves and propagation of an idealized cold front).

2 Formulation of the Numerical Mode!

* Presently, three versions of MESOSCOP exist, as the development from a general concept was
started simultaneously for three mesoscale processes. Version A in Cartesian coordinates and with cloud
microphysical parametrizations treats convective clouds, version B in terrain following coordinates deals
with airflow over complex terrain and version C in Cartesian coordinates and with advanced turbulence
parametrizations is tailored for turbulent boundary layer studies. Common to all versions are the basic
model equations, the spatial and time discretizations, an elliptic equation for pressure, specification of
boundary conditions, the data flow structure and a modular programming concept. All these aspects
constitute the subject of this section. However, the coordinate transformation, the parametrization of
turbulence and the cloud microphysics model are described only briefly; they are documented elsewhere.



2.1  Basic Model Equations

MESOSCOP is based on the conservation laws for density p, velocity v or volume specific
momentum pif‘, and several mass specific scalars ¥y, k= 1, ..., K. The number K and the meaning of
the scalars depend on the specific applications. The conservation laws are expressed by budget equations
(see Appendix A for a complete list of symbols):

g‘g +div{pV) =0, | (1)
ﬂ;%" fdiv(ﬁ_\-")+zﬁx(Pﬂ+div(F)=_gr-5d(p)_P.g.! (2)
Beraveigrav@sas k=LK )

Equation (1) is the continuity equation for variable density. Equation (2) describes the nonhydrostatic
momentum balance and includes Coriolis forces due to earth’s rotation &, friction by diffusive momen-
tum fluxes F, pressure p, and gravity 2- Equation (3) expresses the budget of a scalar . with non-
advective fluxes -fk, and mass specific sources qx. _

The present ‘conservative’ form of the budget is chosen, because it aids in ensuring that sums of local
contributions to time derivatives from all discrete grid volumes are equivalent to integrals for the budgets
in the original continuum formulation so that integral conservation of mass, momentum and volume
specific concentrations pyy is guaranteed at least up to errors induced by approximations of time
derivatives (CLARK, 1977) regardless of how accurate the local approximations are. Moreover, the sum
of the budget equations for mass specific concentrations of air components is equivalent to Equation (1)
under the constraint that the summed fluxes and sources vanish.

In order to reduce numerical approximation errors and to provide a reference state for linearizations, the
pressure gradient and buoyancy terms of the momentum equation deal with deviations p’, o' from =
hy drostatic reference state '

gad[p(2)]=-P@%E;  p=p-P@; P =p-P(2) _ @)
Further, it is convenient (e.g. because of simplified boundary conditions) to include a synoptic part
pg of the pressure p as a function of a prescribed geostrophic momentum (pV)g within the Coriolis
accelerations of Equation (2),

23 (pg) =~ 2 B (o0 | ©)

To complete the system, equations of state

p=p@¥y),  T=T( ¥ ' ©)

have to be provided. Absolute temperature T is only necessary in the parametrizations for fluxes and
sources, e.g. for cloud microphysics. (In the applications considered so far, the influence of geostrophic
variations of pressure is neglected with respect to the equations of state, partly because its effect is small
on mesoscales, partly for technical reasons.)

For most applications a linearized equation of state
a ap

: K
P=5+Ap(P"§)+kZ=lAk(‘Pk ‘.\Dk), Ap'"'_p’ Ak=a‘a;, | (N
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is used; the coefficients A, Ay are computed from the hydrostatic reference state, p, Ek, p=p(p, Ek).
A is the inverse of the squared velocity of sound and vanishes for incompressible fluids. Details for
cloudy air are specified in Section 2.2.

Equations (1) to (3) are formally defined for laminar flows but can be applied to turbulent flows as well
where p, p¥, and ¥, denote suitable (ensemble or volume averaged) mean values. Only the meaning of
the fluxes has to be extended to include turbulent contributions (p¥) v and (p¥) ¥y, where the primes
refer to local deviations from the respective mean values. We distinguish between turbulent (in special
cases purely diffusive) and precipitational (gravitational) parts of fluxes, i.e.

F=F'+FP, [, =Ft+fP | (8
In the applications, the second part is neglected except for precipitating clouds as explained in Section
2.7. Turbulent fluxes are computed as described in Section 2.6.
Although the method allows for variable density, the Boussinesq approximation is used for cases where
we compare our computational results with corresponding theories or where density fluctuations are

very small as in simulations of water flows. In this approximation, p equals 5(z) everywhere except in
the buoyancy term. As a consequence the anelastic approximation div (p¥) = 0 is invoked (as 35/3t = 0).

2.2 Thermodynamics of Cloudy Air

For cloudy air, thermodynarmics are expressed in terms of entropy s, and mass specific con-
centrations mi,i= 1, 2, 3, for vapour, liquid and ice water, respectively. These variables are associated
with prognostic fields ¥, =s, Y3 =m® and with concentrations of cloud particles as described in Section
2.7. In the absence of further air components, the concentration of dry airism® =1 -m' -m? -m?,
so that no separate budget equation is necessary for m®. The precise definitions of sources and fluxes in
the budget equations (Equation 3) for entropy and water phase concentrations are given in DeGROOT
and MAZUR (1969, pp. 17 and 28).

The equations of state for cloudy air read:

P R Re =Ro m® +R, m', O
3 i .

s=Z s;m’, si=c;,1n%-Ri1n%; +s3 pi=mip:l—m, i=0,1,2,3, (10)
i=0

where R; (R; =R, =0), c{,, 57, psand T, denote gas constants, constant spegific heats and entropy
reference values for the concentrations i, as well as reference values for pressure and temperature,
respectively. The reference values of entropy are given in HAUF and WEIDNER (1986).

Equation {10) can be inverted to evaluate the temperature:

1 P’ !
T=T,exp [; (s-s"+Ro m°® lnp— +R; m! ]np—)] s
*

P«
3 - = 3 -
cp=Zm‘c;, . s'=Zm’sf‘. {11)
i=o0 i=o :
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The derivatives required for a linearized equation of state (Equation 7) can Ee given explicitly:

o _pp ~Rm) Bp__»
op CpP ’ s cp’

ap (51 — 8o RD _Rl) ap (Si_SQ RD )
——=p|—— =), =2t joaa 12
am P cp Rm om’ P Cp Rm ' ( )

Entropy in contrast to enthalpy orinternal energy has the advantage that the entropy source vanishes for
reversible processes. Thus, the coupling between the equation for entropy and all other equations is
looser than it would be for other thermodynamical variables. This decoupling is important with respect
to pressure in the numerical integration scheme since pressure is to be treated implicitly. Moreover, since
the sources are rather small even with irreversible processes, entropy is a smooth function along stream-
lines. Entropy is an extensive quantity and hence ps satisfies a budget equation. In contrast, absolute
temperature T and potential temperature #, e g. defined for dry air by

p ~Ro/cp :

=T -y . (13)
p* .

are intensive quantities so that pT or p@ generally do not satisfy a budget equation. However, potential

temperature is conserved for reversible processes in a perfect gas (with cIJ = const). Therefore, we use

potential temperature as an alternative to entropy for dry air under such assumptions. In thJs case
8p/dp is glven by Equation (12) and dp/08 =—p/a.

2.3 Discretization and Pressure Equation

For numerical integration, we use a finite difference method. The computational domain is
discretized by a staggered grid. Al scalars are defined at cell centres while vector components are located
in the middle of the corresponding interfaces between grid cells (see Figure 1). For time, we distinguish
discrete time levels t" with the time step At =1t"* ! — " being constant for at least a few integration
steps. As subsequently explained, a semi-implicit time integration scheme is used, which casts Equations
(1) to (5) into

n+l __.n
g rawir =, (14
(p¥)" "1 = (pV)"~ At grad (4p), ' (15)
(P i)™ 1= (o)™ — At [div (p¥ ¥y) + div Fi )" + At p gy, : (16)
z T 2, "]T
: ‘ ® Figure 1

: 4 Typical cross-section through

@ = const. \\ I domain. Left: physical space
N with orography; right: trans-

formed computational space

" consisting of unit cubes.
(ALY X =t _?
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with the abbreviations

(p¥) "= (pV)* = At [, b® +v, B"~ +gRd ()" + (0" - B E), _ %)
pT=p(p VR, Ap=(p)T1 ()", _ : (18)
b =div(pvV) + 2 8 x [pV — (p¥)g ] + div(F) . (19

and the density specification

PPt = " ~ for Boussinesq calculation, (20)
p~+AjAp otherwise. .

Initislly and after changes of At, one Euler step is applied (7o = 1, v; = 0); otherwise the Adams-Bash-
forth scheme is used (yp = 1.5, 7, =—0.5).

All advection terms are treated explicitly because we assume that the resultant time step constraint has
to be satisfied anyway to achieve sufficient accuracy. For the advection of scalars we choose the second-
order upwind scheme by SMOLARKIEWICZ (1984) because it guarantees that positive scalars stay
positive at the expense of only smatl numerical diffusion errors. Otherwise, spatial differentials are
approximated by second-order accurate central differences in a form which conserves kinetic energy
both for constant and variable density (SCHUMANN, 1984). The Adams-Bashforth scheme is preferred
to the leapfrog scheme, because it does not exhibit spurious oscillations in time and it is second order
accurate with respect to diffusion. Its instability (amplification factor of order 1 + O (At*)) for inviscid
fiows is so weak that it does not form a restriction in practice. The combination of the Smolarkiewicz-
scheme for scalars, in which advective fluxes are based on the momentum fluxes for time t*, with the
integration scheme for momentum makes it necessary to evaluate the density ™ from the most recent
scalar fields, see Equation (18). The source term q, in Equation (16) is treated explicitly in most situa-
tions; only fast processes like cloud condensation or dissipation of turbulent kinetic energy need im-
plicit treatment in order to avoid time step restrictions. The time integration algorithm and the explicit
or implicit treatment of source terms are given in Appendix B.

