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Abstract

We prove that whenever T is a power-bounded o-minimal theory, t-stratifications exist

for definable maps and sets in T -convex fields. To this effect, a thorough analysis of

definability in T -convex fields is carried out. One of the conditions required for the result

above is the Jacobian property, whose proof in this work is a long and technical argument

based on an earlier proof of this property for valued fields with analytic structure. An

example is given to illustrate that t-stratifications do not exist in general when T is not

power-bounded. We also show that if T is power-bounded, the theory of all T -convex

fields is b-minimal with centres.

We also address several applications of t-stratifications. For this we exclusively work

with a power-bounded T . The first application establishes that a t-stratification of a

definable set X in a T -convex field induces t-stratifications on the tangent cones of X .

This is a contribution to local geometry and singularity theory. Regarding R as a model

of T , the remaining applications are derived by considering the stratifications induced

on R by t-stratifications in non-standard models. We prove that each such induced strat-

ification is a C1-Whitney stratification; this in turn leads to a new proof of the existence

of Whitney stratifications for definable sets in R. We also deal with interactions between

tangent cones of definable sets in R and stratifications.

Keywords: Model theory, valued fields, t-stratifications, o-minimality, T -convex fields, weak o-

minimality, b-minimality, tangent cones, Jacobian property, archimedean t-stratifications, Whit-

ney stratifications.
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Mathematical notation/conventions

We explain a few notational and mathematical conventions used throughout this work.

• The characteristic function χ
X

: K −→ {0, 1} of the set X ⊆ K, is defined as

χ
X

(x) := 1 if x ∈ X and χ
X

(x) := 0 otherwise.

• A non-archimedean field is an ordered field in which the set Z is bounded. Equival-

ently, the field contains infinitesimal elements, elements x such that 0 < x < 1/n for all

n ∈ Z+.

• If S is a linear order, X ⊆ S and x ∈ S, we write x < X to mean that x < y for all

y ∈ X . The expressions x ≤ X , x > X and x ≥ X are defined similarly.

• If (G,+, 0, <) is an ordered group, G>0 and G≥0 denote the sets {x ∈ G | x > 0}

and {x ∈ G | x ≥ 0}, respectively.

• If S is a ring, S× denotes the set of units of S, the invertible elements in S. Some-

times, when S lacks a ring structure, S× simply denotes S \ {0}.

• If S is a ring, Matn(S) denotes the ring of all (n × n)-matrices with entries in S. If

S is a subring of a field K, by GLn(S) we denote the group of all invertible matrices M

in Matn(K) such that both M and M−1 have coefficients in S.

• If X is a subset of a topological space, cl(X) will denote the closure of X in such

topology.

• We frequently and freely identify a singleton {x} with the point x itself. Thus often

we write ‘point’ for ‘singleton containing the point’.

• By ‘definable’ we always mean ‘definable with parameters’. If A is a set of pa-

rameters, we write ‘A-definable’ to imply that all the parameters needed come from A.

We often work with a few languages concurrently and thus write ‘L-definable’ to mean

‘definable with parameters by a formula in the language L’.

• By ‘definable partition’ we mean that each of the parts is definable.
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Introduction

This thesis is a contribution to the model theory of valued fields and to the applications

of model theory to geometry.

Stratifications are an important tool for the analysis of singularities of sets. With a strati-

fication one aims at classifying the points of a set according to their degree of singularity.

The interest on stratifications started with the work of Whitney [53], in which the fol-

lowing partition of an analytic variety X ⊆ Cn was suggested: X is partitioned into

the varieties Xrg, (Xsg)rg, ((Xsg)sg)rg, etcetera, where Yrg denotes the subvariety of all

the regular points of Y , and Ysg denotes the subvariety of the singular points of Y . The

dimension of the sets in the partition above decreases, so the obtained partition is in

fact finite. After some slight refinements, this partition satisfies the Whitney (regular-

ity) conditions; these are geometrical requirements on the interaction between the pieces

of the partition. Nowadays, any partition of X satisfying the Whitney conditions is

known as a Whitney stratification of X . These stratifications were later shown to indeed

provide a useful classification of the points of X , with Thom [46] proving that points

in the same strata are normally equi-singular. A now classic exposition of this result

and its consequences is in Mather [36]. A few of the many papers studying and deriv-

ing applications from Whitney stratifications in semi-algebraic and sub-analytic contexts

are [42, 45, 47, 51]. Strengthenings of Whitney stratifications have been also explored;

among these are Kuo and Verdier stratifications (Kuo [33], Verdier [52]), and Lipschitz

stratifications (Mostowski [39]; see also Parusiński [43]).

Whitney stratifications—and stratifications in general—have enjoyed attention from mo-

del theorists. As a generalisation of the semi-algebraic situation, Loi [34] proved that

Whitney (and Verdier) stratifications exist for every definable set in an o-minimal struc-

ture on the real field R. A new geometric proof of this result has been recently offered in
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Introduction

Nguyen et al. [41]. Even earlier investigations of this kind—on stratifications, triangula-

tions, etcetera, in general o-minimal structures over the real field—were carried out by

van den Dries and Miller [18]. Additionally, there have been efforts to generalise known

applications of Whitney stratifications to the wider o-minimal setting, see e.g. Trotman

and Valette [49].

Other model-theoretic approaches to stratifications have instead looked for analogous

notions of stratifications in contexts beyond o-minimality. The paper by Cluckers et

al. [6] contains a notion of regular stratifications for definable sets in the p-adic field

Qp. This notion is essentially a literal translation of Whitney stratifications, with several

of the results and proofs finding clear analogues in the setting of the real field. It was

proved that these regular stratifications exist for all definable sets in Qp in both the p-adic

semi-algebraic and the p-adic sub-analytic languages. The cited paper also includes an

application of these stratifications to local density problems. These regular stratifications

were the first introduced in a valuational context.

This thesis is devoted to a notion of stratifications in Henselian valued fields of both

field and residue characteristic 0. The definition of these stratifications is due to Ha-

lupczok [26], and they are known as t-stratifications. T-stratifications were introduced

following the efforts to classify the definable sets in the ring of p-adic integers Zp. This

approach reached a classification of said sets up-to definable risometries for big enough

p—where a risometry is an isometry with an extra rigidity property. It was soon realised

that t-stratifications possess further potential both for applications to geometry and in

the research on (model-theoretic) tameness of valued fields. This work provides some

advancements in the theory and the applications of t-stratifications.

In [26], t-stratifications were proved to exist for definable sets in valued fields with ana-

lytic structure (introduced in Cluckers and Lipshitz [8]). Basic but relevant examples

of such valued fields are pure algebraically closed valued fields and pure real closed

valued fields1. A large part of the investigations reported in this thesis aims at proving
1By pure we mean that no extra structure is assumed apart from that of a field and an ordered field,
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Introduction

that t-stratifications exist in T -convex fields whenever T is power-bounded, these being

particular expansions of real closed valued fields that are not covered in the setting of

valued fields with analytic structure.

Let K be a Henselian valued field of both field and residue characteristic 0. Following

the driving idea of classifying the singularities of sets, a t-stratification of a subset X of

Kn is a definable partition (Si)i≤n := (S0, . . . Sn) of Rn satisfying that:

1. for each d ≤ n, the dimension of S0 ∪ · · · ∪ Sd is less than or equal to d;

2. for each d ≤ n and valuative, open or closed ballB ⊆ Kn withB ⊆ Sd∪· · ·∪Sn,

the sets Sd ∩ B, . . . , Sn ∩ B and X ∩ B are almost translation invariant in the

direction of a d-dimensional vector subspace of Kn.

The meaning of Y ⊆ Kn being almost translation invariant in the direction of a vector

space V ⊆ Kn is that there exists a definable risometry ϕ such that ϕ(Y ) is invariant

under translations by elements of V . This is equivalent to ϕ(Y ) being a union of cosets

of V . Condition (2) is regarded as the regularity requirement for t-stratifications, and is

analogous to the Whitney conditions mentioned earlier for Whitney stratifications.

We now describe the main results in this thesis. We first introduce T -convex fields.

Let L be a language containing the language of ordered rings Lor := {+,−, ·, 0, 1, <

}, and let T be an o-minimal L-theory containing the Lor-theory of real closed fields.

If R is a model of T , a T -convex subring of R is a convex proper subring O of R

satisfying that f(O) ⊆ O for any 0-definable continuous function f : R −→ R (van

den Dries and Lewenberg [16]). The pair (R,O) is called a T -convex field. It is easy

to see that O must then be a valuation ring of R, so (R,O) is from now on regarded

as a valued field naturally expanding a real closed valued field. The value group of

(R,O) is denoted by Γ and the associated valuation map is denoted by v : R× −→ Γ

(where R× := R \ {0}). The residue field of (R,O) is denoted with R, while the

associated residue map is res : O −→ R. A way of enriching (R,O) is by introducing

respectively.
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Introduction

the structure RV× := R×/(1 +M), where M is the unique maximal ideal of O. The

use of RV× started with the work of Basarab [2], and it has since then featured in several

projects in model theory—for example, its presence is now standard in model-theoretic

approaches to motivic integration (see [10, 31, 56]). The function taking each x ∈ R×

to its class in RV× is denoted by rv. It is easy to see that R \ {0} embeds into RV×

via the map i defined by i(res(x)) := rv(x) for all x ∈ O \ {0}, and that defining

vRV(rv(x)) := v(x) for each x ∈ R× provides a well defined map from RV× onto Γ.

Intuitively, RV× combines R and Γ into a single structure; this is supported by the fact

that 1 R \ {0} RV× Γ 0i vRV is a short exact sequence.

The language LRVeq in which t-stratifications are defined is multi-sorted. As first sort

LRVeq has the L-structure R; the remaining sorts are all the imaginary sorts defined from

RV := RV× ∪ {0} (the natural maps between RV and such sorts are added too). A T -

convex field (R,O) is then turned naturally into an LRVeq-structure (R,RVeq). The

following is one of the main result in this thesis.

Theorem A. If T is power-bounded, then every LRVeq-definable set X ⊆ Rn admits an

LRVeq-definable t-stratification.

This result is achieved by verifying that the conditions in [26] for the existence of t-

stratifications hold for (R,RVeq). Crucial results towards proving those conditions

for T -convex fields come from van den Dries [14], Halupczok op.cit., Holly [30] and

Yin [57]. The most difficult of the conditions—and indeed the one occupying us for

longer in this work—is the Jacobian property.

For (x1, . . . xn) ∈ Rn we set v̂((x1, . . . , xn)) := min{v(xi) | 1 ≤ i ≤ n}. The usual

inner product on powers of R is denoted by 〈·, ·〉. If f : Rn −→ R, we say that f

has the Jacobian property if there exist a sort S ⊆ RVeq and an LRVeq-definable map

χ : Rn −→ S such that whenever q ∈ χ(Rn) satisfies that dim(χ−1(q)) = n, either
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f |χ−1(q) is constant or there exists z ∈ Rn \ {0} such that for all distinct x, x′ ∈ χ−1(q),

v(f(x)− f(x′)− 〈z, x− x′〉) > v̂(z) + v̂(x− x′).

When n = 1, the property above is a variant of conditions employed in axiomatic ap-

proaches to motivic integration (particularly in the style developed by Cluckers and

Loeser [10]). In fact, a similar property appears in Yin [56], where investigations on

motivic integration in T -convex fields are pursued.

The difficult result needed for Theorem A is the following.

Theorem B. Suppose that T is power-bounded and let n ≥ 1. Then every LRVeq-defina-

ble function f : Rn −→ R has the Jacobian property.

On other kinds of stratifications in T -convex fields, Halupczok and Yin [28] introduced

valuative Lipschitz stratifications with the aim of proving that if T is power-bounded

and R is a model of T , then every closed L-definable subset of Rn admits a Lipschitz

stratification. Valuative Lipschitz stratifications are also stratifications in a T -convex

field (R,O) but their existence was proved only for L-definable subsets of Rn when

T is power-bounded. It is unknown whether they exists for all definable sets in the

valuational language (for example, for L∪ {O}-definable sets). It is also open how they

relate to t-stratifications, but there are intuitive reasons to believe that valuative Lipschitz

stratifications are stronger (i.e. their regularity conditions are more restrictive than the

translatability discussed earlier for t-stratifications).

On our path to prove Theorems A and B, we obtain several results on general definability

in T -convex fields. The following is of interest, as it connects this work to research on

minimality conditions for valued fields.

Theorem C. If T is power-bounded, then the LRVeq-theory of all T -convex fields is

b-minimal with centres over the sorts RVeq.

The notion of b-minimality was introduced by Cluckers and Loeser [8]; among its con-
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sequences is, for example, a cell-decomposition theorem. Additionally, b-minimality is

comparable to other minimality conditions for valued fields, e.g. p-minimality (Haskell

and Macpherson [29]) and v-minimality (Hrushovski and Kazhdan [31]).

This thesis also deals with applications of t-stratifications. The tangent cone of X ⊆ Rn

at p ∈ Rn, denoted as Cp(X), is the set of all y ∈ Rn satisfying that for every γ ∈ Γ,

there exist x ∈ X and positive r ∈ R such that v̂(x− p) > γ and v̂(r(x− p)− y) > γ.

In other words, Cp(X) is the cone formed by all the tangent (half-)rays to X at p. For

example, when p is a non-singular point of X , Cp(X) equals the usual tangent space

of X at p. Like tangent spaces for smooth manifolds, tangent cones are important in

the analysis of the local geometry of sets, see for instance [3, 20, 21, 24]. Research

exploiting the interactions of stratifications and tangent cones can be found in [6, 40].

The following is another main result in this thesis.

Theorem D. Suppose that T is power-bounded. If (Si)i≤n is a t-stratification ofX ⊆ Rn

and p ∈ Rn, then the sets Cp,0 := Cp(S0) and Cp,i := Cp(S0∪· · ·∪Si)\Cp(S0∪· · ·∪Si−1)

for 1 ≤ i ≤ n, constitute a t-stratification of Cp(X).

In this way we say that t-stratifications induce t-stratifications on tangent cones. It is

hoped that Theorem D could offer a practical application in the study of singularities,

perhaps after establishing the right notion of equi-singularity between points in the same

stratum of a t-stratification.

With a view towards further applications of t-stratifications, we prove that the stratifica-

tions obtained through Theorem A can be replaced by t-stratifications with L-definable

strata. The proof follows the strategy for a similar result when L = Lor in [26]. Ma-

king t-stratificationsL-definable motivates exploring applications in a purelyL-definable

context. If T admits R as a model, then an (non-principal) ultrapower ∗R of R can be

readily made into a T -convex field. The transfer principle of non-standard analysis helps

to fruitfully transport stratifications and tangent cones between ∗R and R. The following

results are obtained through this method. In their statements we use the usual ∗-notation
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of non-standard analysis. As global hypotheses we suppose that T is power-bounded

and admits R as model.

Theorem E. IfX ⊆ Rn is L-definable and (Si)i≤n is an L-definable partition of Rn such

that (∗Si)i≤n is a t-stratification of ∗X in ∗R, then (Si)i≤n is a C1-Whitney stratification

of X .

When L = Lor, Theorem E was proved in [26], and the same is true for the next one.

Theorem F. Every L-definable set X ⊆ Rn admits a C1-Whitney stratification.

Theorem F is superseded by the much earlier result of Loi [34] mentioned previously (in

Loi’s result power-boundedness of R as an o-minimal L-structure is not required).

One last result new result is the following.

Theorem G. IfX ⊆ Rn and (Si)i≤n are as in the hypotheses of Theorem E, then (Si)i≤n

induces C1-Whitney stratifications on the tangent cones of X .

The notions of tangent cones and inducing in this theorem are analogous to the earlier

ones in the context of (R,RVeq). Theorem G reveals a property of (Si)i≤n that Whitney

stratifications do not have: it is not difficult to see that the latter do not in general induce

Whitney stratifications on tangent cones (see Example 5.3.5). Therefore, stratifications

like (Si)i≤n in Theorem E constitute a genuine new kind of stratification for subsets of

Rn.

To end this introduction, we describe the organisation of this thesis. Chapter 1 provides

the preliminaries needed for t-stratifications. Several examples are presented and en-

lightening results are described. The reader is also directed to Halupczok [27] for a short

informal introduction to t-stratifications. Chapter 2 contains the preliminaries needed

on T -convex fields. In Sections 2.2 and 2.4 new results essential for later chapters are

presented. In Chapter 3, Theorems A, B and C are proved. In Section 3.3 it is proved

that t-stratifications can be made L-definable, and in Section 3.4 an example shows that

t-stratifications cannot exist in general when T is not power-bounded. In Chapter 4, The-
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orem D and a few other results on tangent cones are presented. The last chapter, Chapter

5, contains the applications of t-stratifications to the setting of R. There, Theorems E, F

and G are proved. An afterword and two appendices finish this thesis. The afterword is a

list of open problems around the topics in this thesis. Appendix A provides a brief intro-

duction to o-minimality and weak o-minimality—notions that are prominent throughout

this work. Appendix B presents the proof of a result in [57] fundamental for the main

theorem in Section 2.4.
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Chapter 1

T-stratifications

This chapter is an introduction to t-stratifications accompanied by preliminary mater-

ial needed in later chapters. It contains no original results. Nevertheless, some of the

proofs and most of the examples presented are new. The convention is that all those res-

ults/proofs with no cited reference are new. The material in this chapter comes mainly

from the founding work by Halupczok [26] on t-stratifications. Another, more informal

introduction to the subject is [27].

1.1 The setting and Hypotheses 1.1.9

We let K be a Henselian valued field of characteristic 0. We denote the valuation ring

of K by OK , the unique maximal ideal of OK by MK and the residue field OK/MK

of K by k. We assume that k is of characteristic 0 too; in this case we say K is a

Henselian valued field of equi-characteristic 0. The residue map will be denoted by

res : OK −→ k. Furthermore, we also apply the map res to elements of On
K coordinate-

wise and to matrices (with entries in OK) entry-wise.