The integration scheme is approximately of second order accuracy. It is numerically stable if

.f[a 2 aA?
At(mm[ﬁf"ﬁ’zlcu] : @
where A, U, N, and Ky denote the typical grid spacing, the maximum advection velocity, the Brunt-
Vaisili frequency and the maximum relevant diffusivity.
The implicit approximation to mass continuity, ptessure and density (Equations 14, 15, 18) filters fast
propagating sound waves and hence avoids more stringent constraints on the time step (HARLOW and
AMSDEN, 1971). However, it requires the implicit determination of pressure, so that the momentum
resulting from Equation (15) satisfies Equation (14). Substitution of Equations (15) and (20) into
Equation (14) yields an elliptic equation of Helmholtz type for the pressure increment
div B34 (Ap) ~ =% 8p = 2 v (9 + =5 (57 =57 @)
ae At A
which reduces to a Poisson equation for incompressible flow (A, = 3p/3p = 0). Additionally, the last
term vanishes in the Boussinesq variant (see Appendix B).
In Cartesian grids with constant horizontaj grid spacings and Ap = A;(z) this equation is solved directly
via eigenfunction decomposition and fast Fourier transforms in the horizontal directions together with
Gaussian elimination in the vertical direction (WILHELMSON and ERICKSEN, 1977). Vectorized
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algarithms have been developed which allow the application of fast Fourier transforms not only for
periodic but also for all other boundary conditions (SCHUMANN and SWEET, 1987). For cases with

" variable coefficients (due to variable A, or to variable grid spacings in the horizontal directions or to
terrain following coordinates, see below) the direct methods are used to solve the elliptic equation by a
block iteration (SCHUMANN and VOLKERT, 1984).

2.4 Boundary Conditions

A common problem to limited area modelling lies in the adequate specification of boundary
conditions. Subsequently, we explain the treatment of boundary conditions at the six surfaces of the
computaticnal domain. MESOSCOP provides a set of boundary types from which to choose at each
surface.

PERI  periodic (not implemented for bottom and top boundary).

CLOS prescribed inflow with prescribed diffusive fluxes; this simulates a closed wall, if both inflow
and fluxes vanish.

FLUX prescribed inflow with computed diffusive fluxes; fluxes are taken from the gradients at the
boundary.

OUTF free outflow with zero gradients; the normal derivative of all prognostic variables is prescribed.
At the top boundary a BKD condition (see below) is used for the pressure.

RADI radiating; the normal derivative of the normal velocity vanishes. All other prognostic fields
satisfy a radiation condition of Sommerfeld-type (not implemented for bottom and top bound-
ary). : :

These types determine the mathematical boundary conditions for all variables as exemplified in Table 1

for the western side of the domain.

Table 1 Relation between non-periodic boundary types and mathematical boundary
conditions for various classes of variables. Boundary types are explained in the text.
The boundary condition algorithms are exemplified for the western boundary with F(1},
F{(2) as boundary value and adjacent interior value, respectively:

DIR —~ Dirichlet [F(1) = - s-F(2) + (1 + s} - BV, s: stagger switch, 5 = 1 if variable
is staggered relative to boundary, s = 0 otherwise; BV: specified boundary
value];

NEU -~ Neumann [F(1) = F(2)} - BV/Ax; BV: specified boundary value; ax:
mesh size at boundary];

NERA — Neumann radiating [F(1)=F(1)-(1-C)+F(2): C; C=-TU ax/at if

0 < C; C=0 otherwise; Ui'normal velocity at boundary; Ax: mesh size at
boundary; At: time step; F(1): boundary value, predicted as in the interior
but with vanishing normal gradients];

e — boundary value unchanged from specification within routines for interior

domain.

var, class\ phys. boundary type CLOS FLUX OUTF RADI
normal velocity component " DIR DIR v--- e
tangential velocity components NEU DIR NEU NERA
normal comp. of normal flux ---- ---- NEU NEU
normal comp. of other fluxes DIR - - ----
density, velocity deformation NEU NEU NEU NEU
other scalars NEU DIR NEU NERA
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The boundary conditions for pressure are kinematically related to those for the independent fields.
Types CLOS and FLUX require prescription of the normal velocity, e.g. pu = BV at the western surface
(BV: boundary value). This boundary condition is implemented at plane surfaces by setting pu™= BV
after the explicit part of the integration step, see Equation (17). As a consequence, pu™* ! = BV results
from Equation (15) in conjunction with a homogeneous Neumann boundary condition for pressure
{0 (Ap)/dx = 0; the curved lower boundary in terrain following coordinates requires special treatment,
see below). For types OUTF and RADI at lateral boundaries, we set d(pu")/ax =0 and obtain

3 (pu™ *1)/ax = 0 from Equation (15), if 3 (Ap)/9x* = 0. Therefore, the pressure equation degenerates
to a two-dimensional problem at such open surfaces. If open surfaces intersect, corresponding one-
dimensional problems have to be solved at the corner lines. The solution of these lower dimensional
equations yields Dirichlet-type boundary values for the respective interior. For type PERI, periodic
boundary conditions are to be applied for the pressure as for all other fields. If Neumann or periodic
boundary conditions apply for the pressure at all surfaces, and if the flow is incompressible (A, = 0)
the Poisson equation becomes singular. In such cases we require that the horizontal mean of p’ vanishes
at the top of the computational domain.

- The staggered grid has to be defined consistent with the boundary conditions. The grid is defined such
that boundaries coincide with grid cell interfaces for boundary types CLOS and FLUX, because this
makes prescription of normal velocities unique. For types OUTF and RADI lateral boundaries are
defined at prid cell centres because only then standard (non-staggered) Dirichlet boundary conditions
result for the pressure in the interior. At the top of the model, celi mterfaces make up the boundary,
as this has been found necessary in terrain fol]owmg coordinates.

~ The specification of OUTF at the top boundary implies special treatment for the boundary values of
pressure (following BOUGEAULT, 1983; KLEMP and DURRAN, 1983). Essential for this “BKD condition’

is the proportionality in Fourier space (symbolized by ~) between pressure and the vertica] momentum

component

o (pw) if N>0,ki>0
P 'k' (23)

0 otherwise
where |kj and N denote the effective wave number and the Brunt-Viisila frequency. The eigenfunctions
of the discrete Fourier transformation are chosen to be consistent with the specified lateral boundary
conditions. Equation (23) is implemented implicitly as proposed by Bougeault [(pw)™ *! is used rather
than {pw)~]. It shouid be noted that the BKD condition is strictly valid only for hydrostatic, non-
rotating (no Coriolis forces) systems.

2.5  Terrain Foliowing Coordinate Transformation

There are several ways of representing the irregular lower boundary in meteorological models
(see PIELKE, 1984, chapter 6.2, for a review). In version B of MESOSCOP we follow CLARK (1977)
and use the terrain following coordinate .

z-2z5(x,y)

—_—— 24
z“l - zs(x! Y) ( )
to resolve the flow domain between the height z,(x, y) of the irregular, but steadily variying terrain and

the height z, of the model top. Additionally, transformations £(x), x{y) and n(¢) allow for variable
resolation. These transformations are defined in the discrete system by input tables such that the grid

o(x,y,2)=z,
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spacing in the transformed coordinates equals unity (see Figure 1). Within the transformed coordinates
we apply CLARK’s semi-Cartesian approach, i.e. formulate the basic equations for all scalars and for the
Cartesian momentum components with derivatives computed from the transformed coordinates. This
has the advantage that no additional accelerations arise from changes in the direction of unit vectors.
The velocity components normal to coordinate surfaces {u', u?, u®) are related to the Cartesian com-
ponents (u; =u, uy =v, u3 =w) by metric coefficients GY,

s . OX;

u'=Gly; with GU= r (25)
Xy

where X; = ¢ xm, x;=(x,y,2),i=1, 2, 3, and summation is implied for repeated indices. The coeffi-

cients GY are non-zero only for ij=(11, 22, 31, 32, 33). The Jacobian V of the transformation, and the
general definitions of the divergence operator and of the Cartesian gradient operator components

v=[Gll .GZZ _033]-1’

oa'y da’y 3y
—_—t
) ox o

R IVGH Y avGAay |aVGE Yy avGRy |aVGE
Vg“‘d("")=( TR : ax'er aqw] an'p)

are used to obtain the terrain following version of the basic model equations. Here y stands for 1,

¥ or ¥y In contrast to GROSS (1985), but similar to CLARK (1977), both operators contain only pure
differential quotients rather than products of metric terms and differential quotients. As a consequence,
conservation of mass and momentum is guaranteed not only for small, but also for arbitrary mesh sizes
within the discrete model equations.

The present approach is limited to mountains with slopes of less than about 45° (steeper orography
needs more general grid transformations), but a dimensional separation for the metric coefficients, i.e.
GY(x, y, z) = Lii(z) - H(x, y), drastically reduces the storage requirements. Details including the discrete
representation of Jacobian and metric coefficients are described in SCHUMANN and VOLKERT (1984).
The lower boundary condition at 5 = 0 implies a*> = 0 for types CLOS and FLUX. For the pressure an
inhomogeneous Neumana condition results from the upward component of Equation (15), asa® isa
linear combination of the pu; and none of the pu;”can be specified in such a way as to make the pressure
boundary condition homogeneous. The elliptic pressure equation (Equation 22) in terrain following

" coordinates yields a 25-point operator with variable coefficients. It is solved iteratively by inverting the
pressure equation for constant (mean) surface height for the respective residuum (SCHUMANN and
VOLKERT, 1984). Both these equations resemble each other more closely if they are formulated in terms
of V Ap instead of Ap, with a faster convergence as consequence. With regards to the evaluation of

div (p¥ ¥ ) by the Smolarkiewicz-scheme, it is essential for the sake of accuracy to use oV when apply-
ing curvilinear coordinates (and also Cartesian grids with variable density) to advect ¥, rather than using
Vv to advect p¥y..