The valuation map on K will be denoted by v : K −→ Γ∞, where Γ∞ := Γ ∪ {∞}

and Γ := K×/O×K is the value group of K. We extend v to cartesian powers of K by

1



Section 1.1. The setting and Hypotheses 1.1.9

defining v̂(x) := min{v(xi) | 1 ≤ i ≤ n}, for each x = (x1, . . . , xn) ∈ Kn. Accord-

ingly, we define the valuation of an n × n-matrix M with entries in K by v̂(M) :=

min{v(Mij) | 1 ≤ i, j ≤ n}. Observe that if x ∈ Kn, then v̂(Mx) ≥ v̂(M) + v̂(x).

The valuative topology on Kn is the one generated by the open (valuative) balls

B(x,> γ) := {y ∈ Kn | v̂(x− y) > γ}, where x ∈ Kn and γ ∈ Γ. A closed ball is

a set of the form B(x,≥ γ) := {y ∈ Kn | v̂(x − y) ≥ γ} with x ∈ Kn and γ ∈ Γ.

If B is an open ball, the radius of B, denoted by rad(B), is the element γ ∈ Γ such

that B = B(x,> γ). If B is a closed ball we similarly define rad(B) ∈ Γ. It could

happen that B is both open and closed (for instance when Γ is discrete), and in such case

we let rad(B) be the radius of B as an open ball; this is typically enough for arguments

involving rad(B).

The structure RV× := K×/(1 + MK) combines the residue field and the value group,

and plays an important role in the contemporary research on valued fields. If rv denotes

the canonical map from K× to RV×, the valuation map factors through RV× as follows:

K× Γ

RV×
rv

v

vRV

where vRV : RV× −→ Γ is defined as vRV(ξ) := v(x) for some (eq. any) x ∈ rv−1(ξ), for

all ξ ∈ RV×. Furthermore, the residue field embeds into RV× via the map i : k× −→ RV×

given as i(res(x)) := rv(x) for any x ∈ O×K . The importance of RV× is thus succinctly

resumed in the short exact sequence

1 k× RV× Γ 0.i vRV

We also add an element 0 to RV× to obtain RV := RV× ∪ {0}, and we then extend the

maps above setting rv(0) := 0, i(0) := 0 and v̂RV(0) := ∞. Note that the properties

of 0 ∈ RV suit the intuition around the nature of RV×. In this work we will employ a

multi-dimensional version of RV.

2



Chapter 1. T-stratifications

Definition 1.1.1. We define RV(n) as the quotient of Kn by the equivalence relation

x ∼ y if and only if either x = y = 0 or v̂(x − y) > v̂(x). We use r̂v : Kn −→ RV(n)

for the map taking x ∈ Kn to its class in RV(n).

Note that RV(1) = RV and in that case r̂v = rv. When n = 1, we thus keep the notation

RV for RV(n) and rv for r̂v.

A non-singleton fibre of r̂v will be called an RV-ball. Note that RV-balls are open

valuative balls for if ξ ∈ RV(n) and x ∈ r̂v−1(ξ), then r̂v−1(ξ) = B(x,> v̂(x)). Also, we

generalise the map vRV to RV(n) with n > 1 by putting for each ξ ∈ RV(n), v̂RV(ξ) := v̂(x)

for some (eq. any) x ∈ r̂v−1(ξ).

Each RV(n) can also be seen as a quotient of Kn, generalising the case of RV×. To

see this, first notice that res applied to matrices (see the first paragraph of this section)

induces an epimorhism of groups GLn(OK) −→ GLn(k). We let Un denote the kernel

of this epimorphism, and let Un act on Kn by usual matrix-vector multiplication (for

example, when n = 1, we have that Un = 1 +M and the action is simple multiplication

in K). We then obtain that Kn/Un ' RV(n). Indeed, if the orbit of x ∈ Kn under the

action of Un is denoted by xUn, then the map xUn 7→ r̂v(x) is an isomorphism from

Kn/Un to RV(n).

We next introduce an important class of maps, ubiquitous throughout this work. These

maps are rigid (isometric) and preserve the direction of vectors (see Remark 1.2.9).

Definition 1.1.2. Let X and Y be subsets of Kn. A bijection ϕ : X −→ Y is called a

risometry1 if for all x, x′ ∈ X , we have that r̂v(ϕ(x)− ϕ(x′)) = r̂v(x− x′).

It is clear that the composition of two risometries is a risometry. The inverse of a riso-

metry ϕ : X −→ Y is a risometry too, for if x, x′ ∈ X , then

r̂v(x− x′) = r̂v(ϕ ◦ ϕ−1(x)− ϕ ◦ ϕ−1(x′)) = r̂v(ϕ−1(x)− ϕ−1(x′)).

1In personal communication, Halupczok explained that “risometry” stands for “residue field isometry”.

3



Section 1.1. The setting and Hypotheses 1.1.9

Additionally, as indicated earlier, any risometry ϕmust be an isometry, i.e. for all x, x′ ∈

X , we have that v̂(ϕ(x)− ϕ(x′)) = v̂(x− x′). Indeed, for x, x′ ∈ X ,

v̂(ϕ(x)− ϕ(x′)) ≥ min{v̂(ϕ(x)− ϕ(x′)− (x− x′)), v̂(x− x′)} = v̂(x− x′),

and if the strict inequality held, then v̂(ϕ(x)−ϕ(x′)−(x−x′)) = v̂(x−x′), contradicting

that r̂v(ϕ(x) − ϕ(x′)) = r̂v(x − x′). The following can be seen as a further rigidity

property of risometries.

Lemma 1.1.3. Let ϕ : On
K −→ On

K be a risometry. Then for all x, x′ ∈ On
K we have

that res(ϕ(x)− ϕ(x′)) = res(x− x′). In particular, for any Y ⊆ On
K , res(ϕ(Y )) =

res(Y ) + res(ϕ(0)).

Proof. For x, x′ ∈ On
K , v̂(ϕ(x) − ϕ(x′) − (x − x′)) > v̂(x − x′) ≥ 0, and the de-

sired equation follows. For the second part, if x ∈ Y , by putting x′ = 0 we have that

res(ϕ(x))− res(ϕ(0)) = res(ϕ(x)− ϕ(0)) = res(x). p

Examples 1.1.4. A translation x 7→ x+a (for some a ∈ Kn) is clearly a risometry. Other

examples are given by multiplication by matrices M in GLn(OK) for which res(M) :=

(res(Mij)) = Idn. Indeed, if x, x′ ∈ Kn, then

v̂(M(x− x′)− (x− x′)) ≥ v̂(M − I) + v̂(x− x′) > v̂(x− x′).

So r̂v(Mx − Mx′) = r̂v(x − x′), as required. The subset of GLn(OK) of all such

matrices will be denoted by Un.

By definition, if M ∈ GLn(OK), then v̂(M) ≥ 0 and also v̂(M−1) ≥ 0. In fact, we

have that 0 = v̂(M−1 ◦M) ≥ v̂(M−1) + v̂(M) ≥ 0, so v̂(M) = v̂(M−1) = 0. We use

this fact in the following lemma, which helps us in constructing new risometries from a

given one.

Lemma 1.1.5. Let M ∈ GLn(OK). The following hold.
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(a) If x ∈ Kn, then v̂(Mx) = v̂(M) + v̂(x).

(b) M induces a map on RV(n) given by M(r̂v(x)) := r̂v(Mx) for all x ∈ Kn.

(c) If X, Y ⊆ Kn and ϕ : X −→ Y is a risometry, then ϕM := M ◦ ϕ ◦M−1 is a

risometry.

Proof. (a) If x ∈ Kn, the equation v̂(Mx) = v̂(M)+v̂(x) follows from the inequalities:

v̂(Mx) ≥ v̂(M) + v̂(x) = v̂(x) = v̂(M−1 ◦Mx) ≥ v̂(M−1) + v̂(Mx) = v̂(Mx).

(b) We need to show that r̂v(x) = r̂v(x′) implies r̂v(Mx) = r̂v(Mx′), for all x, x′ ∈ Kn.

Certainly, v̂(Mx−Mx′) = v̂(M) + v̂(x− x′) > v̂(M) + v̂(x) = v̂(Mx) hold for any

x, x′ ∈ Kn.

(c) Since both M and M−1 are in GLn(OK), this follows easily from (b): for x, x′ ∈ X

we have that

r̂v(ϕM(x)− ϕM(x′)) = r̂v(M ◦ ϕ ◦M−1(x)−M ◦ ϕ ◦M−1(x′))

= r̂v(ϕ ◦M−1(x)− ϕ ◦M−1(x′))

= r̂v(M−1(x)−M−1(x′)) = r̂v(x− x′). p

If ϕ : X −→ Y is a risometry and A ⊆ X and B ⊆ Y , we say that ϕ takes A to

B (or sends A to B) if for any x ∈ X , we have that x ∈ A if and only if ϕ(x) ∈ B.

Furthermore, if χ is any map whose domain is contained inX∪Y , we say that ϕ respects

χ if χ|X = χ|Y ◦ ϕ. Also, when X = Y , we say that ϕ respects a set A ⊆ Kn if it

respects the characteristic function χA∩X : X −→ {0, 1}.

The following are two technical lemmas used frequently later.

Lemma 1.1.6 (Part of [26, Lemma 2.15]). Let F be a finite non-empty subset of Kn.

Then each fibre of the map x 7→ r̂v(x− F ) := {r̂v(x− a) | a ∈ F} is either a singleton

{a}, with a ∈ F , or a maximal ball disjoint from F .

Proof. We first claim that for all distinct x, x′ ∈ Kn, r̂v(x−F ) = r̂v(x′−F ) if and only

if B(x,≥ v̂(x− x′))∩F = ∅. Fix distinct x, x′ ∈ Kn and set B := B(x,≥ v̂(x− x′)).
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Assume that r̂v(x− F ) = r̂v(x′ − F ) but B ∩ F 6= ∅. As a first case, we will suppose

that v̂(x−x′) = 0. Without loss, we may also assume that x, x′ ∈ On
K (if this fails, apply

the argument below to 0 and (x′−x), replacing F with (−x+F ) := {−x+a | a ∈ F}).

Observe that for any a ∈ B∩F there exists a′ ∈ B∩F , such that r̂v(x−a) = r̂v(x′−a′);

indeed, from the assumptions, there is a′ ∈ F such that r̂v(x − a) = r̂v(x′ − a′), so

v̂(x′ − a′) = v̂(x − a) ≥ rad(B); thus, a′ ∈ B. Therefore r̂v(x − (B ∩ F )) =

r̂v(x′ − (B ∩ F )), and res(x− (B ∩ F )) = res(x′ − (B ∩ F )). Taking the sum on both

sides of the last equation we get that
∑

a∈B∩F res(x − a) =
∑

a∈B∩F res(x′ − a), and,

using that res is a ring morphism, we have that

∑
a∈B∩F

res(x)− res(a) =
∑

a∈B∩F

res(x′)− res(a).

Simplifying further,

|B ∩ F | res(x)−
∑

a∈B∩F

res(a) = |B ∩ F | res(x′)−
∑

a∈B∩F

res(a).

We conclude that res(x) = res(x′), contradicting that v̂(x− x′) = 0.

In the general case, when v̂(x− x′) 6= 0, take r ∈ K such that v̂(rx− rx′) = 0. Clearly,

r̂v(x − F ) = r̂v(x′ − F ) implies that r̂v(rx − rF ) = r̂v(rx′ − rF ). By applying the

previous argument to rx and rx′ (with rF as F ), we find that B(rx,≥ 0) ∩ rF = ∅. It

easily follows thatB(x,≥ v̂(x−x′))∩F = ∅. For the remaining direction of the claim,

assume that r̂v(x−F ) 6= r̂v(x′−F ). Then there is a ∈ F such that r̂v(x−a) 6= r̂v(x′−a),

so a ∈ B ∩ F 6= ∅.

We now address the lemma. Let A be a fibre of the map x 7→ r̂v(x − F ). Suppose that

A ∩ F 6= ∅ and take a in that intersection. If x ∈ A and x 6= a, the claim above implies

that B(a,≥ v̂(x− a)) ∩ F = ∅, but a is clearly in this intersection, a contradiction.

Thus A = {a}. Additionally, an argument similar to the one below shows that if A is a

singleton, it must equal {a} for some a ∈ F .
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Now we assume that A ∩ F = ∅, and take x ∈ A. If λ := max{v̂(x− a) | a ∈ F}, it is

clear that B(x,> λ) is a maximal ball disjoint from F . We claim that A = B(x,> λ).

Let x′ ∈ A. By the claim in the first part of the proof, B(x,≥ v̂(x − x′)) ∩ F = ∅,

so x′ ∈ B(x,≥ v̂(x− x′)) ⊆ B(x,> λ). We have proved that A ⊆ B(x,> λ). Now,

if x′ ∈ B(x,> λ) but x′ /∈ A, by the claim in the first part of the proof there is some

b ∈ B(x,≥ v̂(x − x′)) ∩ F . It follows that v̂(x − b) ≥ v̂(x − x′) > λ, and so

b ∈ B(x,> λ) ∩ F , a contradiction. We conclude that A = B(x,> λ). p

Lemma 1.1.7. Let F be a finite non-empty subset ofKn. Then any maximal ball disjoint

from F is of the form a+ r̂v−1(ξ) for some a ∈ F and some ξ ∈ RV(n).

Proof. Let B be a maximal ball disjoint from F and take a ∈ F . Since a /∈ B, we have

that for any x, x′ ∈ B, v̂(x− x′) > v̂(x− a), so r̂v(x− a) = r̂v(x′ − a). It follows that

B ⊆ a + r̂v−1(r̂v(x − a)) for any x ∈ B and any a ∈ F . Fix x0 ∈ B, let a ∈ F be

such that v̂(x0 − a) = max{v̂(x0 − y) | y ∈ F}, and set ξ := r̂v(x − a). Notice that if

b ∈ F ∩ (a+ r̂v−1(ξ)), then r̂v(b− a) = ξ, and so v̂(x0− b) > v̂(x0− a), contradicting

the choice of a. We conclude that the ball a+r̂v−1(ξ) is disjoint from F ; the maximality

of B then implies that B = a+ r̂v−1(ξ). p

By combining the two previous lemmas we deduce that, for F ⊆ Kn finite and non-

empty, each fibre of the map x 7→ r̂v(x − F ) is either a singleton {a} with a ∈ F , or a

ball of the form a+ r̂v−1(ξ) for some a ∈ F and some ξ ∈ RV(n).

1.1.1 The base language

Several languages are suitable for the model-theoretic study of valued fields. Among

these are the language {+,−, ·, 0, 1,O}, where O is a predicate for the valuation ring of

K, and the three-sorted (self-explanatory) language (K,Γ, k, v, res). In our approach we

allow many more sorts, the first of which is K as a structure in a language L containing

the language of rings Lr := {+,−, ·, 0, 1}.
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We wish to introduce the structure of RV to the language. Note that RV can be made

into a structure in the language Lg := {∗,−1 , 1, 0}, by interpreting ∗ and −1 as the

natural operations associated to the group RV×, extended by 0 ∗ ξ = 0, for all ξ ∈ RV,

and 0−1 = 0; 1 and 0 are constant symbols for rv(1) ∈ RV and 0 ∈ RV, respectively.

We then consider the two-sorted, self-explanatory structure (K,RV), where the only

connecting map between the sorts is rv : K −→ RV. The definitive language is obtained

by considering RVeq, the collection of all imaginaries defined from RV in (K,RV); that

is, RVeq is the set

{RVn/∼ | n ∈ Z+ and ∼ is an equivalence relation on RVn 0-definable in (K,RV)}.

To (K,RV) we add the elements of this set as new sorts, along with all their canonical

maps RVn −→ RVn/∼. The resulting language is denoted by LHen. The sorts in RVeq

are called auxiliary. Notationally, we think of RVeq as the union of all auxiliary sorts,

and whenever we refer to a function f : X −→ RVeq we mean that f is a function from

X to some auxiliary sort S in RVeq. We say that Q is an auxiliary set if it is a subset of

a finite product of auxiliary sorts.

Examples 1.1.8. (a) Each set RV(n) is an auxiliary sort, for the following is a factori-

sation of r̂v through RVn,

Kn RV(n)

RVn

j

r̂v

p

where j(x1, . . . , xn) := (rv(x1), . . . , rv(xn)) and p(ξ1, . . . , ξn) := r̂v(y1, . . . , yn), for

some (eq. any) yi ∈ rv−1(ξi), with 1 ≤ i ≤ n.

(b) The value group Γ is an auxiliary sort. The factorisation of v through RV presented

in page 2 proves this.

(c) The residue field k is an auxiliary sort. Note that maximal ideal MK of OK is
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defined by the LHen-formula rv(x + 1) = rv(1). On RV we define r̂v(x)E r̂v(y) if

and only if either (1) (x ∈ MK or x−1 ∈ MK) and (y ∈ MK or y−1 ∈ MK) or (2)

(x, y, x−1, y−1 /∈MK) and (x− y ∈MK). Then E is a 0-definable equivalence relation

on RV. If we denote the E-class of rv(x) by rv(x)E then the quotient RV/E can be

identified with k via the map rv(x)E 7→ res(x) if x ∈ OK , and rv(x)E 7→ res(x) = 0

otherwise.

Let S and Q be finite products of sorts and let X ⊆ S be defined by the LHen-formula

φ(x, q), for some q ∈ Q. We define the code pXq of X as the class of q under the 0-

definable equivalence relation given by q′ ∼ q′′ if and only if φ(x, q′) and φ(x, q′′) define

the same subset of S. In the literature, pXq is also called the canonical parameter of X .

Note that even when S is a product of only auxiliary sorts, pXq could be an imaginary

not in RVeq (thus not considered in LHen). Nevertheless, one of the model-theoretic

conditions we impose later (stable embeddedness of RV) will helps us to ensure that all

the codes we work with are already in some auxiliary sort or K itself.

For a definable family of sets (Xq)q∈Q with Q a (subset of a) finite product of sorts, we

may furthermore define codes uniformly through a definable function, i.e. we can find

a product of sorts Q′ and a definable map f : Q −→ Q′ and then set pXqq := f(q) for

each q ∈ Q. Notice thatQ′ could require imaginary sorts fromKeq, but we usually make

sure that Q′ can be taken as a product of the sorts in LHen. In fact, Q is typically taken as

an auxiliary set, so the above occurs automatically after assuming stable embeddedness

of RV.