V div(p¥y) = with al=pVGiy, i=1,2,3, (26)

2.6 Parametrization of Turbulence

The choice of how to parametrize turbulent fluxes depends on the relative importance of
such fluxes in comparison to other transports. For example, one-dimensional models of boundary layers
are usually more sensitive to such parametrizations than models in which three-dimensional vertical
motions are represented explicitly. For many applications, simple first-order gradient models are
sufficient, in particular, if the simulation resolves the large eddies directly so that only subgrid-scale
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turbulence is to be parametrized. If, however, turbulence is strongly influenced by directional forces

like buoyancy and if grid scales are not small in comparison to the turbulent mixing length, then more
advanced models which close on the basis of second or third order moment equations may be necessary
(MELLOR and YAMADA, 1982). '

MESOSCOP is designed to incorporate various turbulence parametrizations. At present, versions A and B
contain first-order parametrizations (LILLY, 1962),

Fl=—p Ky +#¥)D with D=gm@d(¥)+{grad(¥)]*

- KM - . .

== (5 + ) w0 - @
where D, Ky, », gy and Pry stand for the deformation tensor, the turbulent mixing coeffient, the mole-

cular viscosity, and the molecular diffusivity and turbulent Prandtl number of scalar Y, respectively.
Turbulent mixing is only invoked, where the local Richardson number Ri indjcates instability:

0 : if Ri>1
= ' 28
Ku [13\/(1)’;2)(1—111') i Ri<l h=min(c Al (28)
. _
Ay 2 grad
Ri=-221 (29)

p D?/2

Here c, is a constant (¢, = 0.2 is 2 common value), A denotes the effective grid scale and 7 stands for a
prescribed mixing length. A detailed description of the first order turbulence formulation is given in
VOLKERT and SCHUMANN (1986). _
MESOSCOP version C applies a second order model (version M2 of FINGER and SCHMIDT, 1986) in
which the turbulent kinetic energy E is determined from a transport equation and fluxes are composed
of the isotropic contribution from E and anisotropic parts from algebraically approximated second order
. closure equations. The mixing length [ is determined to be the minimum of Blackadar’s mixing length
scale and a scale accounting for the limitation of upward motion in stratified turbulence. If in this model
E is computed such that production and dissipation of kinetic energy are in local equlibrium, then the
model reduces to a first-order mode] with anisotropic diffusion coefficients.

2.7 Representation of Cloud Microphysics

MESOQOSCOP version A contains parametrizations of cloud formation and precipitation for deep
convection jn which not only liquid but also ice pracesses are treated. Since it is important to resolve the
three-dimensional dynamics of large convective clouds, we have to select a microphysical model which is
simple enough to make such three-dimensional simulations economically feasiblé. Therefore, instead of
particle spectra only a few categories of water particles, where the spectral distribution is expressed
solely as-a function of the mass content, are considered. At present we use five particle categories: cloud
water and cloud ice (frozen cloud droplets, vapour grown plates and slightly rimed plates) moving with
the velocity of the air, rainwater and graupel (or hail) representing liquid and solid phase precipitating
particles, and snowflakes as a further precipitating category, because snow processes are important for
formation of hail embryos. The cloud water and ice is assumed to have a log-normal spectrum. The pre-
cipitating particles are assumed to be Marshall-Palmer distributed and fall with their mass weighted
terminal velocity V™™ thus contributing to diffusive fluxes fJ.
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B Table 2 List of scalar prognostic model variables yy

for cloudy air

k code entity

1 entropy

2 v water vaponr

3 C cloud droplets

4 R raindrops

5 1 ice crystals

6 G graupel, spherical hail
7 5 snowflakes

Tabie 2 lists the different independent variables used to represent clouds; m! = , denotes the vapour
concentration, m? = {4 + 4 represents liquid water and m? =g + g + ¥4 ice water components.

The precipitation fluxes are given by
2 =(s2 —s)) FF +T8) + (o3 —s: ) @+ EE+TD) + (51 —50) . TE
' k=2

.
2 =pyy [v:f"“ - Z ¥ v;e"{[,h 2,..,7 with "™ =0 for j=2,3,5. (30)
: ey :
This incorporates the constraint that the sum over all precipitational fluxes of air components vanishes.
Conversion processes are represented in the model by proper parametrizations for the sources qy. The
present model describes the processes indicated in Figure 2. For example, seven individual processes

" contribute to qs for cloud water. Condensation of cloud droplets is treated implicitly to achieve water
saturation adjustment (see Appendix B). All other microphysical processes are calculated explicitly using

qﬂR QR
GRAUPEL [ ——
r HAIL
T 50!
SC -+
q::: qns ch:__._i.____ e ac oR
AcC i’ ' ": Tonr. {Taec e
. -
SNOW ‘IW cLouD '_‘-u
— - 1¢E
qlCE
i e | m
;'—,,_ 1 Y e q
BRI T SR et . ® Figure2
i it ) Schematic diagram of the different kinds of
H L A ' . . . -
WATER j covo | 95 [ ram particles, condensation and sublimation pro-
Al . -
ol VvAPOR | walER | ] WATER cesses (dashed), other microphysical processes
e, I : q and the precipitation fallout p. Upper index
- group: kinds of particles involved, abbreviation
D codes as in Table 2. Lower index: microphysical
HEL process, where AUT: autoconversion; ACC:
7 7 y 7 7 7 accretion; RIM: riming; FRE: freezing; CN:
Anecmrmu////// PRECIPITATION contact nucleation; MEL: melting.
L L YA eyd -
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parametrizations of the transformation rates. The evaporation of rain, sublimation of graupel and snow,
freezing of cloud droplets and rain, accretion processes for graupel and snow, aggregation of snow and
melting of ice particles are described by rate equations simnilar to those of LIN et al. (1983) or WISNER
et al. (1972). The depositional growth rate of ice crystals is computed from the values of KOENIG (1971).
The autoconversion and accretion processes of droplets, the riming rate of ice crystals and the subsequent
growth of these crystals into graupel are treated following HOLLER (1986), which also contains a detailed
description of all microphysical processes.

28  Some Key Technical Features

Once the model equations have been chosen and the numerical algorithm is designed, there is
still a considerable amount of work in mapping these ideas onto a computer system. Here, we want to
briefly summarize some key technical features.

Segmentation of data in vertical x/z-slabs is systematically used to allow for data transfer on disks if the
central memory of the computer cannot contain all three-dimensional fields at the same time. This
enables us to deal with grids of up to 64> cells on computers with approximately 10° words of central
memory {(e.g. CRAY-1/8). A ‘back slide’ structure within the algorithm for the direction normal to the
data slabs minimizes the number of time consuming input/output operations (details in VOLKERT and
SCHUMANN, 1985). The decision, whether to use external storage or not is made automatically at the
expense of an additional program level for data management above the level of formula evaluation. A
combination of synchronous and asynchronous input/output software ensures that the time for transfers
is less than the time for calculations. The code is highly vectorized for CRAY compilers. Software tools
are used to maintain the program.

3 Validation Examples

In this section we present five validation examples for the three versions of MESOSCOP. These
deal in sequence with a rising thermal, gravity waves over mountains, the retardation of a celd front at
a mountain, a convective boundary layer and with cumulus cloud convection. The examples are chosen
in such a way that sufficient information is available for the purpose of validation and that all essential
features of MESOSCOP can be demonstrated, as indicated in Table 4. In turn, the five cases are com-
pared to self-similarity and conservation properties, exact analytical solutions exhibiting constant
vertica] transport of momentum, approximate analytical and numerical reference solutions, measure-
ments in the laboratory and atmospheric field observations. For each case, we sequentially introduce
the physical problem, explain the reference information that is used to compare with the model results,
state the specific parameters of the model simulations and report on the results of the comparisons.

3.1 Self-Similarity of a Rising Thermal

A “thermal’ is a finite volume of buoyant (light) fluid rising in an ambient fluid. Much is known .
about thermals from previous studies, e.g. by SCORER (1958), LILLY (1962, 1964), OGURA (1962),
DALEY and MERILEES (1971) and FOX (1972). In particular, it has been shown that a terbulent thermal
develops into a self-similar state, in which its parameters vary as fractional powers of time and height.
Theories exist also for the case without any diffusion (DALEY and MERILEES, 1971) with which we can
make comparisons. Thus, it becomes a challenge to show whether MESOSCOP is capable of simulating
the dynamics of a thermal in accordance with existing theories.
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We consider an initially small volume of lighter fluid near the lower boundary of a three-dimensional
computatienal ‘box’, which rises upwards after sudden release. We look for the self-similar state when an
equilibrium between inertia, buoyancy and mixing is achieved, but before the thermal gets influenced
by the top or side boundaries of the box. This approach is similar to that used by OGURA (1962) and
DALEY and MERILEES (1971), who consider an axially symmetrical thermal in a two-dimensional
simulation. The grid spacings used are those of OGURA (1962) but in three dimensions. Like FOX (1972)
we make use of the symmetry of the problem with respect to the vertical axis of the thermal by simulat-
ing only one-quarter of the whole domain. Preliminary tests with a thermal in the centre made sure that
the code preserves symmetry.

Self-similarity develops if the thermal rises in an uniform, incompressible fluid far away from any
boundary, if its density differs only little from that of the ambient fluid and if mixing with the environ-
ment is controlled by the same scales as those of the shape of the thermal (LILLY, 1964). In this state,
dimensional arguments (SCORER, 1958} show that the effective radijus R, the maximum vertical velocity
W, , the maximum temperature surplus 8, (if temperature causes the density difference), and the heights
h,,, by of the velocity and temperature maxima are related to time by

R~tY2, wy, ~ 1742 0 ~t7¥2 by, ~hy ~tV2, (31)

Therefore, we consider a thermal of initial radius R« within a Boussinesq fluid initially at rest in a box of
size 0 <X <10 R4, 0 <y <10 R4, 02 < 15R,. Buoyancy gp' is due to a temperature surplus 8’ with
p' =—p8'6y. The initial temperature distribution is specified following OGURA (1962); 8' vanishes
everywhere except for

], r=+/x +y*. 32

J= _ . _1-_- 2 LA
0<z§2R* where 0 G*exp[ 2.3(Rj:|51n [2R*

In the program one scalar ¢, =8 + @' is integrated (K = 1), The value of § is physically arbitrary, but
does influence the numerical accuracy because of the non-linear properties of the Smolarkiewicz-scheme
used for advection of scalars. Two cases are considered (8 = 0 and @ =300 84). The actual values of Ry,
0,2 and 8, do not matter. We use wa = (2R482/80)"?, Ry and 04 to present results in non-dimen-
sional form; t* = t wa/R is the non-dimensional time. All boundaries are specified to be impermeable,
frictionless and adiabatic (type CLOS). The grid spacings are Ax = Ay = Az = R4/3; i.e. injtially the
resolution is coarse. The time step amounts to At = 0.15 R./wx, which has been found to be sufficient
for numerical stability.

First, we consider an inviscid simulation without any physical diffusion (Ky; = 0) in order to check the
conservation properties of the numerical method. In particular we require that the volume integrals of
density p, temperature § and momentum pV stay constant. Without diffusion, also quadratic quantities
like total energy being composed of kinetic and potential energies and the temperature variance

Eyin =ﬂT% av; Ejot =J‘J‘ gzp'av, Eq =jjj7 dv (33)

should stay constant, where the integrals are taken over the computational domain. As long as the re-
solution is fine enough to represent temperature and velocity in the rising and deforming lighter fluid
without approximation errors, the maximum value 8, of the temperature should also stay constant, and
the vertical velocity wg, should increase linearly with time as long as the thermal is far away from
boundaries, because df'/dt = 0 and dw/dt = g8'/8, in this case.

426 Beitr. Phys, Atmosph. Vol. 80, Ne, 4, November 1987



® Figure 3

_ N Parameters of a thermal rising with zero diffusivities
——— & = 3000, - VeIsus time. 8) W /W i b) Bin/8 4
—————— =0 ¢} Egin* Epot)/Epot (t=0); d} 1 + Eg/Eq (t =0).

Full lines for ¥ = 300 8,,; dashed lines for ¥ = 0.

[=]
4

1 &IW, .

Inviscid results are collected in Figure 3. They show that w,, increases approximately linearly with time,
total energy remains fairly constant for some time, while maximum temperature and temperature
varjance stay not quite so constant. Note that initially the thermal extends over only 6 grid cells so that
resolution is poor and the present case forms a strict test for the accuracy of the numerical scheme.
Small oscillations in 8, arise simply because the location of the maximum temperature only sometimes
coincides with grid points but otherwise falls inbetween, and hence cannot be resolved exactly. Because
of the increasing velocity, the numerical stability limit At w, /Az < 0.5 is reached at t* = 4.5. However,
the solution stays stable till t* = 9. Two different values of # are used. For 8 = 0, the advection scheme
guarantees positivity of the temperature surplus but obviously this advantage has to be paid for by in-
creased numerical diffusion causing early decreases of 8, Eg, and wp, . Still, the numerical diffusion
effects are small. This can be seen from the fact that the velocity comes close to the value wy/we =2 -
at t* = 7.5 while it amounts to only 0.75 if physical diffusion is included as described below. For

6 = 300 84 the numerical diffusion is even smaller. In spite of the coarse resolution, total energy is
conserved to within 4 % in the initial period (t* < 4.5) where the stability restriction is satisfied. Linear
quantities like volume integrals of density, momentum and temperature are conserved up to round-off
errors {not plotted).

Now, we tum to the turbulent case. Mixing is modelled by using the first-order turbulence model (Equa-
tion 27), without molecular contributions, ¢; = 0.2. To reduce the number of independent parameters,
we set Ri = 0. Since the mixing length has to be proportional to the radius of the thermal, we set

_ " ;
I,=0.5R, R=(£) , V=Ekin/(ipW?n)- (34)
4 _

The turbulent Prandt] number is unity and # = 300 8. After a time of order Ry/wy the thermal has
climbed so far from the lower boundary that its influence is negligible. A much longer time, of order
R?*/Ky = 16 is required to achieve equilibrium between inertia, buoyancy and friction. Figure 4 shows
the shape of the thermal as represented by contours of constant temperature in a plane of symmetry.
The similarity in shape of the results at t* = 22.5 and t* =45 indicates that the self-similar state is
reached. As has been seen in previous simulations (e.g. FOX, 1372) and experiments {(SCORER, 1958),
a mushroom shape is formed. The temperature gradient is steep at the top of the thermal because of
large buoyancy accelerations below this border.
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0 IJ'R* 0 0 le* 10 1Ry w,
® Figure 4 Temperature contours of a diffusive thermal ® Figure § Parameters of a diffusive thermal
approximately in self-similarity state at the indicated times. yersus time. &) 81, /6,; b) W /Wi
Isoline increment: 8p,/10. ) hg/ (300 Ry); d) hy/ (300 R,);

e) R/(10R,); ) Eyin/(100 Epqy(t = 03N

g) Eg/Eg(t=0). The straight dashed lines
indicate the expected trends in the self-
similarity state.

In Figure 5, the quanitities addressed in Equation (31) are plotted on logarithmic scales so that they
should vary linearly in the self-similar state. Small oscillations or step-wise variations at early times are
due to the initially coarse discrete representation of the fields. The figure reveals that self-similarity is
reached for 15 < t* < 45. As in previous studies, temperature achieves self-similarity first, followed by
velocity and length scales. The self-similarity of the length scales is sowewhat obscured by the fact that
the virtual origin is not zero. At later times, the motion of the thermal is influenced by the top boundary
which explains the observed deviations for t* = 45, Also included in this figure are the results for second
order integrals Ey;,, and Eg, defined in Equation (33), for which dimensional analysis predicts

Epin ~t¥2, Eg~t~¥, (35)

We see that these integrals conform with the expected trends even better than the local values which are
influenced more strongly by numerical approximation errors. The slope values computed from the
results at the limits of the interval 15 < t* < 45 are — 1.488, - 045, 0.63, 0.63,0.48, 0.53, —~ 1.508 for
the curves a) to g) of Figure 5, respectively. The difference to the corresponding theoretical value is less
than 0.13 and amounts to 0.008 for temperature variance. In view of the limited variance conservation
properties of the scalar advection scheme, the agreement for Eg is particularly satisfactory. _
In contrast to OGURA (1962), whose results are a pure consequence of numerical diffusion (he did not
include any physical diffusion explicitly and his results for maximum velocity show a slower decrease),
our results are only weakly influenced by numerical approximation errors.
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3.2 Gravity Waves in an Idealized Airflow over Bell-Shaped Mountains

The generation of internal gravity waves in an stably stratified atmosphere which flows over
mountains is a thoroughly studied topic of mesoscale meteorology (see SMITH, 1979, for a review).
The resultant vertical transport of horizontal momentum can have an important impact on both smaller
scales (e.g. through strong downslope winds) and larger ones (e.g. by affecting the synoptic scale mo-
mentum budget).

The highly idealized situation of a two-dimensional, steady, inviscid, hydrostatic and Boussinesq flow
with constant inflow velocity and uniform stratification over a bell shaped mountain is a special case of
- Long’s problem, for which analytical solutions exist even for the non-linear case of finite mountain
height. In this section we demonstrate to what extent the version of MESOSCOP with terrain following
coordinates is able to reproduce these reference solutions. Dry air is considered in the Boussinesq
approximation with constant reference density g and with potential temperatuze as the only scalar (cf.
Equations 1 to 3; K= 1; ¢, =6).