1.1.2 Model-theoretic assumptions and dimension

We let THen be the LHen-theory of K. In models of THen we can already introduce the

notion of stratifications that concerns us but in search of generality we instead work on

models of an expansion T of THen in a language L ⊇ LHen with the same sorts as LHen.

In this section we discuss the model-theoretic conditions we impose on T to guarantee

9



Section 1.1. The setting and Hypotheses 1.1.9

a tame behaviour in its models, ensuring, for example, a good dimension theory. In the

rest of the chapter definable will always mean L-definable with parameters. Models of

T will be denoted as (K,RVeq).

Hypotheses 1.1.9. ([26, Section 2.5]) Let (K,RVeq) � T and A ⊆ K ∪ RVeq.

(1) The sort RV is stably embedded inK, i.e. every definable subset of RVn is definable

using only parameters from RV.

(2) Every definable function from RV into K has finite image.

(3) For every A-definable set X ⊆ K there exists a finite A-definable set S0 ⊆ K such

that for every ball B ⊆ K \ S0, either B ∩X = ∅ or B ⊆ X .

(4) For every A-definable X ⊆ K and A-definable function f : X −→ K there exists

an A-definable map χ : X −→ RVeq such that for each q ∈ χ(X), f |χ−1(q) is either

constant or injective.

These conditions imply b-minimality for T as introduced in [8].

Proposition 1.1.10. Hypotheses 1.1.9 imply that T is b-minimal over RVeq; that is, the

following hold for any model (K,RVeq) of T , any set of parameters A ⊆ K ∪ RVeq,

every A-definable set X ⊆ K and every A-definable function f : X −→ K.

(b1) There exists anA-definable function ρ : X −→ RVeq such that for each q ∈ ρ(X),

ρ−1(q) is either an open ball or a point;

(b2) there is no definable surjection from an auxiliary set to an open ball in K;

(b3) there exists anA-definable function χ : X −→ RVeq such that for each q ∈ χ(X),

f |χ−1(q) is either constant or injective.

Proof. [26, Lemma 2.26]. Alternatively, see the proofs of Theorems 3.1.1 and 3.1.2. p

Several important consequences of b-minimality are proved in [8], including a cell-

decomposition theorem. The most important consequence for us is the existence of a
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good dimension theory in models of T . From now on we assume that T satisfies Hypo-

theses 1.1.9 and we let (K,RVeq) be a model of T .

Definition 1.1.11. If X ⊆ Kn is non-empty and definable, the dimension dim(X) of X

is the maximal d ≤ n for which there exists a coordinate projection π : Kn −→ Kd

such that π(X) contains an open ball. Conventionally, we set dim(∅) = −∞.

So defined, dim( ) is easily seen to satisfy many of the basic properties of a dimension

function. For instance, if X ⊆ Y ⊆ Kn are definable, then dim(X) ≤ dim(Y ), and

dim(π(X)) ≤ dim(X) whenever π is a coordinate projection. Following [8, Section 4]

and [26, Subsection 2.6], the following less obvious properties of dimension hold.

Proposition 1.1.12. Dimension has the following properties.

(a) If X ⊆ Kn is non-empty and definable, X is 0-dimensional if and only if it is

finite.

(b) If Q is a subset of a product of sorts and (Xq)q∈Q is a definable family of subsets

of Kn, the set Qd := {q ∈ Q | dim(Xq) = d} is definable for each d ≥ 0.

(c) For any definable setsX ⊆ Kn and Y ⊆ Km, dim(X×Y ) = dim(X)+dim(Y ).

(d) If Q is an auxiliary set and (Xq)q∈Q is a definable family of subsets of Kn, then

dim(
⋃
q∈QXq) = max{dim(Xq) | q ∈ Q}.

(e) If X ⊆ Kn and Y ⊆ Km are definable and f : X −→ Y is a definable function

for which every fibre f−1(y) has dimension d, then dim(X) = dim(Y ) + d. In

particular, dimension is preserved under definable bijections.

(f) The local dimension of X at a point x ∈ X , denoted by dimx(X), is defined as

min{dim(X ∩B(x,> γ)) | γ ∈ Γ}. If X ⊆ Kn is definable of dimension d and

Y is the set of points ofX at whichX has local dimension< d, then Y is definable

and dim(Y ) < d.

(g) If X ⊆ Kn is definable, then dim(cl(X) \X) < dim(X).

(h) Under the assumptions of (g), dim(cl(X)) = dim(X).
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Proof. (a) Suppose first that X ⊆ K, and let S0 be as in Hypotheses 1.1.9 (3). We show

that if X is infinite, then dim(X) 6= 0. Assume that X is infinite and take y ∈ X \ S0.

If S0 6= ∅, set γ := max{v(y − s) | s ∈ S0}, otherwise, set γ := v(y). It follows

that B(y,> γ) ∩ S0 = ∅, and hence B(y,> γ) ⊆ X by the property of S0. Thus,

dim(X) = 1. For a 0-dimensional X ⊆ Kn (with n > 1) it is enough to apply the

previous case to the image of X under coordinate projections Kn −→ K.

For (b), notice that dim(Xq) = d is expressible by a first order formula with variable q

and parameter d. Item (c) is clear, while (d) and (e) are proved via cell-decomposition

in b-minimal theories, [8, Proposition 4.3 (4)-(5)]. For (f), the conditions to apply [22,

Theorem 3.1] hold by previous items. Item (g) follows from [13, 2.3 Proposition], since

K is a Henselian valued field of characteristic 0. To prove (h) suppose for the sake

of a contradiction that dim(X) < dim(cl(X)). Then dim(cl(X)) = dim(cl(X) \ X),

and using (g) we get that dim(X) < dim(cl(X)) = dim(cl(X) \ X) < dim(X), a

contradiction. Without the need of (g), item (h) follows from [22, Proposition 2.1]. p

1.2 Translatability

In this section we introduce translatability, and discuss equivalent, frequently more use-

ful definitions of it. This notion is meant to capture a geometric regularity condition of

sets. If a set X ⊆ Kn is translatable on a ball B, it means that X ∩ B is ‘almost trans-

lation invariant’ in dim(X ∩B)-many directions. The almost part comes from allowing

the application of risometries, after which one does get translation invariance.

We assume that T satisfies Hypotheses 1.1.9 and that (K,RVeq) � T .

The following convention will allow us to apply the upcoming definitions to sets and

tuples of maps and sets.

Convention 1.2.1. Let B0 ⊆ Kn and let P be a property of maps B0 −→ RVeq. If

X ⊆ B0, we say that X has property P if and only if the characteristic function of X ,
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χX : B0 −→ {0, 1} has the property P . Furthermore, if ρi : B0 −→ RVeq (i ≤ r) is a

collection of functions and Xi ⊆ B0 (i ≤ s) is a collection of sets, we say that the tuple

(ρ1, . . . , ρr, X1, . . . , Xs) has property P if and only if the map χ : B0 −→ RVeq given

by χ(x) := (ρ1(x), . . . , ρr(x), χX1
(x), . . . , χXs(x)) has the property P .

From now on ‘subspace’ will stand for ‘vector subspace’. In the following definition,

a lift of the subspace V of kn is any subspace V ⊆ Kn such that V = {res(x) | x ∈

V ∩On
K}.

Definition 1.2.2. Let B0 ⊆ Kn be a definable set. Suppose that B ⊆ B0 is a ball (open

or closed) and that χ : B0 −→ RVeq is definable.

(i) If V is a subspace of Kn, we say that χ is V -translation invariant on B if for all

x, x′ ∈ B, x− x′ ∈ V implies χ(x) = χ′(x).

(ii) If V is a subspace of kn, we say that χ is V -translatable on B if there exist a

lift V ⊆ Kn of V and a definable risometry ϕ : B −→ B such that χ ◦ ϕ is

V -translation invariant on B.

(iii) For an integer d with 0 ≤ d ≤ n, we say that χ is d-translatable on B if there is a

d-dimensional subspace V of kn such that χ is V -translatable on B.

By Lemma 1.2.12, X cannot be more than dim(X ∩ B)-translatable on a ball B, so we

say that X is translatable on B if it is dim(X ∩ B)-translatable on B. The risometry

ϕ in (ii) is called a straightener of χ on B. The choice of the lift V of V in (ii) is not

fundamentally important. Once there is a straightener associated with the lift V , we can

always find another straightener for any other given lift of V . We prove this below with

help from the next claim.

Claim 1.2.3. Let V and V ′ be lifts of V ⊆ kn. Then there exists M ∈ Un (see Ex-

amples 1.1.4) such that M(V ) = V ′.

Proof. (Part of the proof of [26, Lemma 2.8]) Set d := dim(V ) and let {vi}i≤d be a

basis of V . Extend {vi}i≤d to a full basis {vi}i≤n of kn. For each i ≤ n, pick elements
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xi ∈ V ∩On
K and x′i ∈ V ′∩On

K such that res(xi) = vi = res(x′i). We set M ∈GLn(OK)

to be the change-of-basis matrix taking xi to x′i for each i ≤ n; so,M(V ) = V ′. To verify

that M ∈ Un, notice that for every i ≤ n, res(M)(vi) = res(M(xi)) = res(x′i) = vi, so

res(M) = Idn on kn. p

With the previous notation, suppose that ϕ : B −→ B is a definable risometry for which

χ ◦ ϕ is V -translation invariant. Let V ′ be another lift of V and M ∈ Un be the matrix

in Claim 1.2.3. By Examples 1.1.4, M is a risometry. Then ϕ ◦ M−1 is a definable

risometry and χ ◦ (ϕ ◦M−1) is V ′-translation invariant.

Remark 1.2.4. The following statements hold.

(a) The set X ⊆ B0 is V -translation invariant on B if and only if there is A ⊆ Kn such

that

X ∩B =
⋃
a∈A

(a+ V ) ∩B.

(b) If χ : B0 −→ RVeq is d-translatable on a ball B ⊆ B0, then χ is d-translatable on

any subball B′ ⊆ B.

Proof. (a) First suppose that X ∩ B =
⋃
a∈A(a + V ) ∩ B for some A ⊆ Kn, and let

x, x′ ∈ B be such that x′ = x + v for some v ∈ V . If, say, x ∈ X ∩ B, then x = a + u

for some a ∈ A and u ∈ V . Hence x′ = (a + u) + v ∈ (a + V ) ∩ B ⊆ X ∩ B. So,

χX(x) = χX(x′). Second, assume that X ∩ B is not a union of cosets of V . Then there

is a coset a+V such that (a+V )∩X ∩B 6= ∅ but nevertheless (a+V )∩B * X ∩B.

Take x in the former intersection and x′ ∈ ((a + V ) ∩ B) \ (X ∩ B). Then clearly,

x− x′ ∈ V but χX(x) 6= χX(x′).

(b) This is clear. p

Item (a) above helps to visualise translatability. If X ⊆ K2 is 1-translatable on a ball B,

then there are a line V ⊆ K2 through 0 and a definable risometry ϕ : B −→ B such

that ϕ(X) is a bunch of lines in K2 with direction (i.e. parallel to) V . This is a strong

geometric requirement on X; it forbids spiralling and other non-tame behaviour.

14
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Examples 1.2.5. The following are examples on translatability.

(1) 0-translatability is a trivial condition, in that any definable function χ : B0 −→ RVeq

is 0-translatable on any ball B ⊆ B0.

(2) If X ⊆ B0 ⊆ Kn and B ⊆ B0 is a ball, then X is n-translatable on B if and only

if either X ∩B = ∅ or B ⊆ X . From right to left the implication is clear. For the other

direction assume that X is n-translatable on B but X ∩ B 6= ∅ 6= B \ X . Note that

the only possible choices for V and V are kn and Kn respectively. Let ϕ : B −→ B

be a straightener of X . The bijectivity of ϕ implies that there are x, x′ ∈ B such that

ϕ(x) ∈ X ∩B and ϕ(x′) ∈ B \X , but this is a contradiction to V -translation invariance

of X ∩B since obviously x− x′ ∈ V .

(3) Let T ⊆ Kn be finite and non-empty, and define χ : Kn −→ RVeq as the map

x 7→ pr̂v(x−T )q, where r̂v(x−T ) := {r̂v(x−t) | t ∈ T}. By Lemma 1.1.6 each fiber of

χ is either a point t ∈ T , or a maximal ball disjoint from T . We claim that for 0 < d ≤ n

and any ball B ⊆ Kn, χ is d-translatable on B if and only if B is disjoint from T . The

claim from right to left is trivial (for each d, we can take V := kd, V := Kd and the

risometry ϕ := IdB). In the other direction, fix 0 < d ≤ n and suppose that B ∩T 6= ∅.

For the sake of a contradiction, assume that there is a d-dimensional subspace V ⊆ kd, a

lift V of V , and a risometry ϕ : B −→ B such that χ◦ϕ is V -translation invariant on B.

Fix t ∈ B ∩ T . For all x ∈ ϕ−1(t) + V , we have that χ ◦ ϕ(x) = χ ◦ ϕ(ϕ−1(t)) = χ(t),

so for all such x, 0 ∈ r̂v(t − T ) = r̂v(ϕ(x) − T ) and ϕ(x) ∈ T . We have thus reached

the absurd conclusion that the infinite set ϕ(ϕ−1(t) + V ) is contained in T .

(4) Consider the set X := {(x, y) ∈ K2 | xy = 0}. For a ball B ⊆ K2, we

claim that X is 1-translatable on B if and only if 0 /∈ B. First assume that B is a

ball not containing 0. If X ∩ B = ∅, there is nothing to check. We thus suppose

otherwise. Necessarily, B intersects only one of the axes making up X , for if (x, 0)

and (0, y) were elements of X ∩ B with x 6= 0 and, say, B = B((x, 0),≥ γ), then

γ ≤ v̂(x,−y) = min{v(x), v(y)} ≤ v(x), so v̂((x, 0)− (0, 0)) = v(x) ≥ γ, contradict-
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ing that 0 /∈ B. The 1-translatability of X on B is obvious now: if B intersects the

axis K × {0}, we take V := k × {0}, V := K × {0} and the identity map on B as

straightener. The choices when B intersects {0} ×K are clear too.

Now we suppose that B is a ball containing 0. For the sake of a contradiction, suppose

that there are a 1-dimensional subspace V of k2, a lift V of V and a definable risometry

ϕ : B −→ B such that ϕ(X) is V -translation invariant on B. Intuitively, on the one

hand ϕ(X ∩B) is a set of lines parallel to V , and on the other, the rigidity of a risometry

tells us that ϕ(X ∩B) should look roughly like X ∩B, which clearly does not look like

a set of lines parallel to V (no matter what V actually is); a contradiction. We formalise

this argument below.

To take advantage of Lemma 1.1.3, for now we assume that B = O2
K . On one hand,

Lemma 1.1.3 implies that res(ϕ(X ∩B)) = res(X ∩B) + a, where a := res(ϕ(0)). So

res(ϕ(X ∩B)) is a translation of the set res(X ∩B) = {(x, y) ∈ k2 | xy = 0}, the ‘axes

cross’ in k2. On the other hand, by V -translation invariance, Remark 1.2.4 (a) implies

that there existsA ⊆ k2 such that res(ϕ(X∩B)) =
⋃
a∈A(a+V ); so res(ϕ(X∩B)) is a

union of lines parallel to V in k2. This is a contradiction, for the cross (k×{0})∪({0}×

k) does not equal a set of lines parallel to a fixed line in k2. Lastly, a similar argument

applies for any other closed ball B = B(0,≥ γ), by scaling up or down to O2
K , i.e. by

taking an element r ∈ v−1(γ) and then applying the bijection x 7→ r−1x from B to O2
K .

If B is open, we can take a closed subball containing 0 and follow the previous case; this

is enough to imply the non-translatability on B by Remark 1.2.4 (b).

Example (4) incidentally shows that d-translatability on a ball B does not imply d-

translatability on bigger balls. In that example, if B does not contain 0, we have 1-

translatability, but 1-translatability fails on any bigger ball containing both 0 and B.
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1.2.1 Equivalences of translatability

In this subsection we discuss two equivalences of translatability; both have the advantage

of eliminating the reference to a lift in Definition 1.2.2 (ii) (but have the disadvantage of

being more technical).

By the coordinate-wise definition of res on On
K , a coordinate projection π : Kn −→ Kd

induces a coordinate projection π̃ : kn −→ kd satisfying that π̃(res(x)) = res(π(x)) for

all x ∈ On
K .

Definition 1.2.6. (1) Let V be a d-dimensional subspace of kn. We say that the co-

ordinate projection π : Kn −→ Kd exhibits V , or that π is an exhibition of V , if the

corresponding projection π̃ is an isomorphism between V and kd.

(2) If x ∈ Kn \{0}, the direction of x is the 1-dimensional subspace res((K · x) ∩On
K)

of kn, which we denote by dir(x). In practice dir(x) will be treated as a representative

y ∈ res((K · x) ∩ On
K) of the direction, i.e. dir(x) will be taken as a generator of

res((K · x) ∩On
K).

Remark 1.2.7. If π : Kn −→ Kd exhibits V , then for any lift V of V and x ∈ Kd,

the set π−1(x) ∩ V must be a singleton. Otherwise, suppose that z, z′ ∈ π−1(x) ∩ V are

distinct and let r ∈ K be such that v(r) = − v̂(z − z′). Then 0 6= res(r(z − z′)) ∈ V

but π̃(res(r(z − z′))) = res(rπ(z − z)) = res(r(x − x)) = 0, contradicting that π|V is

an isomorphism.

We now prove a couple of technical results used frequently throughout this work. With

the exception of (b), these are part of [26, Lemma 2.10]. We denote the usual inner

product on Kn and kn by 〈·, ·〉.

Lemma 1.2.8. Let π : Kn −→ Kd be a coordinate projection.

(a) If x, x′ ∈ Kn satisfy that v̂(x + x′) = min{v̂(x), v̂(x′)}, then r̂v(x + x′) is

completely determined by r̂v(x) and r̂v(x′), i.e. for any other y, y′ ∈ Kn with

r̂v(x) = r̂v(y) and r̂v(x′) = r̂v(y′), we have r̂v(x+ x′) = r̂v(y + y′).

17
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(b) If x, x′ ∈ Kn are such that r̂v(x) = r̂v(x′), then dir(x) = dir(x′).