LILLY and KLEMP (1979) show that hydrostatic flows, idealized as mentioned above, are solutions of
the linear differential equation

N

ai
(—-—+m’)5=0, m=3

9z’
for the vertical displacement & (x, z) of an air parcel from its undisturbed height (far upstream) z, i.e.
& =z —Z. The vertical wave number m relates the constant inflow velocity U and the constant Brunt-
Vaisils frequency N = [g/8, - 38/2z]%2. The velocity components u and w and the potentia] temperature
# are connected to & via

(36)

2

u=U(l—%), w=Ug—)6‘-, f =08, [1+Iig- (2—6)J, - 37N
where fi; and g denote the Boussinesq reference value for 8 (e.g. f, = 290 K at the ground) and the
acceleration of gravity, respectively. Equation (36) is solved for §, assuming a radiation boundary con-
dition at the model top and a free slip condition at the ground, via numerical integration of Fourier
integrals for several analytic surface elevation profiles z,(x). We consider a bell shaped mountain
[zs(x) = h/(1 + x* fa? )] with summit height h and half-width a, for which JANK (1984) describes the
mathematical and numerical procedure in detail (following LILLY and KLEMP, 1979).
The present problem is governed by two dimensionless quantities, m-h andm-2a. f m-h<€1 the
flow is essentially linear; non-lnear effects become important when m -h = 1, while m - h = 0.85 con-
stitutes the threshold above which streamlines overtum in the hydrostatic limit (supercritical flows).
If m - a3 | the flow is virtually hydrostatic, whereas non-hydrostatic effects become important when
m-a=],
Our demonstration cases deal with a constant vertical wavenumber(m = 27 x 107*m ™} ; N=47x 107*s™?;
U =20 m/s) and the domain parameters (lateral and vertical extensions L and H, respective grid spacings
Ax and Az) as given in Table 3; the summit height h is varied in order to obtain a quasi linear and a non-
linear (but suberitical) quasi-hydrostatic situation. The hill is centred between the inflow and outflow
boundaries.
For verification, steady numerical results are imposed on the hydrostatic reference solution described
above. The left part of Figure 6 depicts the vertical velocity component w for experiment LI at
normalized time t* =t Ufa = 100. The updraft and downdraft regions above the very flat, but broad
hill coincide nearly perfectly. Another important feature lies in the illustration of the inevitably im-
perfect formulation of boundary conditions for limited area models. The BKD condition (cf. Section 2.3) -
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B Table 3 Physical parameters m, h, a and derived domain parameters L, Ax, zy, Az for a quasi-linear (LI) and
e nonlinear (NL) numerical experiment {symbols ate explained in the text; blank entries denote repetition of
value above)

Exp. m h™ a L AX zy AZ
' {1/m) (m) {m)
LI 2rx 1074 10 5x104 24a L/120 3n/m z,/60
NL 103 L/60 z4/30
® Figure 6

Comparisan of numerical results
{50lid) and reference solution
(dashed). Left: vertical velocity
camponent w for the linear
cases LI {see Table 3, isoline
increment: U/25000;normalized
model time t* = 100); right:
streamlines in terms of po-
tential temperature for the
non-linear case NL (see Table

3; isoline increment:

N24ynzfg =2.33 K; isoline
range: from 69 = 290 K. (ground)
to 360K (top); normalized
model time t* = 80).

-Lf2 0 Lz -2

yields quite satisfactory transports through the open top boundary whereas the boundary conditions at
the side (FLUX at inflow, RADI at outflow) are not able to prevent kinks in the zero lines of w.
Streamlines in terms of potential temperature in the steady state are depicted in the right part of Figure 6
for the non-linear experiment NL and imposed on the reference solution. The isoline increment is
equivalent to a tenth of the vertical wavelength or to two vertical gridsizes. The figure shows a high con-
formity between numerical and reference solution, though systematic differences are evident. Differences
are smallest at multiples of haif a vertical wavelength, while in between, systematic positive and negative
deviations occur on the upstrearn (left) side of the ridge which vanish only at the boundary due to fixed
inflow values. Over the ridge the simulated wave exhibits a slightly larger amplitude than the reference
solution, especially at streamlines which commence at heights between multiples of half a vertical wave-
length. At the downstream boundary we find the same systematic height dependence of differences as
at the upstream boundary, but streamlines are horizontal due to a zero-gradient boundary condition
(OUTF) used in this case. '

Mountain waves transport horizontal momentum pu verticaliy. Besides its physical significance, the
momentum flux M provides a sensitve measure for the evaluation of model results. We define it as average
over the horizontal extent of the domain along the Jine 0 =Z:
E(L/2)

[ w-we vty 38)
E-L/f2)

1
E(L/2)-E(-LI2)

M(z)=

The first summand describes advective momentum flux due to a* normal to the curve ¢ = const., while
the second summand includes the horizontal component of the pressure force acting on such a curve,
which vanishes in the absence of orography. The expression (u — U) is used instead of u because this
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® Figure 7
Time evolution of the mo-
mentum flux profiles for ex-
periments LI (left) and NL
(right} at the indicated nor-

J B malized times t*; the dashed
1 . . jines indicate the reference
1.0

0 values M.

MiM

reduces numerical errors if the integral over a® is not exactly zero as it should be. We note that the
definition given avoids interpolations in the numerical model and that it is defined for all values of
Z. At the ground (o = 0) the component a> vanishes and the pressure term reduces M to the negative
surface pressure drag. The momentum flux of the reference solution is independent of height:

7 pNUR?
M=t My=—fuf 7

(39)
under the assumption that the boundaries of the interval L are far from the ridge. In the linear case the
factor f,; equals unity; the reference solution determines f,; as 1.395 in the non-linear case.

Figure 7 shows the vertical distribution of the simulated momentum flux at several nondimensional
times t*; the fluxes are normalized by the linear reference value M; and compared with M (dashed).

In the linear case LI the flux develops over 50 units of a/U to a steady profile, which is very close to

the reference value at the ground and 10 % below it at the top. In the non-linear case NL the steady
profile at t* = 80 coincides with the reference value for half a vertical wavelength; higher up it gradually
decreases, reaching 85 % of that value at the top.

In summary, MESOSCOP in terrain following coordinates produces results, which in the special case of
the hydrostatic Long-problem come close to the ‘practical limit of the accuracy of model calculations®
{(DURRAN and KLEMP, 1983). This is particularly encouraging as no explicit dissipation is used, and no
resource consuming damping layer is employed in the upper part of the model domain. We note that
Figure 6 shows the entire computational domain. Comparisons with published results from similar test
cases (e.g. CLARK and PELTIER, 1977; MAHRER and PIELKE, 1978; KLEMP and LILLY, 1978; DURRAN
and KLEMP, 1983; HOINKA, 1985; NICKERSON et al., 1986; FRENZEN et al., 1987) reveal that the
simulations presented here are of similar quality as what we consider to be the best result (DURRAN
and KLEMP).

3.3 Retardation of an Idealized Cold Front by a Mountain Ridge

The effect of orography on cold fronts has been of increasing interest within mesoscale
meteorology during recent years. Cold fronts undergo deformation as they cross large mountains.
STEINACKER (1981) has analysed an example with severe deformation. A few more cases have been
investigated in detail during the ALPEX observation period. SMITH (1986) summarizes the available
results for the Alps and other mountains. Only few theoretical studies have been performed. DAVIES
(1984) considers an idealized model of a cold front moving over a mountain ridge under the assumption
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of geostrophic equilibrium. HADERLEIN (1986) treats the same situation numerically in one and two
horizontal dimensions without that assumption.

In this section we use the models of DAVIES and HADERLEIN to check the accuracy of MESOSCOP in
terrain following coordinates including Coriolis forces. We simulate a shallow water flow by means of
the Boussinesq variant of the complete primitive equations (cf. Equations 1 to 3; K =1; ¢, =0 denoting
potential temperature, 7 = const.}. Numerically this constitutes a nontrivial problem because Davies’
model implies a discontinuous vertical temperature profile with a temperature step. Furthermore, the
tangential velocity is discontinous at the frontal interface.

Both DAVIES and HADERLEIN censider a shallow-water flow mode] on a f-plane where a ‘free surface’
h(x, t) represents the interface between cold air below and warm air above, as sketched in Figure 8.

The cold air is assumed to have uniform density and flows with vertically uniform velocity u normal to
the front and v parallel to the front. The constant potential temperature # of the cold air differs from
the temperature 8, of the overlying warm air by A8, Friction forces are neglected. The flow is barotropic
and driven by a geostrophic pressure gradient (—fpo Vi, foo U} horizontally and exposed to the re-
duced gravity g =gA8/8, vertically. Hy designates the asymptotic height of the front at infinity
(x = — ). As potential vorticity is conserved [{f + dv/dx)/h = {/HF], the front moves quasi-stationarily
over flat terrain with the geostrophic wind Uy in the horizontal direction normal to the front. For

t <0, i.e. before the front reaches the mountam the height of the front is given by (DAVIES, 1984):

h(x,t)=Hg [l —exp {{(x —Ugt)/ R}]. (40)

Here R = C/f, and C = (g'Hg)Y? stand for the Rossby radius and the gravity wave speed, respectively.
Over flat terrain, the velocity v parallel to the frontis v= V in the warm air and

v(x, )=V —Cexp {(x ~ U;t) [R} ' @D

in the cold air.
DAVIES has considered this wedge of cold air approachmg an infinitely long orographic ridge with
maximum height Hg, width L and the profile

- z4(x) = Hp sin? (Eﬁ—( ) for 0<x<L; z,(x)=0 elsewhere. : (42)

Under the assumption of semi-geostrophic equilibrium, i.e. Idu/dt] <€ |f(v — V)i, an analytical solution
exists for the elevation h(x, t) of the front for t > 0. '

ke~ c omputational domain—»

______________ ~He “warm air’ ’
\ . e = eU
R
hix,t= 0] Figure 8

HB' L2, X Sketch of the idealized cold front approaching
. hat") =H, sin { L ! a two-dimensional mountain ridge, and of the
cold air computational domain.
e= 60' AB '
1
x 0 L x x
min max
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MESOSCOP in terrain following coordinates is used to calculate the flow within the computational
domain shownin Figure 8 with x;, = — L, X4 = L and z, = 1.6 Hg. The quasi-stationary solution given
in Equations (40, 41) is used to specify the initial conditions and the inflow boundary conditions, i.e.
we prescribe u = U, and '

#=vdct(-7)éw, $=v.0, 43)

- where ¢¢ is the value valid for z < h(x, t) in the cold air and ¢y, the value for z > h(x, t) in the warm
air. Ideally, the weight v = 7 (X, z, t) is unity in the cold air and zero above. In order to avoid a step-
wise variation of the height of the frontal interface, however, a linear interpolation is used in the mesh
cells adjacent to the interface according to

y=min {1, max (0, [h(x, 1) —zx- y2/Az,)}, Cwith  Azy =2z g —Zi< g2, (44)

where zy + i3 and Az, denote the height of the mesh cell boundary between grid points with indices k
and k + 1 and the vertical mesh spacing, respectively.

The initial field is adjusted by a solution of Poisson’s equation in order to make it non-divergent {see
Appendix B). At the top an open boundary with constant pressure is prescribed (OUTF). At the out-
flow boundary the Sommerfeld radiation condition is applied (RADI). A test without any mountain

~ has shown that the numerical implementation of this boundary conditions causes negligible disturbances
(SCHUMANN, 19870).

For comparison we consider a case for which the numerical solution of HADERLEIN is available:
Hp =2km, L=250km, Hp =8km, A0 =6K, 6, =300K, U, =20m/s, V; =10m/s, f= 1074571,
g=10ms™2. These parameters imply a gravity wave-speed of C=40m/s and a Rossby radius of
R = 400 km. The computational domain is equidistantly divided into 96 grid cells horizontally and
40 grid cells vertically. The time step has to be rather small because of large vertical velocities; it is set to
At =0.1 Ax/C.

Figure 9 shows results for a sequence of non-dimensional times t* = tU,/L in comparison to HADERLEIN’s
and DAVIES’s results. Note the different scales in horizontal and vertical directions. The shallow water
solution of DAVIES is shown only for easly times, because negative values result for t* > 0.885 with the
present parameters. This limitation is a consequence of the semi-geostrophic approximation.

Both the present and HADERLEIN s method predict a frontal interface which experiences an upwelling at
the upslope side of the mountain. This upwelling gradually leads to a hydraulic jump, which moves up-
stream as the gravity-wave speed C is large compared to the fluid’s velocity U,. A hydraulic jump is to

be expected, if one applies the theory of HOUGHTON and KASAHARA (1968) to the present flow, which

® Figure 9 Isochrones of the frontal interface in a vertical plane at
times t* =0, 0.2, 0.4, 0.6, 0.8, 1.0. Comparison of MESOSCOP
resuits (contours of 8g — A8/2; full lines), results from a shallow
water equation model (HADERLEIN 1586; dashed Lines) and
analytica] theory (DAVIES 1984; dash-dotted lines).
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is governed by a Froude number F = U,/C = 0.5. The results seem to indicate that the present model has
less numerical diffusion for the jump than HADERLEIN’s. The fronta) interface upstream the hydraulic
jump is unaffected and corresponds to the quasistationary solution of Equation (40).

DAVIES’s solution does not show a jump. This is a consequence of the semi-geostrophic assumption
which is valid only for U3 R/(C*L) < 1. In the present situation this ratio is 0.4. Thus, DAVIES’s solu-
tion is vatid for cases with C 3 U (if L = R), where disturbances induced by the mountain propagate
upstream very quickly. Such extreme cases are rare in reality.

The comparison shows that the inertia of the warm air, which is included in the present model but
neglected in the models of DAVIES and HADERLEIN has only a little effect on the cases discussed. The
vertical inertia would be important for non-hydrostatic flow situations. Moreover, the comparison
supports the validity of the present mode! and shows that it can be applied to investigate the retardatien -
of a cold front by a mountain. Further cases, both in two and three dimensions including also the effect
of stable stratification and comparisons with observations have been studied and are reported elsewhere
(SCHUMANN, 1987b).

3.4 Large Eddy Simulation of a Turbulent Convective Boundary Layer

Turbulence in the convective boundary layer (CBL) is driven by upward heat flux from the
ground while contributions from wind shear are negligible (WYNGAARD, 1985). Parametrization of
turbulence in such a layer is difficult and subject of ongoing research; it has to include the buoyancy
forcing. First- and second-order ensemble averaged turbulence models cannot account for the flowfield
structures which are characteristic for the CBL like strong upward motions in isolated thermals and
slow downward motions in the surroundings. In this section we focus resolution on the details of tur-
bulent convection, reducing the width of the numerical grid to the scale of eddies in the inertial subrange
of turbulence. Most of the turbulent kinetic energy is resolved, whereas the subgrid scale fluxes are
modelled by either second or first order closure. This technique is termed large eddy simulation (LES),
see e.g. SCHUMANN and FRIEDRICH (1986). '

In order to validate this approach, we apply the method in the Boussinesq approximation with g = const.
to the CBL, which has been investigated by DEARDORFF and WILLIS (1985), from now on referred to
as DW85, in a laboratory experiment. A water tank with initially stable stratification is heated from
below. DW&S5 measured profiles and spectra of turbulence quantities, to which we can compare numerical
Tesults.

The water tank is 1.24 m long and wide and filled up to 0.4 m with water. The initial temperature varies
smoothly from 20 °C at the bottom to 32.5 °C at the water surface. The bottom of the tank is heated

at a constant rate with a kinematic heat flux Qg = 1.4 x 107% Km/s. This causes a CBL from the bottom
up to a depth z;, which slowly increases with time. From these parameters one defines convective
velocity and temperature scales (WYNGAARD, 1985) '

Wm0 ), Temol, )
W
where the volumetric expansion coefficient is f = 2.3 x 107* K™ . These scales depend on time because
of variable height z;. Evaluating them for the height of the water tank (z, = 0.4 m), gives scales

w* =1.08x 10°2 m/s, T* = 0.13 K, which characterize the order of magnitude of scales to be expected.
The measured spectrum of turbulent kinetic energy indicates that the peak wavelength is of order z;
while the inertial subrange starts at a normalized wavenumber kj, z; of order ten (see Figure 10). The
latter value gives the required grid scales, while the peak wavelength determines the minimum horizontal

extent of the computational domain. Computer memory restrictions prevent the whole tank being
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® Figure 10
Vertical velocity spectra versus normalized horizontal wave
number. Dashed curve from DW85 for z/z; = 0.62, solid
curve from LES forz/z;= 0.64. The inertial subrange (marked
by the dotted lines) covers wavenumbers 5 < kyz; < 50.

modelled. We use Ax = Ay = Az = z,/40 and a computational domain extending over 60 x 60 grid cells
horizontally with periodic lateral boundary conditions (PERI) and 40 cells in the vertical. This limits
the simulation to the time period where the height of the convective layer z; remains less than the
horizontal and vertical extent of the computational domain. At the bottom we use no-slip boundary
conditions for the velocities and prescribe the flux Qg for the temperature equation (FLUX). At the top
boundary, the boundary condition OUTF is applied in order to avoid reflection of gravity waves which
might cause spurious oscillations in the upper stabie layer.

Subgrid scale fluxes are parametrized by the second order model as sketched in section 2.6; two scalars
(K = 2) are used: y, representing temperature and ¥/, the subgrid-scale kinetic energy. The time step
At is initialized with an arbitrary initial value and then adjusted such that it falls between 50 to 100 %
of the maximum time step permitted by numerical stability (see Section 2.3). Initial conditions prescribe
the temperature according to the measured temperature profile, velocities are set to zero except for the
vertical component which is initialized with random numbers of amplitude w*. The velocity fields are
corrected to satisfy continuity as described in Appendix B. The initial subgrid-scale kinetic energy varies
with height as w*? (1 —z/z,). The integration runs over 1523 time steps up to t = 191 s, for which time
DW85 give their first results. This time is large in comparison to the characteristic turnover-time scale
z;/Wx = 21.7 s of the dominant thermals.

Figure 11 shows a vertical (x/z) cross-section of vertical velocity w fort = 191 s where z; = 0.45 z,.

The CBL is contained in the domain with strong updrafts and downdrafts whereas the velocities are
small in the stable layer aloft. The vertical profile of vertical velocity variance W* versus z/z; has its

04 -

Z. ® Figure 11
! Vertical velocity component w in a
x—2 cross section at t = 191 s. Isoline
increment: (.5w,; solid (dashed)
lines represent positive (negative)
values; z; denotes the inversion
height.
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maximum value of 0.38 wi at z/z; = 0.47, This agrees well with the measurements of DW85 (maximum
0.34 at z/z; = 0.42). The maximum computed updrafts are more concentrated and exhibit larger vertical
velocity magnitudes than the downdrafts. This results in a non-Gaussian velocity distribution with non-
zero skewness W° as plotted in Figure 12. The vertical heat flux is shown in Figure 13 in comparison to the
measured data, The subgrid scale flux decreases rapidly above the lower boundary. The simulation is
indeed a LES as it resolves more than 90 % of the heat flux carrying eddies or thermals. The total heat
flux decreases with height approximately linearly. Its vertical divergence causes the warming of the layer ‘
below the inversion height. Near the inversion the flux shows negative values due to entrainment pro-
cesses in accordance with the measurements. At heights 0.5 < z/z; < 0.8 both the heat flux and the
vertical temperature gradient are positive. This is, therefore, a region of countergradient heat flux. The
origin of such a countergradient flux has been explained for the present and other cases by SCHUM ANN
{1987a).

The results are sensitive to resolution as must be expected. For larger grid spacings {z,/20), the subgrid
scale transports become comparable in magnitude to the resolved fluxes. Simulations with the second
order mode] were compared with the related first-order model {cf. section 2.6}. The results show that
the first-order model overestimates the negative heat flux near the inversion and smoothes the tem-
perature profile in this domain whereas the second order model simulates a sharp inversion even with
the coarser resolution.

From the LES results, a computation was made of the spectrum ¢, (ky) of horizontal variations of the
vertical velocity. The result ky, ¢, (ks) normalized by wi and z; is shown for z/z; = 0.64 in Figure 10. In
the inertial subrange a slope of —2/3 is to be expected for ky, ¢, (ky) in the logarithmic scales. The
maximum resolved wavenumber is ky z; = 50 in the simulation. The computed spectrum shows that the
simulation exhibits the inertial subrange and that energy peaks at about the same wavenumber as in the
experiment.
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From the comparison we conclude that MESOSCOP can be sucessfully applied to simulate the CBL.
No such simulations have been reported in the literature for the experiment DW85 before. The simula-
tion should be extended to larger grids and to longer periods of time to further support the findings.
The present results suggest that a second order subgrid scale model is required unless the grid scales are
small enough to resolve the inertia] subrange. Then a first order model gives sufficient accuracy.