(c) For x ∈ Kn, v̂(π(x)) = v̂(x) if and only if π̃(dir(x)) 6= 0. In that case,

π̃(dir(x)) = dir(π(x)), and if x′ ∈ Kn is such that π(x′) = π(x) and dir(x′) =

dir(x), then r̂v(x′) = r̂v(x).

(d) For any x, x′ ∈ Kn, v(〈x, x′〉) ≥ v̂(x) + v̂(x′); and, moreover, if x and x′ are

non-zero, the strict inequality holds if and only if 〈dir(x), dir(x′)〉 = 0.

Proof. The proof of these facts is easy but technical.

(a) Notice that

v̂(x+ x′ − (y + y′)) ≥ min{v̂(x− y), v̂(x′ − y′)} > min{v̂(x), v̂(x′)} = v̂(x+ x′).

(b) If x = 0 or x′ = 0, the result is obvious. From now we assume that x, x′ ∈ Kn \ {0}.

If res(λx) ∈ dir(x), with λ ∈ K× and λx ∈ On
K , then v̂(λx′) = v(λ) + v̂(x) ≥ 0,

so λx′ ∈ On
K too. Since v̂(λx− λx′) > v̂(λx) ≥ 0, res(λx) = res(λx′) ∈ dir(x′).

This proves that dir(x) ⊆ dir(x′). A symmetrical argument allows us to conclude that

dir(x) = dir(x′).

(c) Clearly, v̂(π(x)) ≥ v̂(x) always holds. Now we assume that x 6= 0 and let r ∈ K be

such that v(rx) = 0. If v̂(π(x)) = v̂(x) then v̂(π(rx)) = v̂(rx) = 0, and it follows that

π̃(dir(x)) = π̃(res(rx)) = res(π(rx)) 6= 0. On the other hand, if v̂(π(x)) > v̂(x), then

v̂(π(rx)) > v̂(rx) ≥ 0, so π̃(dir(x)) = π̃(res(rx)) = 0.

To prove the second assertion we assume that π̃(dir(x)) 6= 0. Then for all r ∈ K such

that v(rx) = 0, we have that π̃(res(rx)) = res(π(rx)), so indeed π̃(dir(x)) = dir(π(x)).

For the last part of (c) we let x′ ∈ Kn be such that π(x′) = π(x) and dir(x′) = dir(x).

For simplicity of notation, we assume that π is the projection to the first d coordinates

and let π⊥ denote the complementary projection to the last n− d coordinates. Observe

that dir(π(x), π⊥(x)) = dir(π(x), π⊥(x′)), so

dir(π(x), π⊥(x)− π⊥(x′)) = dir(x) ∈ kd × {0}n−d.
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We thus have that v̂(π⊥(x)− π⊥(x′)) > v̂(π(x)) = v̂(x), and r̂v(x′) = r̂v(x) follows.

(d) If either x = 0 or x′ = 0, v(〈x, x′〉) = ∞ = v̂(x) + v̂(x′). So we assume that

x 6= 0 6= x′. Suppose that x = (x1, . . . , xn) and x′ = (x′1, . . . , x
′
n), and let xi0 and x′j0 be

such that v̂(x) = v(xi0) and v̂(x′) = v(x′j0). We thus have that v̂(xix
′
i/xi0x

′
j0

) ≥ 0, for

all i ∈ {1, . . . , n}. Hence,

v
(〈x, x′〉
xi0x

′
j0

)
= v

( n∑
i=1

xix
′
i

xi0x
′
j0

)
≥ min

{
v
( xix

′
i

xi0x
′
j0

)
| i ∈ {1, . . . , n}

}
≥ 0.

It follows that v(〈x, x′〉) ≥ v(xi0x
′
j0

) = v̂(x) + v̂(x′), as desired.

Before addressing the second part, notice that in general, if x, x′ ∈ On
K , then

〈res(x), res(x′)〉 =
n∑
i=1

res(xi) res(x′i) = res
( n∑
i=1

xix
′
i

)
= res(〈x, x′〉)

With this observation made, we now prove the second part. Let x, x′ ∈ Kn \ {0} and let

r, r′ ∈ K be such that v(r) = − v̂(x) and v(r′) = − v̂(x′). Then dir(x) = res(rx) and

dir(x′) = res(r′x′). It follows that 〈dir(x), dir(x′)〉 = 0 if and only if res(〈rx, r′x′〉) = 0

by the observation above. In turn, the latter equality is equivalent to v(〈rx, r′x′〉) > 0,

which clearly holds if and only if v(〈x, x′〉) > − v(rr′) = v̂(x) + v̂(x′). p

The following is yet another property of risometries.

Remark 1.2.9. If ϕ : X −→ Y is a risometry and x, x′ ∈ X , we know by definition that

r̂v(ϕ(x)− ϕ(x′)) = r̂v(x− x′), so also dir(ϕ(x)− ϕ(x′)) = dir(x− x′) by (b) above.

In the definition below, we let B0 ⊆ Kn and χ : B0 −→ RVeq be definable and B ⊆ B0

be a ball. Furthermore, V will be a d-dimensional subspace of kn and π : Kn −→ Kd

an exhibition of V . Note that the set B−B := {x− y | x, y ∈ B} is the ball of the same

radius as B containing 0.

Definition 1.2.10. A definable family of risometries (αx : B −→ B)x∈π(B−B) is said

to be a translater of χ on B (with respect to π) if the following properties hold for all
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x, x′ ∈ π(B −B) and z ∈ B,

(i) χ ◦ αx = χ;2

(ii) αx ◦ αx′ = αx+x′;

(iii) π(αx(z)− z) = x;

(iv) if x 6= 0, dir(αx(z)− z) ∈ V .

The proposition below shows that the existence of a translater is equivalent to translatabi-

lity. The proposition also presents the third announced equivalence. This one transforms

translatability into the existence of a definable equivalence relation on the fibres of a

projection.

Proposition 1.2.11. Suppose that B0 ⊆ Kn and χ : B0 −→ RVeq are definable and let

B ⊆ B0 be a ball. Fix d ≤ n. The following are equivalent.

(a) χ is d-translatable on B;

(b) there exist a d-dimensional subspace V of kd, an exhibition π of V and a translater

(αx)x∈π(B−B) of χ on B (with respect to π);

(c) there exist a d-dimensional subspace V of kd, an exhibition π of V and a definable

equivalence relation ∼ on B with the following properties,

(c.i) ∼ refines the fibres of χ, i.e. for all z, z′ ∈ B, z ∼ z′ implies χ(z) = χ(z′);

(c.ii) for each equivalence class E of ∼, π : E −→ π(B) is a bijection;

(c.iii) for all distinct z, z′ ∈ B, z ∼ z′ implies dir(z − z′) ∈ V ;

(c.iv) for all z, z′, w ∈ B with z ∼ z′, there is w′ ∈ B such that w′ ∼ w and

r̂v(z′ − w′) = r̂v(z − w).

Proof. (a) implies (b) (Part of the proof of [26, Lemma 3.7]). Let V be a d-dimensional

subspace of kn such that χ is V -translatable on B. Fix a lift V and an exhibition π of

V . By [26, Lemma 3.6 (1)], there is a straightener ϕ : B −→ B of χ on B respecting

2In other words, each αx respects χ.
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π, i.e. π ◦ ϕ = π. Heeding Remark 1.2.7, for each x ∈ π(B − B), let ξx be the sole

element of π−1(x) ∩ V , and define α′x : B −→ B as the translation z 7→ z + ξx. We set

αx : B −→ B to be the composition ϕ ◦ α′x ◦ ϕ−1. Clearly αx is a risometry, for it is a

composition of risometries.

Now it is routine to prove that (αx)x∈π(B−B) satisfies the conditions (i)-(iv) in Defin-

ition 1.2.10. Let x, x′ ∈ π(B − B). Since ϕ is a straightener of χ, we know that

χ ◦ ϕ(z) = χ ◦ ϕ(z′) holds whenever z − z′ ∈ V . Applying this to z and α′x(z) for each

z ∈ B, we get that χ ◦ ϕ ◦ α′x = χ ◦ ϕ (because α′x(z)− z = ξx ∈ V for all z ∈ B). It

follows that χ ◦ αx = χ ◦ (ϕ ◦ α′x ◦ ϕ−1) = (χ ◦ ϕ) ◦ ϕ−1 = χ, proving (i). For (ii), we

have that

αx ◦ α′x = ϕ ◦ α′x ◦ α′x′ ◦ ϕ−1 = ϕ ◦ α′x+x′ ◦ ϕ−1 = αx+x′ ,

because ξx+x′ = ξx + ξx′ .

For (iii), notice that if z ∈ B, then π ◦ α′x(z) = π(z + ξx) = π(z) + x. Using that

π ◦ ϕ = π = π ◦ ϕ−1, it follows that for all z ∈ B,

π(αx(z)− z) = π(ϕ ◦ α′x ◦ ϕ−1(z)− z) = π(z) + x− π(z) = x.

Lastly, we assume that x 6= 0 and we aim to prove (iv). Notice that for every w ∈ B,

dir(α′x(w)−w) = dir(ξx) ∈ V . Using that ϕ is a risometry and the definition of αx, we

have that r̂v(αx(z)− z) = r̂v(α′x ◦ϕ−1(z)−ϕ−1(z)); so, by Remark 1.2.9 we conclude

that dir(αx(z)− z) = dir(α′x(ϕ
−1(z))− ϕ−1(z)) ∈ V .

(b) implies (c). For z, z′ ∈ B we define z ∼ z′ if and only if there exists x ∈ π(B − B)

such that αx(z) = z′. Clearly,∼ is definable. Since 0 ∈ π(B−B),∼ is reflexive. Notice

that α−1
x = α−x for all x ∈ π(B − B); this implies the symmetry of ∼. The transitivity

of ∼ clearly follows from (ii). We now show that ∼ satisfies (c.i)-(c.iv). If z, z′ ∈ B and

αx(z) = z′ for some x ∈ π(B − B), we have that χ(z) = χ ◦ αx(z) = χ(z′), proving

(c.i). For (c.ii), note that if αx(z) = z′ and π(z) = π(z′), then by (iii), x = π(z′−z) = 0.

So αx = α0 is the identity onB and z = z′. This shows that π : E −→ π(B) is injective;
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its surjectivity is obvious. Note that (c.iii) follows immediately from (iv). For (c.iv), if

αx(z) = z′, we let w′ := αx(w). Then clearly w′ ∼ w, and the required equation holds

because αx is a risometry.

(c) implies (a). To simplify notation, we assume that 0 ∈ B, V = kd × {0}n−d and that

π is the projection to the first d coordinates. We fix the lift V := Kd × {0}n−d of V .

Points in B will be written as pairs (x, y) where x ∈ Kd and y ∈ Kn−d. For (x, y) ∈ B,

we set ϕ(x, y) as the unique element of π−1(x) ∩ E(0,y), where E(0,y) denotes the ∼-

equivalence class of (0, y). We show that ϕ is a straightener of χ on B. Clearly, ϕ is

definable and—by (c.ii)—bijective. Now assume that (x, y), (x′, y′) ∈ B are such that

(x, y)− (x′, y′) ∈ V . Then y = y′ and this immediately implies that ϕ(x, y) ∼ ϕ(x′, y′);

so, from (c.i) we deduce that χ ◦ ϕ(x, y) = χ ◦ ϕ(x′, y′). Lastly, we prove that for any

(x, y), (x′, y′) ∈ B, we have that r̂v(ϕ(x, y)−ϕ(x′, y′)) = r̂v((x, y)− (x′, y′)). Heeding

Lemma 1.2.8 (c), it is enough to prove the equations

r̂v(ϕ(x, y)− ϕ(x′, y)) = r̂v((x, y)− (x′, y)) (1.1)

and

r̂v(ϕ(x′, y)− ϕ(x′, y′)) = r̂v((x′, y)− (x′, y′)). (1.2)

Let π⊥ : Kn −→ Kn−d be the projection to the last n − d coordinates. By definition,

(1.1) is equivalent to v̂((0, π⊥(ϕ(x, y))− π⊥(ϕ(x′, y))))> v̂((x− x′, 0)), which redu-

ces to v̂(π⊥(ϕ(x, y)) − π⊥(ϕ(x′, y))) > v̂(x − x′). We thus prove this inequality. Let

r ∈ K be such that v(r) = − v̂(π⊥(ϕ(x, y)) − π⊥(ϕ(x′, y))). If the desired inequality

failed, we would have that v̂(r(x− x′)) ≥ 0 and v̂(r(π⊥(ϕ(x, y))− π⊥(ϕ(x′, y)))) = 0,

so v := dir(r(x − x′), r(π⊥(ϕ(x, y)) − π⊥(ϕ(x′, y)))) /∈ kd × {0}n−d. However,

notice that v = dir(x − x′, π⊥(ϕ(x, y)) − π⊥(ϕ(x′, y))) and that by definition of ϕ,

ϕ(x, y) ∼ (0, y) ∼ ϕ(x′, y), so by (c.iii), v = dir(x−x′, π⊥(ϕ(x, y))−π⊥(ϕ(x′, y))) =

dir(ϕ(x, y)− ϕ(x′, y)) ∈ kd × {0}n−d, a contradiction. We have proved (1.1).

We now prove (1.2). Since (0, y) ∼ ϕ(x′, y), (c.iv) implies that there is (p1, p2) ∈ B such
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that (0, y′) ∼ (p1, p2) and r̂v(ϕ(x′, y)−(p1, p2)) = r̂v((0, y−y′)) = r̂v((x′, y)−(x′, y′)).

For (1.2) it is hence enough to show that r̂v(ϕ(x′, y)−ϕ(x′, y′)) = r̂v(ϕ(x′, y)−(p1, p2)).

Notice that (p1, p2) ∼ (0, y′) ∼ ϕ(x′, y′), so dir(ϕ(x′, y′)− (p1, p2)) ∈ kd × {0}n−d by

(c.iii). This in particular implies that v̂(π⊥(ϕ(x′, y′)) − p2) > v̂(x′ − p1). Additionally,

since r̂v(ϕ(x′, y)− (p1, p2)) = r̂v((x′ − x′, y − y′)), we have that

v̂(x′ − p1) ≥ v̂(x′ − p1, π
⊥(ϕ(x′, y))− p2 − y + y′)} > v̂(x′ − p1, π

⊥(ϕ(x′, y))− p2);

from which it follows that v̂(x′ − p1) > v̂(π⊥(ϕ(x′, y))− p2). We conclude that

v̂(π⊥(ϕ(x′, y))− p2) < v̂(x′ − p1) < v̂(π⊥(ϕ(x′, y′))− p2). (1.3)

Finally, the desired equation r̂v(ϕ(x′, y) − (p1, p2)) = r̂v(ϕ(x′, y) − ϕ(x′, y′)) is equi-

valent to v̂(ϕ(x′, y′)− (p1, p2)) > v̂(ϕ(x′, y)− (p1, p2)), and—expanding further—to

v̂(x′ − p1, π
⊥(ϕ(x′, y′))− p2) > v̂(x′ − p1, π

⊥(ϕ(x′, y))− p2). (1.4)

By (1.3), the left-hand-side of (1.4) equals v̂(x′ − p1), and the right-hand-side equals

v̂(π⊥(ϕ(x′, y))− p2). Again by (1.3), (1.4) is clear. p

Consequently, for a given V , a translater (αx)x∈π(B−B) of χ onB is said to witness the V -

translatability of χ on B, or that (αx)x∈π(B−B) is a translater witnessing V -translatability

of χ on B. We work extensively with translaters in Chapter 4.

The next result is used implicitly throughout this work and is [26, Lemmas 3.3 and 3.10].

Lemma 1.2.12. Let B0 ⊆ Kn be definable and B ⊆ B0 be a ball.

(a) Let V1 and V2 be subspaces of kn and χ : B0 −→ RVeq be definable. If χ is

Vi-translatable on B for i = 1, 2, then χ is V1 + V2-translatable on B.

(b) Let V be a subspace of kn and X ⊆ Kn be definable. If X is V -translatable on

B, then dim(V ) ≤ dim(X). In fact, if π : Kn −→ Kdim(V ) is an exhibition of V ,

then for each q ∈ π(V ), we have that dim(X) = dim(X ∩ π−1(q)) + dim(V ).
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Proof. (a) [26, Lemma 3.3]; (b) Set d := dim(V ) and let (αx)x∈π(B−B) be a translater of

X on B. Notice that for every q, q′ ∈ π(B) the risometry αq−q′ restricted to X ∩ π−1(q)

is a definable bijection to X ∩ π−1(q′), so by the second part of Proposition 1.1.12 (e),

dimension is constant on the sets X ∩ π−1(q) with q ∈ π(B). By Proposition 1.1.12

(e) again we conclude that for any q ∈ π(B), dim(X) = dim(X ∩ π−1(q)) + d, as

required. p

Notation 1.2.13. By (a) above, there always exists a maximal subspace V of kn for

which χ is V -translatable on B. Such space is called the translatability space of χ on

B, and will be denoted by tspB(χ).

Observe that for d ≤ n, χ is d-translatable on B if and only if d ≤ dim(tspB(χ)). And

if V is a subspace of kn, then χ is V -translatable on B if and only if V ⊆ tspB(χ).

1.3 T-stratifications

In [53], H. Whitney introduced the stratifications now known as Whitney stratifications

for analytic varieties in Cn and Rn. The driving idea in Whitney’s work was to classify

the singularities of a variety. The original construction of a Whitney stratification for an

analytic variety X ⊆ Cn is as follows. We first split X into the subvariety of regular

points of X , Xrg, and the subvariety of singular points of X , Xsg. We then split Xsg

again into the subvarieties (Xsg)rg and (Xsg)sg. By continuing in this fashion, we obtain

the sequence of varieties, X, Xrg, Xsg, (Xsg)rg, (Xsg)sg, ((Xsg)sg)rg, . . . . A partition

of X is then given by the sets:

Xrg, (Xsg)rg, ((Xsg)sg)rg, (((Xsg)sg)sg)rg, . . . .

In [53, Theorem 19.2] Whitney describes how to refine this partition to obtain a regu-

lar—nowadays known as Whitney—stratification of X . It was later proved by R. Thom
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([46]) that points in the same strata are normally equi-singular, thus showing that a

Whitney stratification indeed provides a classification of the points of X in terms of how

singular they are ([36] is a fine exposition of these results by J. Mather). To this day,

Whitney stratifications and their variations have played, and play, an important role in

the study of singularities.

The first model-theoretic approach to Whitney stratifications consisted of an investiga-

tion of whether they exist for definable sets in arbitrary o-minimal expansions of the real

field. This was answered positively by T. L. Loi in [34]3. More recently, model theorists

have looked into analogues to Whitney stratifications in very different settings. In this

thesis we are interested in an analogue in valued fields.

In [6], R. Cluckers, G. Comte and F. Loeser introduced a notion of regular stratification

for definable sets in the p-adic field Qp. Their approach is so far the only one known

to work in some instances of the mixed characteristic case. The stratifications we are

interested in were introduced by I. Halupczok in [26], and their definition makes them

suitable only in valued fields of equi-characteristic 0. Finding an appropriate analogue

in the mixed characteristic setting remains as an important open problem.

A tuple of sets (S0, . . . , Sn) will be denoted by (Si)i≤n, and for each d ≤ n, the sets⋃
i≤d Si and

⋃
i≥d Si will be denoted by S≤d and S≥d, respectively.

Definition 1.3.1. Let B0 ⊆ Kn be a definable set. A definable partition (Si)i≤n of B0 is

said to be a t-stratification if the following hold.

(1) For each d ≤ n, dim(S≤d) ≤ d;

(2) for each d ≤ n and ball B ⊆ S≥d, the tuple (Si)i≤n is d-translatable on B.

Furthermore, if χ : B0 −→ RVeq is a definable function, we say that the t-stratification

(Si)i≤n reflects χ if the following strengthening of (2) holds.

(2’) For any d ≤ n and ball B ⊆ S≥d, the tuple ((Si)i≤n, χ) is d-translatable on B.

3In an earlier paper, L. van den Dries and C. Miller claimed this result but their proof was later retracted.
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For X ⊆ B0, we say that (Si)i≤n is a t-stratification of X if (Si)i≤n is a t-stratification

reflecting χX . We may also say that (Si)i≤n is a t-stratification of a tuple of maps and

sets heeding Convention 1.2.1.

Notice that if (Si)i≤n is a t-stratification reflecting a map χ : Rn −→ RVeq and (S ′i)i≤n

is in turn a t-stratification reflecting (Si)i≤n, then (S ′i)i≤n reflects χ too. We use this fact

later without further mentioning.

Examples 1.3.2. (1) Let X ⊆ K be definable and let S0 be the finite set obtained from

Hypotheses 1.1.9 (3). We claim that (S0, S1 := K \ S0) is a t-stratification of X . For a

ballB ⊆ K \S0, eitherX ⊆ B orX∩B = ∅; hence, 1-translatability of (S0, S1, X) on

B holds by Examples 1.2.5 (2). This example tells us that Hypotheses 1.1.9 (3) plainly

states the existence of t-stratifications of definable subsets of K.

(2) Let T ⊆ Kn be finite and let χ : Kn −→ RVeq be the map x 7→ pr̂v(x− T )q. By

Examples 1.2.5 (3), the sets S0 := T , Si := ∅ for 1 ≤ i < n, and Sn := Kn \ T , form a

t-stratification of Kn reflecting χ.

(3) Consider the setX = {(x, y) ∈ K2 | xy = 0} and define S0 := {0}, S1 := X \{0}

and S2 := K2 \X . From Examples 1.2.5 (4) it follows that ((Si)i≤2, X) is 1-translatable

on any ballB ⊆ S≥1 = K2 \S0. By Examples 1.2.5 (2), 2-translatability of ((Si)i≤2, X)

on a ball B ⊆ S2 is immediate as B ∩X = ∅ by definition of S2. Therefore, (Si)i≤2 is

a t-stratification of X .

(4) Let ξ ∈ RV \ {0} and set X := rv−1(ξ) ⊆ K. Using that X is an open ball,

we can see that for any point x0 ∈ X , the sets S0 = {x0} and S1 = K \ {x0} form a

t-stratification of X .

The choice of x0 ∈ X was arbitrary and this raises the question of whether the t-

stratification (S0, S1) is definable over the same parameters used to define X—in this

case only ξ. The next lemma will help us to obtain a ξ-definable t-stratification of X .

Lemma 1.3.3. Let ξ ∈ RV×. If a ∈ K, then S0 = {a} and S1 = K \ {a} constitute a

t-stratification of X := rv−1(ξ) if and only if v(a) ≥ vRV(ξ).
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Proof. Suppose that a ∈ K is such that v(a) ≥ vRV(ξ). For 1-translatability on a ball

B ⊆ K \ {a}, it is enough to show that either B ∩ X = ∅ or B ⊆ X . Assume that

B ∩ X 6= ∅ but B * X . Let x ∈ B ∩ X and y ∈ B \ X . Using that rv(x) 6= rv(y),

v(a) ≥ vRV(ξ) = v(x) ≥ v(x − y) > rad(B). So 0 ∈ B and, consequently, a ∈ B too,

contradicting the choice of B. Thus 1-translatability holds on B. For the other direction,

assume that v(a) < vRV(ξ). Then a /∈ B := B(0,≥ vRV(ξ)) and X ( B, so X is not

1-translatable on B. p

Therefore, S0 := {0} and S1 := K \ {0} constitute a 0-definable t-stratification of

X := rv−1(ξ), for any ξ ∈ RV×. A similar statement—and lemma—can be proved for

RV-balls in Kn for n > 1.

Recall that the classical driving idea about stratifications is to classify the points of a

set according to how singular they are. Under this idea, the points in the first (lowest

dimensional) stratum are deemed as the worst, most singular points of the set; while the

elements of the last (highest dimensional) stratum are the most regular (or irrelevant)

points of the set. This seems to change with t-stratifications. Frequently, one is forced to

put points into S0 which would be otherwise considered unproblematic (non-singular).

This happened in the last example, with 0 being apparently irrelevant to rv−1(ξ). This is

a loss in intuition but a gain in power: points that we may have ordinarily seen as regular

could become singularities in the residue field (or other quotients). A t-stratification is

strong enough to capture these ‘quasi-singularities’.

(5) To visualise this example, we assume thatK expands a real closed valued field. Let

X := {(x, y) ∈ K2 | y = x2}. It is surprising that the sets ∅, X and K2 \X do not form

a t-stratification of X (we would expect S0 = ∅ as X does not have singularities). The

problem is that in some balls containing 0 (e.g., in O2
K) the direction of X (which for

now can be thought of as the tangent at some point of X , see the definition of affdir(X)

in page 33) is significantly different to the right and left of 0, leaving no suitable choice

of a 1-dimensional space for 1-translatability onB. We avoid this issue by putting a point
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in S0, which automatically bans balls as above. We set S0 := {0}, S1 := X \ {0} and

S2 := K2 \X , and we claim that (Si)i≤2 is a t-stratification of X . This can be visualised

without difficulty: a ball B ⊆ K2 \ {0} could either (a) intersect a single branch of the

parabola; hence, is enough to straighten X ∩ B down to the tangent of X ∩ B at some

(arbitrary) point x0 ∈ X ∩ B, or (b) intersect both branches of the parabola, implying

that B is big and considerably far away from 0, and that X ∩B is ‘almost’ parallel to the

axis {0}×K; in this case X ∩B is straightened to two vertical lines (one per ‘branch’).

We formalise part of these ideas below. The reader could skip this argument as it is

entirely and heavily technical; we provide it with the aim of exemplifying more specific

techniques when dealing with translatability. For instance, we define some risometries

explicitly.

Let B ⊆ K2 \ {0}. First assume that B contains a point (x0, x
2
0) but not the point

(−x0, x
2
0). Let V be the line with slope 2x0 containing the origin (so V is parallel to

the tangent line of X at (x0, x
2
0)). We set V := res(V ∩ O2

K), and claim that X is V -

translatable on B. To define a straightener of X on B, we need to consider whether

v(2x0) ≥ 0.

Case I. Suppose that v(2x0) ≥ 0. The function ψ(x, y) := (x, y + (x2 − 2x0x + x2
0))

moves the points of B vertically taking the tangent line of X at (x0, x
2
0) to X . To show

that ψ is a risometry we may first notice that B ( O2
K . Indeed, since x0 ∈ B ∩ O2

K ,

either B ( O2
K or O2

K ⊆ B, but the latter is impossible because 0 /∈ B, so the former

holds. If (x, y), (x′, y′) ∈ B, the equation r̂v(ψ(x, y)− ψ(x′, y′)) = r̂v((x, y)− (x′, y′))

is equivalent to

v(x− x′) + v(x+ x′ − 2x0) > v̂(x− x′, y − y′).

This inequality is clearly implied by v(x+x′− 2x0) > 0, which follows from B ( O2
K :

we have that v(x+ x′ − 2x0) ≥ min{v(x− x0), v(x′ − x0)} ≥ rad(B) > 0.

That ψ−1(X∩B) is V -translation invariant is clear, as it equals the tangent line toB∩X
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at (x0, x
2
0).

Case II. Suppose that v(2x0) < 0. We define ψ as the map (x, y) 7→
(
x0 +

x2−x20
2x0

, y
)

on B. Then ψ moves the points of B horizontally, taking X to the tangent line of X

at (x0, x
2
0). We now verify that ψ is a risometry. To avoid dealing with a large number

of cases, we assume that B is closed; this is without loss because if B is open, we can

apply the argument below to the closed ball of radius rad(B) and then return to B by

restricting the map. The point of taking B as a closed ball is that rad(B) ≤ v(2x0) is

then immediately impossible. Indeed, note that v̂((x0, x
2
0) − (−x0, x

2
0)) = v(2x0), so

if rad(B) ≤ v(2x0), then (−x0, x
2
0) ∈ B, contradicting our initial assumption. Thus,

rad(B) > v(2x0)

As a first step, we prove that if (x, y), (x′, y) ∈ B, then r̂v(ψ(x, y) − ψ(x′, y)) =

r̂v((x, y)− (x′, y)). Indeed, this equation is equivalent to

v̂
(x2 − x2

0

2x0

− x′2 − x2
0

2x0

− (x− x′), y − y
)
> v̂(x− x′, y − y), (1.5)

which in turn reduces to v((x− x0)2 − (x′ − x0)2) > v(x−x′) +v(2x0). Further, since

(x− x0)2 − (x′ − x0)2 = ((x + x′)− 2x0)(x− x′), to prove (1.5) it is enough to show

that

v(x+ x′ − 2x0) > v(2x0). (1.6)

We have that v(x+x′−2x0) ≥ min{v(x−x0), v(x′−x0)} ≥ rad(B) > v(2x0), which

proves (1.6) and finalises this step.

As second step, we prove that if (x, y), (x, y′) ∈ B, then r̂v(ψ(x, y) − ψ(x, y′)) =

r̂v((x, y)− (x, y′)). This is in fact obvious because ψ(x, y)− ψ(x, y′) = (0, y − y′) by

definition of ψ.

As third and last step, we take arbitrary (x, y), (x′, y′) ∈ B and apply the first step to

(x, y) and (x′, y), and then apply the second step to (x′, y) and (x′, y′). After that we

conclude that r̂v(ψ(x, y)− ψ(x′, y′)) = r̂v((x, y)− (x′, y′)) by Lemma 1.2.8 (a).
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To end Case II, notice that ψ(X ∩ B) is V -translation invariant because it is the tangent

line to X ∩B at (x0, x
2
0).

In the situation when B intersects both of the arms of X , i.e. B contains both (x0, x
2
0)

and (−x0, x
2
0) for some x0 ∈ K×, we can show that X is V := ({0} × k)-translatable

on B. Taking V to be simply {0} ×K we can then define a straightener ϕ of B ∩X on

B by moving the points of B horizontally in such a way that X ∩ B is mapped to two

vertical lines, implying V -translation invariance of ϕ(X). We omit the details.

We now present some general facts about t-stratifications.

Lemma 1.3.4. Let (Si)i≤n be a t-stratification.

(a) For each d ≤ n and x ∈ S≥d+1, there exists a maximal ball B containing x and

such that B ∩ S≤d = ∅. In particular, each Sd is a closed set.

(b) For each d ≤ n, Sd has local dimension d at each point x ∈ Sd. In particular,

either dim(Sd) = d or Sd = ∅.

(c) If (Si)i≤n is a t-stratification of X ⊆ Kn, then X ⊆ S≤dim(X).

Proof. (a) and (b), [26, Lemma 3.17].

(c) Set d := dim(X) and suppose that X ∩ S≥d+1 6= ∅. Take B ⊆ S≥d+1 such that

B ∩ X 6= ∅. By Definition 1.3.1 (2’), X ∩ B is (d + 1)-translatable on B; so, by

Proposition 1.2.12 (b) we have that d+1 ≤ dim(X∩B) = dim(X), a contradiction. p

The next lemma will help us to construct new t-stratifications from a given one.

Lemma 1.3.5 ([26, Lemma 4.20]). Suppose thatX ⊆ Kn is a definable set of dimension

d and let χ : X −→ RVeq be definable. We extend χ to the whole of Kn by setting

χ(Kn \ B0) = {a0}, for some (arbitrary) a0 ∈ RVeq. Let (Ti)i≤n and (Si)i≤n be t-

stratifications ofKn such that (Ti)i≤n reflects (Si)i≤n and χ. Define the partition (S ′i)i≤n

of Kn in such a way that S ′≤i := T≤i if i < d, and S ′≤i := T≤d−1∪X∪S≤i if i ≥ d. Then

(S ′i)i≤n is a t-stratification reflecting (Si)i≤n and χ, and clearly coincides with (Si)i≤n

outside of X ∪ T≤d−1.
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1.3.1 The rainbow of a t-stratification

The function we define below carries information about the maps reflected by a t-strati-

fication. This function allows us to talk about reflection in terms of refinements of maps

into RVeq. We fix B0 ⊆ Kn as a ball or the whole of Kn, and, unless stated otherwise,

we implicitly assume that every t-stratification we refer to is a t-stratification of B0.

Definition 1.3.6. Let (Si)i≤n be a t-stratification. The rainbow of (Si)i≤n is the map

ρ : B0 −→ RVeq defined as ρ(x) := p(r̂v(x− Si))i≤nq.

Clearly ρ is definable using the same parameters used for (Si)i≤n.

We say that χ′ : B0 −→ RVeq refines χ : B0 −→ RVeq if the partition of B0 given

by the fibres of χ′ refines the partition of B0 given by the fibres of χ; that is, for all

q ∈ χ(B0), there is Aq ⊆ χ′(B0) such that χ−1(q) = (χ′)−1(Aq). Equivalently, there

exists a function f : χ′(B0) −→ χ(B0) such that f ◦ χ′ = χ (in that case, χ−1(q) =

(χ′)−1(f−1(q)) for each q ∈ χ(B0)).

Proposition 1.3.7 ([26, Proposition 4.17]). Let (Si)i≤n be a t-stratification of B0 and let

χ : B0 −→ RVeq be definable. The following are equivalent.

(a) (Si)i≤n reflects χ;

(b) the rainbow ρ of (Si)i≤n refines χ;

(c) any definable risometry ϕ : B0 −→ B0 respecting (Si)i≤n respects χ.

It follows that ρ is the finest map reflected by (Si)i≤n.

Example 1.3.8. Consider the set X = K × {0} ⊆ K2. A t-stratification for X consists

of S0 = ∅, S1 = X and S2 = K2 \X . Let ρ be the rainbow of this t-stratification. We

claim that for any (x, y), (x′, y′) ∈ K2, ρ(x, y) = ρ(x′, y′) if and only if rv(y) = rv(y′).

Hence, each fibre of ρ has the form K × rv−1(ξ) for some ξ ∈ RV. Pictorially, the fibers

of ρ are in a rainbow-like arrangement of ever thinner coloured horizontal bands.

We prove the claim above. For (x, y), (x′, y′) ∈ K2, ρ(x, y) = ρ(x′, y′) holds if and only
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if all the following three equations hold.

1. r̂v((x, y)− S0) = r̂v((x′, y′)− S0), but this has no meaning because S0 = ∅.

2. r̂v(K×{y}) = r̂v((x, y)−K×{0}) = r̂v((x′, y′)−K×{0}) = r̂v(K×{y′}). We

claim that this equation holds if and only if rv(y) = rv(y′). Suppose that rv(y) = rv(y′).

If either y = 0 or y′ = 0, actually y = y′ = 0 and the conclusion is trivial. Hence

we assume that y 6= 0 6= y′. Since v(y − y′) > v(y), for all z ∈ K, we have that

r̂v(z, y) = r̂v(z, y′), so r̂v(K × {y}) = r̂v(K × {y′}) as claimed.

The remaining direction asks us to show that r̂v(K × {y}) determines rv(y), for any

y ∈ K. Let j : RV −→ RV(2) be the embedding rv(y) 7→ r̂v(0, y). We claim that for

each y ∈ K, r̂v(K × {y}) ∩ j(RV) = {r̂v(0, y)}. From right to left the containment is

clear. In the other direction, if r̂v(0, z) ∈ r̂v(K × {y}) ∩ j(RV), then there is x ∈ K

such that r̂v(0, z) = r̂v(x, y). We then have that v(y − z) ≥ v̂(x, y − z) > v(z), so

r̂v(0, z) = r̂v(0, y). This proves our claim. It follows that rv(y) is the unique element in

j−1(r̂v(K ×{y})∩ j(RV)), so whenever r̂v(K ×{y}) = r̂v(K ×{y′}), we deduce that

rv(y) = rv(y′).

3. r̂v((x, y)−K2 \X) = r̂v((x′, y′)−K2 \X). This does not add more to the inform-

ation from 2. Notice that r̂v((x, y)−K2 \X) equals RV(2) when (x, y) ∈ K × {0}, and

equals RV(2) \ {0} otherwise. So the equation above is equivalent to ‘y = 0 if and only

if y′ = 0’, which is already captured in the equation rv(y) = rv(y′).

This proves our initial claim, and justifies the suggested visualisation of (the fibres of)

the rainbow of (Si)i≤2.

Remark 1.3.9. A fibre C of the rainbow of a t-stratification (Si)i≤n must be contained

in some stratum Sd. Indeed, if C ∩ Sd 6= ∅, and a is taken in that intersection, we have

that for any x ∈ C, 0 ∈ r̂v(a− Sd) = r̂v(x− Sd), so x ∈ Sd.