35 Simulation of an Observed Convective Cloud

Data obtained on July 19, 1981 during the CCOPE {Cooperative Convective Precipitation
Experiment) experiment in Montana are chosen as a test case for the physical treatment of clouds in
MESOSCOP. The cloud observed on this day was a small, short-lived thunderstorm, well documented
by radar and aircraft measurements (DYE et al., 1986). This case is of special interest because it is a
mixed phase cloud, where both liquid and ice phase processes can be studied. A rather isolated updraft
has been observed, which makes it easy to identify structures for validation. The case has been subject
of a cloud modelling workshop (WMO, 1986).

The observations show that the cloud grows out of a field of cumulus mediocris with tops at 6.5 km
MSL. Between 1621 and 1632 MDT (Mountain daylight time) the cloud exhibits a rapid growth phase
and the top of the cloud shoots up to 11.5 k. The cloud diameter is approximately 6 km at all levels,
the cloud base is observed at 4 kmn MSL. The cloud’s life cycle is typical for a single cell: an active growth
phase followed by a dissipating phase accompanied by (weak) downdrafts and precipitation. Measure-
ments revealed cloud droplets with diameters of 8 to 10 um in concentrations of 800 to 900 m™ at
the cloud base indicating that the coalescence process is inefficient in producing precipitation sized
drops in the available growth time. The precipitation particles observed inside the cloud are graupels
with maximum sizes of 7 mm. These particies are formed rapidly during the active growth phase of the
cloud causing maximum radar reflectivities of up to 55 dBZ.

In the numerical model, the sounding of Miles City 1440 MDT is used to specify the proﬁles of the
initial fields. Convection is triggered by imposing a constant entropy source of 0.1 Wm™ K™! at the
bottom of the model domain at 4 grid points. A constant ‘mean’ wind vector is subtracted from the
wind field. This reduces numerical approximation errors. Moreover it implies that the heat source
moves with the mean wind and thus supports the formation of an organized updraft in a given air
volume for a longer period. The model initiation time and the duration of heating at the bottom are
matched to the observations by reference to the rapid growth phase of the cloud observed both in
nature and in the model. Thus the model simulation starts at 1602, heating is switched on at 1604

and switched off 22 minutes later. This method of injtialization is a crude approximation to the pro-
cesses in nature but should be permitted for the purpose of validating parametrizations of cloud micro-
physics.

Periodic boundary conditions (type PERI) are used at lateral boundaries. The bottom and top boundaries
are treated as closed {CLOS). Only precipitation falls out at the bottom. The integration is performed on
a 16° km? domain with a spacing of 1 km horizontally and 0.8 km vertically. The time step is 20 s.
The present case has been simulated using both the Boussinesq variant and the variant with variable
density for compressible air. The two results differ by up to 6 % for the velocity fields and somewhat
more (typically 20 %) for cloud particle concentrations. Because of closed or periodic boundaries the
system cannot expand and the mean pressure in the whole computational domain increases slightly
{0.1 hPa) due to the entropy source. This causes a small temperature increase (0.07 K) and reduces the
amount of condensed water. Sound waves do not play a noticeable role.

The dynamic and microphysical development of the model cloud is shown in Figure 14 at two selected
times. Up to 1620 the cloud is a sheared cumulus mediocris consisting only of cloud droplets with a
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Figure 14 Vertical cross sections through the model cloud at 1632 deﬂ) and 1644 MDT (right), showing the velocity
field (maximum vector of 12.5 m/s at 1632 and 11.4 m/s at 1644 MDT), the outlines of the cloud droplet (solid line)
and the cloud ice regions (dashed line), the regions of specific graupel (dark tone) and rain (light tone) content larger
than 0.2 g/kg

maximum mass specific concentration of about 1.2 g/kg. The cloud base is found at 2.4 km MSL which
is 1.5 km lower than observed. This discrepancy may be explained by uncertainties in the sounding
because we use the 1440 sounding of Miles City obtained earlier in time and at a different location.
The rapid growth phase of the cloud between 1620 and 1632 has been found also in the mode] simula-
tions. The vertical velocity in the updraft is about 12 m/s (with a maximum value of 20 m/s at one grid
point) which is close to the observed values (10 to 15m/s). At 1626 the first ice crystals are simulated
in the upper cloud region and the maximum cloud water content (2.8 g/kg mean value) is reached at
an altitude of 7 kn MSL. At 1629 the first graupels appear in the mixed phase region. The graupels
rapidly grow by riming thus consuming the available liquid water. The graupels fall downwards against
the updraft which is now decreasing in magnitude because the entropy source has been switched off.
Between 1635 and 1641 the falling graupel particles start melting when passing the freezing level at
about 4 km height and initiate a rain shower reaching the ground at about 1640 which is in accordance
with the observations.

The radar reflectivity factor Z is computed from the model results according to

7 L)
Z= 10103[2—1_ D zk] with Z, = jnﬁ f,(D)dD, (46)
. k=3

0

where D stands for the particle diameter (in mm), f;(D) for the size distribution of particle class k (in
m~¥*mm™; cf. HSLLER, 1986), and where Z, = 1 mm® m™? denotes a normalizing factor. In Figure 15
computed and measured reflectivities are shown for one selected time (1632 MDT). These results and
those for other times (not shown) reveal that the model radar echo develops somewhat slower than the
observed reflectivity. At 1620 there is no radar echo in the model, at 1626 the — 5 dBZ contour is
reached at 6.4 krn MSL while the observations show 0 dBZ at 1620 and up to 20 dBZ in 7 km height
at 1626 MDT. There are several possible reasons for these differences: the matching of the time scale
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for comparison of mode! results and observations may be inadequate or the microphysical parametriza-
. tion may underestimate the initia] formation rate of precipitation. Also, the simulation exhibits a single
updraft in which precipitation particles are formed while observations indicate a pre-existing cloud
turret (NW-turret, see DYE et al. 1986) which may have produced ice particles subsequently incorporated
into the second updraft (NE-turret). The maximum value and vertical extension of the reflectivities at
1632 coincide quite well in the model and in the observations. The 40 dBZ contour extends from about
5 km to 9.5 km height. The simulated horizontal extension of the precipitation is somewhat larger in
the direction of the wind than ohserved. At 164] precipitation reaches the ground but the precipitation
shaft in the model is smaller and less intense (width 3 km, 30 dBZ) than observed (6 km observed width,
45 dBZ). This may be caused by the stronger horizontal displacement of precipitation in middle levels
in the model cloud.

The main conclusions, which can be drawn from the preceeding comparisons, are: the formation of the
precipitation particles via the ice phase is simulated correctly by the model; precipitation is mainly
formed by riming; no warm rain process occurs, the snow processes are negligible; results for the speed
and horizontal dimension of the ipdraft and the life cycle of the cloud do well agree with observations;
an explosive growth phase is simulated, but the vertical dimension of the cloud is larger than observed;
the maximum intensity of the radar echo is simulated reasonably well, but the computed horizontal
extension is larger at middie levels and smaller near the ground than observed. In particular, this ex-
ample shows that MESOSCOP provides the possibility of simulating variable density flows. The results
of the Boussinesq case differ from the results with compressible air by approximately 20 % but do not
exhibit significantly different structures.

4 Conclusions

The numerical model MESOSCOP has been introduced and validated for five cases as sum-
marized in Table 4. All three versions of the model are used. The table indicates the binary choice
features, which are tested in the various cases: variable density / Boussinesq density, non-hydrostasy /
hydrostasy, with/without Coriclis forces, with/without orography, with/without turbulence model
and with/without cloud microphysics. The examples, for which analytical solutions re available, con-
stitute a quantitative measure of the model’s numerical accuracy. In the cases ‘CBL’ and ‘cumulus’
the positivity of the scalar advection scheme plays a significant role, because-the nonlinear constitutive
equations require non-zero values for concentrations and subgrid-scale kinetic energy. Radiating bound-
aries are selected from the variety specified in Section 2.4 for three cases; the BKD condition at the top
is essential for the ‘waves’ case. The relative computational work caused by the pressure evaluation
varies from a few percent for cases above flat terrain and with detailed parametrizations {direct pressure
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® Table 4 Aspects of the model tested within the validation examples together with number of grid cells and time fraction
for the pressurs computation

aspect \ validation case thermal waves front CBL cumulus
moxdel version’ A,B B B - C A
variable density no no no no yes
non-hydrostatic yes no no yes yes
with Coriolis forces ' no no yes no no
with orography no yes yes no no
with turbulence model yes no no yes yes
with cloud microphysics no no no no yes
number of scalars 1 1 1 2 7
quant.test f. num.accuracy yes yes yes no na
_pos-adv.scheme significant no no no yes yes
radiating bound.conditions no yes yes yes no
numbes of grid cells 30x30%45 120x 60 96 x40 60 X 60 X 40 16X 16X 20
time fraction f. press.comput. 0.071 050 0.48 0.018 0.011

solution} to 50 % for cases with orography and simple physics (iterative pressure solution). The ‘thermal’
and ‘CBL’ cases demonstrate the ability to work with large three-dimensional grids that necessitate data
segmentation on the computer used. The coded option of using variable grid spacings is not validated by
the presented examples.