Last in this subsection we present a result that, like Lemma 1.3.5, will allow us to con-

struct new t-stratifications from a given one. This lemma is particularly useful in an
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inductive argument in Section 3.2.

Lemma 1.3.10 ([26, Lemmas 3.16 and (part of) 4.21]). Suppose that B0 ⊆ Kn and that

(Si)i≤n is a t-stratification of B0 reflecting the definable map χ : B0 −→ RVeq. Let

B ⊆ B0 be a ball and let π : Kn −→ Kd be an exhibition of tspB((Si)i≤n). If x ∈ π(B)

and we set F := π−1(x), then (Si ∩ F )d≤i≤n is a t-stratification of B ∩ F reflecting

χ|B∩F . Furthemore, if C is a fiber of the rainbow of (Si)i≤n, then C ∩ F is a fiber of the

rainbow of (Si ∩ F )d≤i≤n.

More specific results about the rainbow are discussed when needed, for instance, in Sec-

tion 3.2.

1.4 Existence of t-stratifications and the Jacobian pro-

perty

In this section we discuss the result in [26, Subsection 4.3] on the existence of t-stratifi-

cations. An important ingredient to its proof is that a t-stratification can be refined such

that the fibres of its rainbow become ‘properly aligned’. To develop the idea of being

‘properly aligned’ we introduce the concept of being subaffine for subsets of Kn.

Definition 1.4.1. For X ⊆ Kn we define the affine direction of X to be the subspace

affdir(X) of kn generated by the set {dir(x − x′) | x, x′ ∈ X}. Notice that for every

x ∈ X , dim(affdir(X)) ≥ dimx(X); if the equality holds for every x ∈ X , we say that

X is subaffine.

Recall that dimx(X) is the local dimension of X at x (see Proposition 1.1.12 (f)). The

space affdir(X) is essentially the set of possible directions of translatability of X , and

we always have that dim(affdir(X)) ≥ dimx(X), for all x ∈ X . Translatability of

X in the direction of a subspace V must imply that V consists only of such possible

directions, i.e. V ⊆ affdir(X). This is what the following lemma establishes.

33



Section 1.4. Existence of t-stratifications

Lemma 1.4.2 ([26, Lemma 4.4]). Let B be a ball and X ⊆ B a definable set.

(a) If X is V -translatable on B for some V ⊆ kn, then V ⊆ affdir(X).

(b) If there is an exhibition π : Kn −→ Kd of V := affdir(X) with π(X) = π(B),

then X is V -translatable on B.

As we have seen, the property of being subaffine is closely related to translatability.

In fact, in order to build t-stratifications for definable sets, we start by introducing a

way to obtain subaffinity for said sets. This is done by postulating a new axiom for

T , the Jacobian property. This property implies that the graph of a definable function

Kn −→ K must be subaffine after partitioning its domain into at most |RV|-many pieces

(i.e. the size of the partition is less than or equal to the cardinality of RV).

Definition 1.4.3. We define when functions and then when theories have the Jacobian

property.

(1) Let X be a subset of Kn and f : X −→ K be a definable function. We say that f

has the Jacobian property (onX) if either f is constant or there exists z ∈ Kn\{0}

such that for all distinct x, x′ ∈ X ,

v(f(x)− f(x′)− 〈z, x− x′〉) > v̂(z) + v̂(x− x′). (1.7)

(2) We say that the theory T has the Jacobian property at n if for any (K,RVeq) � T ,

A ⊆ K ∪ RVeq, X ⊆ Kn and A-definable function f : X −→ K, there exists

an A-definable function χ : X −→ RVeq such that for each q ∈ χ(X), if χ−1(q)

contains an open ball, then f |χ−1(q) has the Jacobian property.

(3) We say that the theory T has the Jacobian property up to n if it has the Jacobian

property at all m ≤ n. If T has the Jacobian property at all n ≥ 1, we simply say

that T has the Jacobian property.

Let X ⊆ Kn. The reader might have perceived that asking for f : X −→ K to have
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the Jacobian property is reminiscent of asking f to be differentiable on X . This is not

mislead as if we assume for simplicity that n = 1 and f is indeed differentiable at a point

x0 ∈ X then in a neighbourhood U of x0 we have that for all distinct x, x′ ∈ U ,

rv

(
f(x)− f(x′)

x− x′

)
= rv(f ′(x0)), (1.8)

from which easy calculations lead to (1.7) with z := f ′(x0). However, differentiability is

not enough for the Jacobian property as, even if taken as maximal, U could end up being

too small to cover the whole of X . Even in Definition 1.4.3 (2), it could happen that no

choice of χ is possible as the neighbourhoods on which analogues of (1.8) hold are too

small. Neither does the Jacobian property imply differentiability. The Jacobian property

forces some control on the grow of f , and indeed imposes conditions on the approximate

direction of the graph of f (see e.g. 1.4.5), but does not determine the derivative (which

is the exact direction).

The Jacobian property in Definition 1.4.3 is regarded as a generalised, multi-dimensional

version of the Jacobian property employed in other research problems. For instance, the

Jacobian property in [7, Definitions 6.3.5 and 6.3.6] in the setting of valued fields with

an analytic structure corresponds to Definition 1.4.3 (1)-(2) for n = 1. Notice, however,

that the condition in [7, Definitions 6.3.5] is stronger than the one in Definition 1.4.3 (1),

in the sense that in the former, the Jacobian Jac(f) (in this case, simply the derivative

of f ) is required to exist and to satisfy that rv(Jac(f)) is constant. The latter, Defini-

tion 1.4.3 (1) with n = 1, instead asks simply for rv
(f(x)−f(x′)

x−x′
)

to be constant over all

x 6= x′.

The Jacobian property when n = 1 in Definition 1.4.3 also appears in axiomatic presen-

tations of motivic integration in valued fields of equicharacteristic 0, see for example

[10, 3.3 Definition] and [57, Proposition 3.15].

We make some quick remarks about the Jacobian property.

Remark 1.4.4. (a) In Definition 1.4.3 (1), the choice of z ∈ Kn \ {0} is not unique;
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indeed, any other z′ ∈ Kn \ {0} with r̂v(z′) = r̂v(z) works for (1.7).

(b) Assume that T only satisfies Hypotheses 1.1.9 (1)-(3). If T has the Jacobian

property at 1, then T satisfies Hypotheses 1.1.9 (4).

Proof. (a) Using Lemma 1.2.8 (d) and that v̂(z − z′) > v̂(z′), we deduce that

v(〈z − z′, x − x′〉) > v̂(z′) + v̂(x − x′). From this inequality and from (1.7) we get

that for distinct x, x′ ∈ X , v(f(x)− f(x′)− 〈z′, x− x′〉) is greater than or equal to

min{v(f(x)− f(x′)− 〈z, x− x′〉), v(〈z − z′, x− x′〉)} > v̂(z′) + v̂(x− x′).

(b) Let A ⊆ K ∪ RVeq, X ⊆ K and f : X −→ K be as in Hypotheses 1.1.9 (4).

Let χ : X −→ RVeq be the A-definable function associated to f given by the Jacobian

property at n = 1, and fix q ∈ χ(K). If χ−1(q) does not contain an open ball, then it

is a finite set by Proposition 1.1.12 (a). Further refining of χ allows us to assume that

whenever χ−1(q) does not contain an open ball, it is a singleton; so, in that case f |χ−1(q)

is constant. On the other hand, if χ−1(q) does contain an open ball, then, according to

the Jacobian property at n = 1, there is z ∈ K× such that (1.7) holds for all distinct

x, x′ ∈ χ−1(q). Since v(〈z, x− x′〉) = v(z · (x− x′)) = v(z) + v(x− x′), clearly (1.7)

cannot hold if f(x) = f(x′) but x 6= x′. In this case f |χ−1(q) is injective. p

The following is a crucial result in Halupczok’s work towards the existence of t-stratifi-

cations.

Proposition 1.4.5 ([26, Lemma 4.6]). If X ⊆ Kn is definable of dimension d and

f : X −→ K is definable and has the Jacobian property on X , then the graph of f

is a subaffine subset of Kn+1.

Proposition 1.4.5 is the way subaffinity is obtained, and is the main reason why the

Jacobian property was added as an axiom for T . The Jacobian property is typically

harder to prove than Hypotheses 1.1.9. In [26, Section 5], Halupczok proves that the

theory of valued fields with analytic structure—as developed by R. Cluckers and L.
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Lipshitz in [7]—satisfies Hypotheses 1.1.9 and has the Jacobian property, thus providing

a big list of valued fields for which t-stratifications exist. In Chapter 3 we extend their

existence to certain expansions of real closed valued fields.

For the sake of completeness, we state Halupczok’s theorem.

Theorem 1.4.6 ([26, Theorem 4.12]). Fix n ≥ 1. Let T be a theory expanding THen,

satisfying Hypotheses 1.1.9 and having the Jacobian property at all m < n. Fix a model

(K,RVeq) of T and a set of parameters A ⊆ K ∪ RVeq. Then for every A-definable

ball B0 ⊆ Kn and A-definable map χ : B0 −→ RVeq, there exists an A-definable

t-stratification (Si)i≤n of B0 reflecting χ.

It follows that if T has the Jacobian property (Definition 1.4.3 (3)), then any definable

map from any cartesian power of K into RVeq admits a t-stratification. It is worth

mentioning that the following uniform version of the result is available ([26, Corollary

4.13]): let T satisfy Hypotheses 1.1.9 and have the Jacobian property, and assume that

φ is a formula in the language of T that defines a map χφ(K) : Kn −→ RVeq for every

(K,RVeq) � T ; then there are formulas ψ0, . . . , ψn in the language of T such that for

every (K,RVeq) � T , (ψi(K))i≤n is a t-stratification of Kn reflecting χφ(K).
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Chapter 2

T -convex fields

This is a second chapter on preliminaries. Here we present and develop the particular

setting of our forthcoming work. The valued fields we will work with are built from

o-minimal expansions of fields, and we thus presume some familiarity with o-minimal

structures. Nevertheless, a brief account of o-minimality is offered in Appendix A. The

language of ordered rings is Lor := {+,−, ·, 0, 1, <}. The Lor-theory of real closed fields

is denoted as RCF. For the whole of this chapter, L will be a (single-sorted, first-order)

language containing Lor, and T will be a complete o-minimal L-theory containing RCF.

The chapter contains no new results except for those in Sections 2.2 and 2.4, which are

fundamental in Chapters 4 and 3, respectively.

2.1 T -convexity

Most of the content in this section is based on work of L. van den Dries and A. Lewen-

berg in [14] and [16]. Let R be a model of T . A subset A of R is said to be convex if

∀x, y ∈ A, z ∈ R(x < z < y → z ∈ A). In this section ‘definable’ means ‘L-definable’.

Definition 2.1.1 ([16]). We say that V ⊆ R is a T -convex subring of R if V is a proper

convex subring of R such that f(V ) ⊆ V , for each 0-definable continuous function
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f : R −→ R. The pair (R, V ) for such a V is called a T -convex field.

Examples 2.1.2. We discuss some examples of T -convex fields.

(1) Let L = Lor and let R be a non-archimedean real closed field (e.g. a non-principal

ultrapower of R). Then the ring of finite numbers in R—the convex hull of Z in R—is

an RCF-convex subring of R. Furthermore, the next claim is an easy criterion to obtain

RCF-convex subrings.

Claim 2.1.3. Let R � RCF and suppose that V ⊆ R is a proper convex subring of R.

Then V is an RCF-convex subring of R.

Proof. First of all notice that V must contain the set of real algebraic numbers Ralg, and

recall that as an Lor-structure Ralg is the prime model of RCF, i.e. it embeds elementarily

into any other real closed field. So we may assume that Ralg is an elementary substructure

of R. Now let f : R −→ R be 0-definable and continuous; we want to show that

f(V ) ⊆ V . Observe that the restriction of f to Ralg is 0-definable in Ralg, so polynomial

boundedness of RCF (see [15, (3.7)]) implies that there is a positive x0 in Ralg and m ∈

Z+ such that Ralg � ∀x(x0 ≤ |x| → |f(x)| ≤ |x|m). It follows that R � ∀x(x0 ≤ |x| →

|f(x)| ≤ xm). Moreover, if we define g(x) := max{|f(t)| | t ≤ x}, then f(V ) ⊆ V

is equivalent to g(V ) ⊆ V , so we may assume that f is even (i.e. f(x) = f(−x)),

non-decreasing and non-negative on R≥0. Take x ∈ V . If |x| ≥ x0, the convexity of V

and the fact that −|x|m ≤ f(x) ≤ |x|m imply that f(x) ∈ V . If instead |x| ≤ x0, then

0 ≤ f(x) ≤ f(x0) ≤ xm0 , so the convexity of V and the fact that x0 ∈ V imply that

f(x) ∈ V . From these cases we conclude that f(V ) ⊆ V . p

The claim remains true—and an almost identical proof applies—if we substitute RCF by

any other polynomially bounded o-minimal theory, e.g. RCFan (this theory is introduced

in page 119).

(2) If T is RCFexp or RCFan,exp (see page 119), a proper convex subring V ofR contain-

ing the prime model of T is T -convex if and only if exp(V ) ⊆ V . A similar argument to
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the one in the proof of Claim 2.1.3 can be applied using that ifR � T , then any definable

function f : R −→ R is bounded by an iteration of exp ([17, Proposition 9.2]).

(3) For arbitrary T , if R0 � R (i.e. R0 is an elementary substructure of R), then the

convex hull conv(R0) of R0 in R is a T -convex subring of R, provided conv(R0) 6= R.

If f : R −→ R is 0-definable and continuous, f |R0 remains 0-definable in R0, therefore

f(R0) ⊆ R0. If x ∈ conv(R0) \ R0, then a < x < b for some a, b ∈ R0. By the

Monotonicity Theorem (Theorem A.1.8) we may assume that f |[a,b] is either constant or

strictly monotone; in both cases, clearly f(x) ∈ conv(R0).

Remark 2.1.4. If V is a proper convex subring of R, then V is a valuation ring of R, i.e.

for all x ∈ R either x ∈ V or x−1 ∈ V .

Proof. If x > 0 is not in V , then x > 1, so 0 < x−1 < 1. p

From now on, we give preference to the valuation-theoretic notation OR for a T -convex

subring of R, and we invariably regard (R,OR) as a valued field. The convexity of OR

ensures that 0 ≤ x < y implies that v(x) ≥ v(y), for all x, y ∈ R.

Notation 2.1.5. We mostly adhere to the valuation-theoretic notation in Chapter 1. The

residue field of (R,OR) is denoted by R.

The following are basic properties of the structures in consideration.

Proposition 2.1.6. Let (R,OR) be a T -convex field. The following hold.

(a) the value group Γ is divisible;

(b) the residue field R is real closed; furthermore, R can be made into a model of T ;

(c) the valued field (R,OR) is Henselian.

Proof. (a) Take λ ∈ Γ and n ≥ 1. Pick x ∈ R>0 such that v(x) = λ. Since R is a real

closed field, there is y ∈ R such that x = yn, so λ = n v(y).

For the next item recall that an ordered field L is real closed if and only if the Intermedi-

ate Value Theorem holds for polynomials in L[x].
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(b) Let f(x) ∈ R[x] and let α1, α2 ∈ R be such that α1 < α2 and f(α1) < 0 < f(α2).

Take F (x) ∈ OR[x] such that f(x) is obtained by applying res to each of the coefficients

of F (x). For ai ∈ OR satisfying that res(ai) = αi (i = 1, 2), we have that a1 < a2 and

F (a1) < 0 < F (a2). Since the Intermediate Value Theorem holds for R, there is x ∈

(a1, a2) such that F (x) = 0. Then f(res(x)) = res(F (x)) = 0 and res(x) ∈ (α1, α2).

This proves that R is real closed. The furthermore part of the statement is [16, (2.16)

Remark].

(c) (Based on the proof of [5, Theorem 3]) We prove that R equals its henselianisation

H(R). The algebraic closure of R is R(i), where i :=
√
−1. Let ṽ be an extension of v

to R(i). Note that the separable closure of R is R(i) itself, so H(R) is the fixed field of

the group Aṽ := {σ ∈ Aut(R(i)) | σ|R = idR and ṽ ◦ σ = ṽ}. It is enough to show that

conjugation belongs to Aṽ, as that would force that H(R) ⊆ R. We need to prove that

ṽ(x+ iy) = ṽ(x− iy) for all x, y ∈ R.

Suppose that at least one of x, y ∈ R is non-zero (otherwise, the claim is trivial). Notice

that 0 = ṽ(−1) = ṽ(i2) = 2ṽ(i), so ṽ(i) = 0 and ṽ(iy) = ṽ(y). If v(x) 6= v(y), then

ṽ(x+ iy) = min{v(x), v(y)} = ṽ(x− iy). Thus we may assume that v(x) = v(y). Set

u := yx−1 and note that v(u) = 0 and ṽ(1± iu) ≥ min{v(1), v(u)} = 0. In general,

1 < a implies that 0 ≥ v(a), so 0 ≥ v(1 + u2) ≥ min{v(1), v(u2)} = 0. Then,

ṽ(1 + iu) + ṽ(1− iu) = v((1 + iu)(1− iu)) = v(1 + u2) = 0.

It follows that ṽ(1 + iu) = ṽ(1− iu), and with this that ṽ(x+ iy) = ṽ(x− iy). p

Remark 2.1.7. There are two topologies on Rn. The first is given by the open valu-

ative balls (see page 2), and the second is the Euclidean topology raised by the norm

‖ · ‖R defined as ‖(x1, . . . , xn)‖R :=
√∑n

i=1 x
2
i , for each (x1, . . . , xn) ∈ Rn. These

topologies are in fact the same.

Proof. First of all notice that ‖·‖R is equivalent to the max-norm onR, which is defined
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as ‖(x1, . . . , xn)‖max := max{|xi| | i ∈ {1, . . . , n}}. So by Euclidean open disc below

we mean a set of the form {x ∈ Rn | ‖x− a‖max < r} for some a ∈ Rn and r ∈ R>0.

We need to prove that for all a ∈ Rn and valuative open ball B containing a there exists

an Euclidean open disc D containing a such that D ⊆ B, and vice versa. Fix a ∈ Rn

and let B(b, > λ) be an open valuative ball containing a. By properties of the valuation

map we can take b = a without loss. If we pick r ∈ R>0 such that v(r) > λ, we then

have that

{x ∈ Rn | ‖x− a‖max < r} ⊆ B(a,> λ).

Indeed, if x ∈ Rn and, say, |x1 − a1| = ‖x− a‖max < r, then |x1 − a1| ≥ |xi − ai|, and

so v(x1−a1) ≤ v(xi−ai), for all i = 1, . . . , n. It follows that v̂(x−a) = v(x1−a1) ≥

v(r) > λ.

Vice versa, fix a ∈ Rn and let D := {x ∈ Rn |‖x − b‖max < r} be an Euclidean disc

containing a. Pick s ∈ R>0 such that {x ∈ Rn |‖x− a‖max < s} ⊆ D. We then get that

a ∈ B(a,> v(s)) and

B(a,> v(s)) ⊆ {x ∈ Rn | ‖x− a‖max < s} ⊆ D.

Certainly, assume for the sake of a contradiction that there is x ∈ B(a,> v(s)) with

‖x− a‖max ≥ s. If j ∈ {1, . . . , n} is such that |xj − aj| = ‖x − a‖max, it follows that

v(xj − aj) ≤ v(s), contradicting that v(xj − aj) ≥ v̂(x− a) > v(s). p

We now present some results on definability.

Let Lconvex := L ∪ {O}, where O is a unary predicate for OR. The Lconvex-theory of

all pairs (R,OR), with R � T and OR a T -convex subring of R, will be denoted by

Tconvex. This theory always contains RCVF (= RCFconvex), the theory of real closed

fields enriched with a convex valuation ring in the language Lor,convex := Lor ∪ {O}.

Theorem 2.1.8 ([16, (3.10) Theorem]). If T is universally axiomatisable and admits

quantifier elimination in the language L, then Tconvex admits quantifier elimination in the

43



Section 2.1. T -convexity

language Lconvex.

As stated, the theorem does not apply to—for example—RCF, since this theory does

not have a universal axiomatisation. Nevertheless, a result of G. Cherlin and M. A.

Dickmann ([5, Section 2]) states that RCFconvex has quantifier elimination in the language

Lor ∪ {|}, where | is interpreted as the relation a|b if and only if ba−1 ∈ OR, for a 6= 0

and b in R.

In general, T can be expanded by definitions to a theory T ∀ with a universal axiomati-

sation (see [16, (2.3) and (2.4)]) (also note that quantifier elimination is preserved when

expanding by definitions). So we adhere to the following.

Convention 2.1.9. By passing to the expansion mentioned above if needed, we assume

that Tconvex admits quantifier elimination in Lconvex. (Strictly, this may hold in an expan-

sion of Lconvex, but the new symbols would be coded by the symbols in L; no harm is

done in terms of definability).

The following is a consequence of quantifier elimination.

Theorem 2.1.10. Tconvex is complete and weakly o-minimal (Definition A.2.14).

Proof. [16, (3.13) and (3.14) Corollary]. p

We come back to quantifier elimination in Section 3—in a different language, however.

By LΓ we denote the language of ordered groups {+,−, <, 0} expanded by predicates

for the sets v(X) ⊆ Γ, where X ⊆ (R \ {0})n is 0-Lconvex-definable (formally, we add

predicates for Lconvex-formulas φ(x), in such a way that if λi ∈ Γ, then the predicate

for φ(x) holds for (λ1, . . . , λn) in Γ if and only if there are ai ∈ v−1(λi) such that

(R,OR) � φ(a1, . . . , an); the details are in [16, (3.15)]). The language LΓ is interpreted

in Γ in the obvious way.

If M := (Si)i∈I is a multi-sorted structure we say that a sort Si is stably embedded in M

if any definable set (in principle definable with parameters from all the sorts) is already
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definable with parameters from Si.

Proposition 2.1.11. Let (R,OR) be a T -convex field. Let (R,Γ, R) denote the three-

sorted structure given by: the Lconvex-structure (R,OR) as the first sort, the LΓ-structure

Γ as the second sort, the L-structure R as the third sort, plus the maps v and res (the

latter extended by x 7→ 0, for x ∈ R \ OR). Let LΓ,R denote the three-sorted language

of (R,Γ, R). The following hold.

(a) The sort R is stably embedded in (R,Γ, R), i.e. any LΓ,R-definable subset of R
n

is LΓ,R-definable using only parameters from R.

(b) Assume that T is power-bounded. Then the sort Γ is stably embedded in (R,Γ, R).

(c) As an LΓ-structure, Γ is weakly o-minimal (Definition A.2.14). Moreover, if T is

power-bounded (Definition A.1.12), then Γ is o-minimal. In fact, under power-

boundedness, the LΓ-theory of Γ is simply an expansion by definitions of the

theory of non-trivial ordered vector spaces over the field of exponents of T (see

page 120 for the definition of this field).

(d) Assume that T is power-bounded. Any LΓ,R-definable function between the sorts

R and Γ has finite image.

Proof. (a) [26, Theorem A]; (b) [26, Theorem B]; (c) The first part is [16, (3.16) Propo-

sition], and the second is [14, (4.3) Proposition]; (d) [14, (5.8) Proposition]. p

Remark 2.1.12. The conclusion of (d) above is equivalent to R and Γ being orthogonal,

that is, any LΓ,R-definable subset A of R
l × Γk is a finite union of rectangles E × F

where E ⊆ R
l

and F ⊆ Γk are LΓ,R-definable.

Weak o-minimality of Tconvex tells us that Lconvex-definable subsets of R are finite unions

of convex sets. The purpose of the last results in this section is to highlight a more

precise description of these sets. Below 〈X〉L stands for the L-structure generated by X .

Theorem 2.1.13 (The valuation property for Tconvex). Suppose that T is power-bounded.

Let (R,OR) � (R′, OR′) be models of Tconvex for which there is a ∈ R′ \ R such that
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R′ = 〈R∪{a}〉L and v(R′) ) v(R). Then there exists d ∈ R such that v(a−d) /∈ v(R).

Proof. The first approach to this was [19, 9.2 Proposition], where the proof given applies

(only) when T is polynomially bounded. In full generality see [50, Theorem 12.10]. p

Lemma 2.1.14. Suppose that T is power-bounded and let x be a single variable. Each

Lconvex-formula φ(x), is equivalent to a boolean combination of formulas of the form

x = a, x < a, v(x− a) = v(b), v(x− a) < v(b), (2.1)

for some a, b ∈ R.

Proof. This follows from [14, Proposition 7.6] using Theorems 2.1.8 and 2.1.13. (N. B.

the last two formulas can be rewritten as Lconvex-formulas; for instance, v(x− a) = v(b)

is equivalent to (x− a = b = 0) ∨ (b/(x− a) ∈ O ∧ ∃y ∈ O(y · b/(x− a) = 1)). p

Assuming that T is power-bounded, it follows that each Lconvex-definable subset of R is

a boolean combination of points, open intervals and balls. This property was first proved

for definable sets in real closed valued fields (i.e. in RCF-convex fields) by J. Holly

in [30], and it fails if T is not power-bounded, see [14, Observation 7.3]. It follows from

Holly’s work that Lconvex-definable subsets of R have a canonical normal form, which

we describe in the remainder of the section.

Let B ⊆ R be a ball. The left cut of B is the set C0(B) := {x ∈ R | x < B}, and

the right cut of B is the set C1(B) := {x ∈ R | ∃y ∈ B(x ≤ y)}. The left cut made

by a point a ∈ R ∪ {±∞} is defined as the set C0(a) = {x ∈ R | x < a}, and the

corresponding right cut is C1(a) = {x ∈ R | x ≤ a}. In the rest of the chapter points

are allowed to be in R ∪ {±∞}.

Definition 2.1.15. Suppose that B1, B2 ⊆ R are balls or points, and let i1, i2 ∈ {0, 1}.

If Ci1(B1) ( Ci2(B2), the set (R \ Ci1(B1)) ∩ Ci2(B2) is called a cut-interval. We say

that two cut-intervals are properly disjoint if their union is not a cut-interval (notice that

in particular they must be disjoint).
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Suppose that A ⊆ R. Clearly, if B1 and B2 are A-Lconvex-definable balls or points, then

each of the (four possible) cut-intervals defined from B1 and B2 is A-Lconvex-definable

too. The converse of this statement is true and follows from the claim below.

Claim 2.1.16. If the cut Ci(B) ⊆ R is A-Lconvex-definable, so is B.

Proof. First of all we show that the cut determines B, i.e. that if B′ is another ball or

point with Ci(B) = Ci(B
′) then B′ = B. Notice that the cut of a point cannot be made

by a ball, and vice versa, so B and B′ must be of the same kind. If they are points,

the conclusion is obvious, so we assume that they are balls. Necessarily B ∩ B′ 6= ∅,

otherwise either B′ < B or B < B′ and clearly the cut Ci(B′) would not equal Ci(B).

In particular we deduce that either B ⊆ B′ or B′ ⊆ B. If the containment is strict, say

B′ ( B, then there are a ∈ B′ and r ∈ R>0 such that a ± r ∈ B \ B′. If i = 0, then

a− r is in C0(B′) \ C0(B), and if i = 1, then a+ r is in C1(B) \ C1(B′); in each case,

a contradiction. Thus B′ = B.

Now we assume that Ci(B) is A-Lconvex-definable. We also take i = 0; the case when

i = 1 is treated similarly. Consider a ball B(x,�λ), with � ∈ {>,≥}. We have that

C0(B(x,�λ)) = C0(B) if and only if ∀x ∈ C0(B)∀x′ ∈ R(v̂(x′ − b)�λ −→ x < x′),

so the set B := {(x, λ) ∈ R × Γ | C0(B(x,�λ)) = C0(B)} is A-Lconvex-definable. By

the first part of this proof, we know that only one λ ∈ Γ appears in B, so this λ must

be A-Lconvex-definable. It follows that the set {x ∈ R | C0(B(x,�λ)) = C0(B)} is

A-Lconvex-definable, and this set equals B, again by the uniqueness of B in the first part

of the proof. p

In the context of RCFconvex, the original theorem of Holly ([30, Theorem 4.8]) states

that each Lconvex-definable subset X of R is uniquely a union of finitely many properly

disjoint cut-intervals. The proof only uses that each such X is a boolean combination of

points, open intervals and balls, so the result is readily extended to Tconvex for arbitrary

power-bounded T (by the comment after Lemma 2.1.14). We reinforce this result by

ensuring that whenever X ⊆ R is A-Lconvex-definable, the balls or points determining
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the cut-intervals in the partition of X are A-Lconvex-definable too. This is crucial in

Section 2.4. Recall that∞ and −∞ are allowed as points, and in such case A-Lconvex-

definability is naturally dropped.

Proposition 2.1.17 ([30, Theorem 4.8]). Let A ⊆ R. For every A-Lconvex-definable set

X ⊆ R there are unique A-Lconvex-definable balls or points B1, . . . , Bm and a unique

tuple (i1, . . . , im) ∈ {0, 1}m such that Ci1(B1) ( Ci2(B2) ( · · · ( Cim(Bm) and X

equals the union of pair-wise properly disjoint cut-intervals

[
(R \ Ci1(B1)) ∩ Ci2(B2)

]
∪ · · · ∪

[
(R \ Cim−1(Bm−1)) ∩ Cim(Bm)

]
. (2.2)

Proof. Using Lemma 2.1.14, the argument by J. Holly for [30, Theorem 4.8] ensures the

existence and uniqueness of B1, . . . , Bm and the tuple (i1, . . . , im) such that X has the

form in (2.2). By performing some reductions in (2.2), we can also assume that all the

cut-intervals are pair-wise properly disjoint.

By Claim 2.1.16, to prove that each Bi is A-Lconvex-definable, it is enough to show that

each cut Cij(Bj) is so. In turn, the latter follows by showing that each cut-interval in

(2.2) is A-Lconvex-definable; this is what we prove now. That X equals the union in (2.2)

implies that there is a finite partition D1 < · · · < Dk of R into cut-intervals such that X

is either the union of all theDi’s with i odd or the union of all theDi’s with i even. There

are four possible shapes forX , depending on whether k is even or odd, and then whether

D1 ⊆ X or not. We only deal with one of the cases, as the rest are handled similarly.

We assume that k is even and that D1 ⊆ X . It follows that X = D1 ∪D3 ∪ · · · ∪Dk−1.

For each j with 1 ≤ j ≤ k, we define the formula φj(x) as:

∃y1, . . . , yj

( ∧
i<i′≤j

yi < yi′ ∧
∧

i≤j, i odd

yi ∈ X ∧
∧

i≤j, i even

yi /∈ X ∧ yj ≤ x
)
.

For each j < k, the A-Lconvex-formula φj(x)∧¬φj+1(x) defines Dj , while Dk is defined

by the A-Lconvex-formula φk(x). This finishes the proof. p
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2.2 A curve selection lemma

By Remark 2.1.7, the concepts of limit, continuity, derivative, etc. in (R,OR) can be

thought of in terms of either the norm ‖ · ‖R or the valuation. Recall that ‘Lconvex-

definable’ means ‘definable by an Lconvex-formula with parameters’; unlike in other sec-

tions of this chapter, we do not try to specify precisely the parameters used.

Proposition 2.2.1. Let f : R −→ R be an Lconvex-definable function. Then there are

an Lconvex-definable partition into convex sets C1, . . . , Cm, and L-definable functions

f1, . . . , fm : R −→ R such that f |Cj = fj|Cj , for each j with 1 ≤ j ≤ m. Moreover,

f can be assumed to be continuous, constant or strictly monotone, and even, if desired,

differentiable on the interior of each Cj .

Proof. [14, Lemma 2.6 and Corollary 2.8]. Alternatively, see the proof of Proposi-

tion 2.3.3. p

A function f : Rn −→ Rm is said to be bounded if there is M ∈ R>0 such that

‖f(x)‖R ≤M , for all x ∈ Rn.

Lemma 2.2.2. Let f : R −→ Rn be a bounded Lconvex-definable function, and a ∈ R.

Then limx→a+ f(x) exists in Rn.

Proof. For simplicity we assume that n = 1. Let {Cj}1≤j≤m and {fj}1≤j≤m be as in the

statement of Proposition 2.2.1. The limit of f when x → a+ is the limit of fj|Cj when

x → a+ for some j ∈ {1, . . . ,m}, which exists in (R ∪ {±∞})n by the continuity and

monotonicity of fj|Cj . Since f is bounded, limx→a+ f(x) must be in Rn. p

Definition 2.2.3. A curve (in Rn) is an injective continuous function γ : (a, b) −→ Rn,

where a < b are in R. The obvious meaning is given to differentiable curve.

The existence of definable Skolem functions in o-minimal theories implies an o-minimal

Curve Selection Lemma (Proposition A.1.9). This kind of result helps to turn sequential-

convergence (or more generally net-convergence) into curve-convergence, where con-
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tinuous maps witness limits. The following Curve Selection Lemma for Tconvex is a

consequence of the existence of definable Skolem functions as well.

Remark 2.2.4 ([14, (2.7) Remark]). Let c ∈ R>0 be of positive valuation. If we add a

constant symbol for c to Lconvex and the sentence c > 0 ∧ c /∈ O to Tconvex, the resulting

theory, denoted by Tconvex,c, has definable Skolem functions in the language Lconvex∪{c}.

Below, cl(X) denotes the topological closure of X ⊆ Rn.

Proposition 2.2.5 (Curve selection lemma for T -convex fields). Suppose that X ⊆ Rn

is Lconvex-definable and that x ∈ cl(X) \X . Then there exists an Lconvex-definable curve

γ : (0, 1) −→ X such that limt→0+ γ(t) = x.

Proof. Consider the set A := {(t, y) ∈ R>0 ×X | ‖x − y‖R < t}, which is an Lconvex-

definable subset of R1+n. Since x ∈ cl(X), for every t ∈ R>0 there exists y ∈ X

such that (t, y) ∈ A. By the existence of definable Skolem functions for Tconvex,c, there

exists an Lconvex-definable function f : R>0 −→ X such that (t, f(t)) ∈ A, for each

t ∈ R>0. By Proposition 2.2.1, there is ε ∈ R>0 such that f is continuous and injective

on (0, ε). We set γ to be the composition f |(0,ε) ◦ g, where g is the Lconvex-definable

homeomorphism x 7→ εx from (0, 1) to (0, ε). p

Notice that in the proof of Proposition 2.2.5 we may have added c as a parameter to

define γ; this does not matter much in applications.

2.3 The language LRV and further definability

Although a T -convex field can be readily made into a structure in the multi-sorted lan-

guage described in Section 1.1, we postpone this approach for now and introduce an

intermediate language. Let (R,OR) be a T -convex field.

The order of R induces a linear order on RV := R×/(1 + MR) ∪ {0} given by ξ < η

if and only rv−1(ξ) < rv−1(η), for all ξ, η ∈ RV. To the natural language {∗,−1 , 1} of
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RV (discussed in page 8) we add a symbol < for the order above, a predicate k for the

residue field R, on which we put the language L (having in mind Proposition 2.1.6 (b)),

and a constant symbol 0 for rv(0). We assume that the symbols 0 and 1 are shared

between k and RV. Thus, RV is from now on regarded as a structure in the language

Lkog := {∗,−1 , 1, <, k, 0}, with the obvious interpretation.

Definition 2.3.1. The language LRV consists of:

(a) A sort for the field R with the language L;

(b) A sort for RV with the language Lkog; k carries a copy of the language L, and the

symbols 0 and 1 are shared between RV and k.

(c) A map from the first sort to the second, which stands for rv : R −→ RV.

The first sort will be called the field-sort and the second the RV-sort. The common LRV-

theory of all T -convex fields will be denoted by TRV. A model of TRV will be denoted as

a pair (R,RV).