The possibility of applying the model for examinations of the validity of various approxxmatlons is
indjcated by comparing results with and without Boussinesq-approximation for the ‘cumulus’ case and
by comparing the semi-geostrophic solution of DAVIES (1984) with numerical results for the ‘front’
case. Further results in this respect are discussed in SCHUMANN (1987b).

The simulation results of an inviscid rising thermal demonstrate the accuracy of the numerical method
and identify the dependence of the results on the mean level of the scalar. For the diffusive thermal, the
results agree excellently with the predictions of similarity theory. In contrast to some of the previous
simulations, the present results are not controlled by numerical diffusion, In particular the integral
variance of temperature exhibits the predicted trend although the Smolarkiewicz advection scheme
does not necessarily conserve quadratic quantities.

The comparison with the hydrostatic Long-problem for gravity waves over mountains turns out to be
successful, especially when taking into account the absence of any explicit damping mechanisms. The
performance of the radiative top boundary condition (BKD) has been confirmed. The slight decrease

of momentum flux with height in the non-linear case is not completly understood.

The results obtained for the orographic deformation of an idealized cold front agree very well w1th
previous numerical results. The appearance of a hydraulic jump in accordance with theory does support
the validity of the model. The presented results indicate the limitations of semi-geostrophic theories.
The large-eddy simulation of a convective boundary layer shows good agreement with laboratory ex-
periments and allows one to determine turbulence statistics not computable from first or second order
turbulence models. The results indicate that the grid spacings taken are small enough to resolve the
eddies which carry most of the kinetic energy. The simulation is valid only as long as the lateral scales
of the thermals are sufficiently small in comparison to the horizontal size of the computational domain.
This is the case for the time period investigated so far.

Even though the simulation of the convective cloud was performed with rather coarse resolution, it re-
veales that the numerical technique and the microphysics parametrizations are well suited for this pur-
" pose. The results show in particular_that the observed precipitation is formed via the ice phase, while
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warm rain processes are negligible. However, the present simulation is strongly influenced by the rather
artificial method used to initiate convection. Large scale influences or local disturbances from the
boundary layer may be responsible for initiation in nature, but are not yet included in the model.

In general, the study demonstrates the wide range of scales (from centimetres to hundreds of kilo-
metres) over which the model can be applied. It treats several physical processes including dry con-
vection, gravity waves, turbulent motion, frontal motion and clouds including liquid and ice processes.
Certainly, more physical processes like radiation or energy exchange at the ground will have to be added
by proper parametrizations. The model can be applied for a large number of different boundary con-
ditions, but extensions might become necessary (for example with respect to nesting; cf. CLARK and
FARLEY, 1984).

The validation cases reported here represent a few successful steps forward in the never ending march
of validating and improving a complex numerical model in the sense outlined by PIELKE (1984, p. 421).
They contain convincing evidence that very different mesoscale processes can be treated with the

" described model framework. Extensions of the calculations presented are under way. They comprise
comparisons with documented cases of strong airflow over mountains, the orographic deformation of
cold fronts in three dimensions, and CBL calculations and studies of curnulus convection with increased
resolution.

Appendix A: List of Symbols

a) for modal formulation
t time i
LY. LExn Cartesian coordinates; transformed coordinates
div, grad general divergence and gradient operators
2.0, p total, reference and deviation density
P.D. PPl Pe total, hydrostatic reference, deviation, air bomponent partial and thermo-
- dynamic reference pressures
v,0V,(pV)g velocity, momentum, geostrophic momentum
(V)™ preliminary momentum without pressure gradient contribution
F,F', FP total friction tensor, turbulent and precipitational parts
Vi Qs Vi k-th mass specific scalar, source term and terminal velocity vector
Ty ?‘;_ﬂ: total flux vector, turbulent and precipitational parts
kLK - index for and number of scalars
T, Te, 8 absolute temperature and reference value, potential temperature
8, 5, Sa, S total and partial entropies, and respective reference values
R, Cp " gas constant and specific heat at constant pressure for cloud air
mi, R;, c:, specific concentration, gas constant and specific heat at constant pressure
for component i
Ap, Ay coefficients in linearized equation of state
?i= (0,0, ' gmvity of the earth (vector and Cartesian components)
2=(0, wcosy, wsing)  rotation of the earth (vector and Cartesian components) as a function of
latitude ¢
Zy, 2y orographic and model top heights
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o . terrain following coordinate, (D S o <z))

v,Gi - Jacobian and metric coefficients of transformation
DAL ¢ deformation tensor, grid resolution, nuxmg length and numerical constant
in first order turbulence parametrization
b} for rising thermal simulations
R, Wy, 8, by By radius, maximum vertical velocity, maximum temperature surplus, vertical
positions of velocity and temperature maxima
Rae, Wa, O reference scale for length, velocity and temperature
Eyins Egot- E@ -integra.l kinetic and potential energies, integral temperature variance
t*=t ws/Re : non-dimensional time
c) for gravity wave simulations
m,N, U vertical wave number, Brunt-Viisila frequency, inflow velocity
5 ' displacement height
8y reference values for potential temperature
M vertical flux of horizontal moméntum
h,a summnit height and half width of bell-shaped mountain
t*=tfa non-dimensional time
d) for simulations of frontal propagation
Uy, Vg components of constant geostrophic wind
Hr, R, C . asymptotic front height, Rossby radius, gravity wave speed
Hg, L sumnmit height and width of sine-squared mountain profile
f=2wsing, g'=gA8/8, Coriolis frequency and reduced gravity
t*=tU,/L non-dimensional time
) for convective boundary layer simulations
E subgrid scale turbulent kinetic energy
8. Qo7 volumetric expansion coefficient, surface temperature flux, inversion height
We, Ta convective vertical velocity and temperature scales (based on z;)
w*, T* convective vertical velocity and temperature scales (based on z,)
kp, ¢ horizontal wavenumber, spectrum of horizontal variations
f) for cloud simulation )
Z,Zy, 24 : total and particle class radar reflecivity, normalizing factor
D, fy (D) particle diameter, spectral size distribution
[

Appendix B: Time Integration Algorithm and Determination of Sources

In Section 2.2 the basic equations are given in time discretized form. Here the algorithmic
sequence is described by which the equations are evaluated. Also, details of explicit or implicit treat-
ment of source terms for scalar fields are explained.
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Initial conditions for n = 0 prescribe p", V2, wi and p“ at time t". These initial conditions have to be
consistent with the equation of stete and the boundary conditions. From the initial values we compute

=p® —p and a preliminary momentum (p¥)~ = pv". In general the preliminary initial momentum
ﬂu.x does not satisfy the continuity equation. Therefore, :t is adjusted by the solution Ap of Poisson’s
equation for arhitrary posttive At:

div grad (Ap) = E div (pV)~ , : (B1)
yielding &iv(p¥)* = 0 with
(V)" = (pV) —Atgad(Ap), V"= (":)n . (B2)
_ 5 _
Starting from these inijtial conditions we éompute in sequence forn=0,1, ...:
(P¥i) ™= " Y2 — At [div((pV)? YE) + div(TE)] + At p® ¥ (B3)
P~ =p(", (p¥)") or pT=p(p", V). (B4)
Ve = ‘@‘:—)‘, (B5)
p
YRt =y + At g™, (B6)
pT=p(p" ¥ETY), (B7)
1 Tl
Ap=(1-fp) % (B8)
B = div((pV)" V") + div(F™) + 202X [(¢¥)* — (p¥)g ), (B9)
(0¥)" = (pV)" ~ At [0 B" + 7, B2 + gAd ()" + (0 ~B) B}, (B10)
r= g GV 4o (1= fp) (7 A7), (B11)

Here fy = 1 in the Boussinesq variant and fg = 0 otherwise.
Now we invert the Helmholtz equation

A .
div grad (Ap) — ﬁ Ap=r (B12)

to obtain the mass conserving pressure increments Ap. Finally, density, pressure and momentum are
updated, and time is incremented to the next level:

PPt =1y % +(1-£,) (0™ +Ap Ap), (B13)
@Y=" +24p, (B14)
wyn+1
(PV) T 1 = (0¥)” - At grEd(2p), ¥ *1 = %‘Lr (B15)
251 =12 4+ At, (B16)

If the equation of state gives density as a function of mass specific concentrations, p = p(p, ¥i), then
Equations (B4, B5) are solved iteratively or by using the approximation o™= p(p", ) 7p™).
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Equation (B3) is actually split further according to SMOLARKIEWICZ (1984). Intermediate values in
this splitting algorithm are computed with fixed density p".

The ‘explicit’ source qg* in Equatmn (B3) comprises slow processes and sources which are explicit
functions of time, qg* = q, (1%, p®, ¢{). The ‘implicit’ sources q,™ = q, (p", ¥};) in Equation (B6)
represent cloud phase fluxes or fast turbulent sources like dissipation of kinetic energy.

For cloud condensation {(or evaporation) the amount of condensing water Am per unit mass contributes
to sources qim = — Am/At for water vapour and qg‘“ = Am/fAt of cloud water such that the concentra-
tion m! = y; approaches its saturation values m®! by an adiabatic and isobaric process. For large phase-
changes per integration step it might be necessary to determine Am iteratively according to this process.
At present, we use the common explicit linearized approximation (LANGLOIS 1973)

n
m! —m* _p ) (T)
s, ) 17
+m21(1n)2 m*! “oR,T B 7)
R]Tlcl,

where I, is the latent heat of vapourization, ¢, the specific heat of the cloud-air, p*! (T) the saturation
pressure, and R, the gas constant of water vapour. All quantities are evaluated from p™ and Y.

In order to avoid negative subgrid-scale kinetic energy E (per unit mass), the dissipation rate € is treated
by computing

E"*1 = Eexp {_EET At} (B18)
instead of Equation (B6).
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