Since, for example, OR = {x ∈ R | rv(x) ∈ R ∨ rv(x+ 1) = rv(1)}, LRV and Lconvex

are interdefinable. Thus, a subset of Rn is 0-LRV-definable if and only if it is 0-Lconvex-

definable. In general, ifA ⊆ R∪RV and we setA′ := ((A∩R)∪rv−1(A∩RV)), anyA-

LRV-definable subset ofRn isA′-Lconvex-definable. The converse of this fact is in general

false, for instance, if ξ ∈ RV×, all the elements of rv−1(ξ) are trivially rv−1(ξ)-Lconvex-

definable but rv−1(ξ) might not contain any ξ-LRV-definable point (cf. Lemma 2.4.1).

Also, a model of TRV can be made naturally into a model of Tconvex, and vice versa.

The language LRV has the advantage of connecting our interests to those of modern

research on valued fields, prominently those on notions of minimality (e.g. [8]), motivic

integration (e.g. [9] and [31]), and, of course, stratification theory.

The value group Γ is sometimes thought of as a third sort (accompanied by the maps v

and vRV) but only to simplify notation; any reference to Γ can be syntactically written

out in the language LRV. For example, v(x) > v(y) can be recast as rv(x+ y) = rv(y).

As for Tconvex, we also have quantifier elimination for TRV. The theorem below was first
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stated and proved by Y. Yin in [57].

Theorem 2.3.2. If T is power-bounded, then TRV admits quantifier elimination.

Proof. [57, Theorem 1.8]; the proof reduces the result to the quantifier elimination of

Tconvex and employs the Wilkie inequality. The latter is only available when T is power-

bounded, see [14, §5].

Alternatively, Schoenfield’s test for quantifier elimination can be performed via an argu-

ment similar to the one in the proof of Lemma B.1.18. p

To carry out some compactness arguments below, from now on we assume that the

model (R,RV) of TRV is sufficiently saturated. The following sharper version of Pro-

position 2.2.1, and its proof below, appeared first as [57, Lemma 2.1 and Corollary 2.2].

Proposition 2.3.3. Let A ⊆ R ∪ RV and suppose that f : R −→ R is A-LRV-definable.

Then there exist anA-LRV-definable partition ofR into cut-intervalsC1, . . . , Cm, andA-

L-definable functions f1, . . . , fm : R −→ R such that for each j ∈ {1, . . . , n}, f |Cj =

fj|Cj . Moreover, f can be assumed to be continuous, constant or strictly monotone, and

even, if desired, differentiable on the interior of each Cj .

For the proof of this lemma we first point out a convenient simplification. Let x be a

tuple of field-sort variables. Notice that whenever t1(x) and t2(x) are L-terms, the for-

mula t1(x) = t2(x) is equivalent to rv(t1(x) − t2(x)) = rv(0), whilst t1(x) < t2(x) is

equivalent to rv(t1(x) − t2(x)) < rv(0). If L contains no relation symbols other than

= and <, this observation allows us to assume that each L-term in an LRV-formula ap-

pears under the scope of rv. By combining this with quantifier elimination we deduce

that each A-LRV-formula with (only) x as free variables is equivalent to a quantifier-free

A-Lkog-formula φ(rv(t1(x)), . . . , rv(tl(x)), η), where each ti(x) is an (A ∩ R)-L-term

and η ∈ A ∩ RV. The condition of L having no relation symbols is easily circumven-

ted: we replace each relation symbol U in L by a symbol for its characteristic function

χU : R −→ {0, 1} ⊆ RV; hence, ‘x ∈ U ’ is simply equivalent to ‘rv(χU(x)) = 1’.
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Thus, regardless of whether L contains new relation symbols, still each A-LRV-formula

is equivalent to a quantifier-free Lkog-formula φ(rv(t1(x)), . . . , rv(tl(x)), η) as above.

(Incidentally, according to [57, Remark 2.3]—which in turn refers to a non-published

argument by van den Dries—, the condition of L having no relation symbols other than

= and < can be removed with greater advantage: it is always possible to find a language

L′ ⊇ {=, <} that defines exactly the same sets as L in models of T and such that all the

symbols in L′ \{=, <} are interpreted as total continuous functions on models of T . We

have not verified this process—particularly the mysterious claim about continuity—but

we have kept the spirit of this idea with our modification above.)

Proof of Proposition 2.3.3. Let φ(x, y) = φ(rv(t1(x, y)), . . . , rv(tl(x, y))) be anA-LRV-

formula defining f . Fix a ∈ R. For each i with 1 ≤ i ≤ l, we have that ti(a, ·) is an L-

definable function from R to itself. By the Monotonicity Theorem (Proposition A.1.8),

there is a finite (A ∩ R)-L-definable collection of points B−a,i ⊆ R such that between

any two order-consecutive elements of B−a,i the function ti(a, ·) is continuous and either

constant or strictly monotone. We add to B−a,i all the points in f−1(0) that are between

two order-consecutive elements of Ba,i between which f is injective. Notice that each

Ba,i remains (A ∩ R)-L-definable and finite. We claim that f(a) ∈ Ba :=
⋃
i≤lBa,i.

Otherwise, f(a) is contained in an open interval I on which each ti(a, ·) for i = 1, . . . , l

is continuous and either constant or strictly monotone. Hence there is b ∈ I \ {f(a)}

such that rv(ti(a, b)) = rv(ti(a, f(a))). By the form of φ(x, y) at the beginning of the

proof, φ(a, b) holds too, contradicting that f is a function and proving our claim.

We have proved that for each a ∈ R, f(a) belongs to a finite (A ∩ R)-L-definable

set Ba ⊆ R. If for each a ∈ R we take a formula defining Ba, by compactness it

follows that finitely many of these formulas define all the sets Ba, i.e. there are (A∩R)-

L-formulas ψ1(x, ·), . . . ψh(x, ·) such that for any a ∈ R, there is j ∈ {1, . . . , h} for

which Ba = {b ∈ R | ψj(b, a)}. Furthermore, by uniform finiteness in o-minimal

structures [15, page 53] there is m ∈ Z+ such that all the sets Ba have at most m

elements. In fact, without loss of generality, we assume that all Ba have exactly m
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elements (for example, if Ba has less elements than Ba′ , add to Ba some of the elements

ofBa′ until they have the same size; this procedure preserves the properties ofBa). Now,

for each j with 1 ≤ j ≤ m we define fj : R −→ R as the function sending a ∈ R to

the j-th element of Ba according to the order < on R. Since the (A ∩ R)-L-formulas

ψ1(x, ·), . . . , ψh(x, ·) define all the sets Ba, each fj is (A ∩ R)-L-definable. Now, since

f(a) ∈ Ba for all a ∈ R, we have that for each a ∈ R there is j ∈ {1, . . . ,m} such that

f(a) = fj(a). This implies that the sets Xj := {x ∈ R | fj(x) = f(x)} with 1 ≤ j ≤ m

cover the whole of R, and it is obvious that f |Xj = fj|Xj for all j ∈ {1, . . . ,m}. Each

Xj is clearly A-LRV-definable, so we can partition these sets into A-LRV-definable cut-

intervals using Proposition 2.1.17.

The last part of the statement follows from o-minimal monotonicity (Proposition A.1.8)

applied to each fj . The claim on differentiability follows from [15, Chapter 7, (3.2)

Theorem]. p

The following is a trivial consequence of the previous proposition; our intention with it

is to move towards Hypotheses 1.1.9 (4).

Corollary 2.3.4 ([57, Corollary 2.3]). Suppose that A ⊆ R ∪ RV and let f : R −→ R

be A-LRV-definable. Then there is an A-LRV-definable map χ : R −→ RV such that for

each q ∈ χ(R), f |χ−1(q) is either constant or injective.

Proof. By Proposition 2.3.3, there is a finite A-LRV-definable partition C1, . . . , Cm of R

such that for each 1 ≤ j ≤ m, f |Cj is either constant or strictly monotone. Observing

that for any two positive integers i 6= j, we have that v(i− j) = 0 and so rv(i) 6= rv(j),

it is enough to put χ(x) := rv(j) ∈ RV, whenever x ∈ Cj . p

The following is a laxer version of Proposition 2.3.3 that applies to functions of more

than one variable; it is laxer because the precise description of the sets in the partition is

lost.

Lemma 2.3.5. Suppose that A ⊆ R ∪ RV and that f : Rn −→ R is A-LRV-definable.
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Then there are an A-LRV-definable partition X1, . . . , Xm of Rn and A-L-definable func-

tions f1, . . . , fm : Rn −→R such that f |Xj = fj|Xj , for each 1 ∈ {1, . . . ,m}.

Proof. The proof consists of a routine compactness argument. We sketch the argument

for n = 2; for n > 2 the result follows by induction and a similar argument (by parti-

tioning the tuple of variables (x1, . . . , xn) into (x1, . . . , xn−1) and xn). Let φ((x, y), z)

be an A-LRV-formula defining f : R2 −→ R. For each a ∈ R, by Proposition 2.3.3 the

formula φ((a, y), z) (which defines the function y 7→ f(a, y)) is equivalent to a finite

disjunction of (pair-wise inconsistent) L-formulas. By compactness, there are finitely

many of these L-formulas that work for all a ∈ R. So φ((x, y), z) is equivalent to a

finite disjunction of (without loss of generality, pair-wise inconsistent) L-formulas. The

result follows. p

The corollary below will be crucial in our later treatment of the Jacobian property in

T -convex fields. As is usual, we say that f : Rn −→ R is differentiable on X if

Jac(f)(x) :=
(
∂f
∂x1

(x), . . . , ∂f
∂xn

(x)
)

exists for all x ∈ X (note that this only makes sense

if X is topologically open).

Corollary 2.3.6. Let f be as in the lemma above. Then there is l ∈ Z+ and an A-LRV-

definable function χ : Rn −→ RVl such that if q ∈ χ(Rn) and dim(χ−1(q)) = n, then

χ−1(q) is open, f is differentiable on χ−1(q), and r̂v ◦ Jac(f) is constant on χ−1(q).

Proof. LetX1, . . . , Xm and f1, . . . , fm be as in Lemma 2.3.5. Fix j such that 1 ≤ j ≤ n.

By L-definability of fj , the set Xj can be further A-LRV-definably partitioned in such

a way that on the interior of each new piece, fj is differentiable (see [15, Chapter 7

§3]). Additionally, if S ⊆ Xj consists of the points at which Jac(fj) does not exist,

then S has empty interior, so dim(S) < n. This allows us to further partition Xj

into A-LRV-definable sets X1
j , . . . , X

lj
j such that each X i

j is either open or has empty

interior, and in the former case Jac(f)(x) exists for all x ∈ X i
j . Define the map

χj : Xj −→ RV by setting χj(x) = rv(i), whenever x ∈ X i
j . We combine all the maps

χj for j ∈ {1, . . . , n} into a suitable single map χ′ : Rn −→ RVm (e.g., by sending

55



Section 2.3. The language LRV and further definability

x ∈ Rn to (0, . . . , 0, χj(x), 0 . . . , 0) if x ∈ Xj). Finally, set χ : Rn −→ RVm+n as

the map x 7→ (χ′(x), r̂v(Jac(f)(x))), with the convention that, say, Jac(f)(x) := 0 if

Jac(f) does not exist at x. Then χ is as we want. p

Because of the order on both sorts, we have that the algebraic closure and the definable

closure (with respect to LRV) on (R,RV) coincide, so we only deal with the latter. By dcl

we denote the definable closure operator with respect toLRV, and with dclL we denote the

definable closure operator with respect to L (which is naturally only applied to subsets

of R). For X ⊆ R we have that dclL(X) = dcl(X) ∩ R. The containment from left to

right is obvious. In the other direction, if y ∈ dcl(X)∩R, then there is an LRV-definable

function f : R −→ R and x ∈ X such that f(x) = y. From Proposition 2.3.3, there

exists a cut-interval C containing x and an L-definable function f̄ : R −→ R such that

f̄ |C = f |C . We have that f̄(x) = y, so y ∈ dclL(X).

It is well known that the exchange principle holds for dclL because R is an o-minimal

L-structure (see, e.g., [44, Theorem 4.1]; though an easier proof via Theorem A.1.8 is

possible). Below, Aa denotes the set A ∪ {a}.

Proposition 2.3.7. Let (R,RV) be a model of TRV. Then the exchange principle holds

in the field-sort R: for any set A ⊆ R ∪ RV and a, b ∈ R, if b ∈ dcl(Aa) \ dcl(A), then

a ∈ dcl(Ab).

Proof. If b ∈ dcl(Aa) \ dcl(A), then there is an A-LRV-definable function f : R −→ R

sending a to b. By Proposition 2.3.3, there is a finite partition of X into A-LRV-definable

cut-intervals such that f is constant or injective on each piece. Let D be the cut-interval

in the partition containing b. If D is not a point and f is constant on D, then {b} = f(C)

is an A-LRV-definable set, contradicting that b /∈ dcl(A). Thus either C is a point or f is

injective on C. In either case, a ∈ dcl(Ab) (in the second case we have that (f |C)−1 is

A-LRV-definable and takes b to a). p

Below we describe important characteristics of the sort RV. Most of them were first
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stated and proved by Y. Yin in [55] and/or [57], and their proofs follow to some extent

those in said papers.

The exchange principle holds in the RV-sort too. We are downplaying this fact because

all the model-theoretic conditions on the RV-sort needed to work with t-stratifications

are described in Hypotheses 1.1.9, and those do not involve the exchange principle for

RV. The importance of this observation is that we are allowed to put extra structure on

RV—as long as Hypotheses 1.1.9 remain true—and this extra structure could make the

exchange principle fail for the RV-sort. Having said this, the exchange principle in the

RV-sort is not used at all in this work.

Lemma 2.3.8 ([57, Lemma 2.4]). Given ξ ∈ RVn and A ⊆ Rm, if a ∈ R is (Aξ)-LRV-

definable, then a is A-LRV-definable.

Proof. We apply induction. If ξ = (ξ1, . . . , ξn) ∈ RVn and a ∈ dcl(Aξ) we get that

a ∈ dcl(Ab(ξ1, . . . , ξn−1)) for all b ∈ rv−1(ξn). By induction we obtain that a ∈ dcl(Ab)

for all b ∈ rv−1(ξn). If a /∈ dcl(A), Proposition 2.3.7 implies that b ∈ dcl(Aa) for all

b ∈ rv−1(ξn), i.e. rv−1(ξn) ⊆ dcl(A). However, this is absurd since rv−1(ξn) is infinite

and definable. Thus indeed, a ∈ dcl(A). p

Corollary 2.3.9 ([57, Corollary 2.5]). Suppose that Ξ ⊆ RV and let p : Ξ −→ R be an

LRV-definable function. Then p(Ξ) ⊆ R is finite.

Proof. Evidently, for each ξ ∈ Ξ, p(ξ) is ξ-LRV-definable. By Lemma 2.3.8, each ele-

ment of p(Ξ) is then ∅-LRV-definable. The result follows by compactness. p

Remark 2.3.10. Clearly, the conclusion of Corollary 2.3.9 remains true for any LRV-

definable function p : Ξ −→ Rn, where Ξ ⊆ RVm, for all n,m ≥ 1.

The following was proved in the context of algebraically closed valued fields in [55,

Lemma 4.9].

Lemma 2.3.11. Suppose that A ⊆ R ∪ RV. If X ⊆ R is an A-LRV-definable finite set,

then there is an A-LRV-definable injection j : X −→ RVm, for some m ≥ 1.
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Proof. If X is a singleton, the conclusion is trivial. Let X = {b1, . . . , bl}. By consider-

ing b′i := bi − 1
l

∑l
j=1 bj for each j ∈ {1, . . . , l} we can assume that the average of X is

0. We claim that rv is not constant on X . This claim is obvious if v is not constant on

X , so we assume that v(X) = {α} for some α ∈ Γ. To show that rv is not constant on

X it suffices to find bi 6= bj such that v(bi − bj) = α. If such two elements did not exist,

we would have that

α = v(lb1) = v((l − 1)b1 − (b2 + · · ·+ bl)) ≥ min{v(b1 − bi) | i 6= 1} > α,

a contradiction. Thus, bi and bj exist and rv is not constant on X . It follows that for each

ξ ∈ rv(X), 1 ≤ | rv−1(ξ)∩X| < m. By induction (on the size ofX), for some l′ ≥ 1 and

for each ξ ∈ rv(X) there is an (Aξ)-LRV-definable injection jξ : rv−1(ξ) ∩X −→ RVl′ .

Notice that each ξ ∈ rv(X) is A-LRV-definable, so each jξ is in fact A-LRV-definable.

The function j : X −→ RVl′+1 given by j(x) = (jrv(x)(x), rv(x)) is the desired injec-

tion. p

The next result—a version of [55, Lemma 4.4]—is another application of the exchange

principle in the field-sort.

Lemma 2.3.12. Suppose thatX ⊆ R and let f : X −→ R be an LRV-definable function.

Then there are LRV-definable disjoint sets B1 and B2 such that:

(i) B1 ∪B2 = f(X);

(ii) B1 is finite and for each b ∈ B1, f−1(b) is infinite;

(iii) f |f−1(B2) is finite-to-one.

Proof. For b ∈ f(X), if f−1(b) is infinite then f−1(b) * dcl(b). Otherwise, for each

a ∈ f−1(b) there is an algebraic LRV-formula ψa(x, b) such that ψa(a, b) holds. By com-

pactness, there are finitely many LRV-formulas ψa1 , . . . , ψal that work for all a ∈ f−1(b).

Each of these finitely many formulas has only finitely many solutions in R, leading to a

contradiction with f−1(b) being infinite. Now, for fixed b ∈ f(X) with f−1(b) infinite,
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let a ∈ f−1(b) \ dcl(b); clearly b ∈ dcl(a). By Proposition 2.3.7, b ∈ dcl(∅). An-

other compactness argument ensures that each such b satisfies one of only finitely many

parameter-free LRV-formulas that have only finitely many solutions in R. Let B′1 be the

(finite) set defined by the disjunction of such finitely many formulas. Let B1 be the set

obtained from B′1 by removing all those elements b in B′1 for which f−1(b) is finite; B1

is then finite and LRV-definable. Putting B2 := f(X) \B1, the result is proved. p

Lemmas 2.3.11 and 2.3.12 can be used to give another proof of Corollary 2.3.4 (in prin-

ciple, with the insubstantial difference that we may have to consider RVm, for some

m > 1, as the codomain of χ in Corollary 2.3.4).

2.4 Towards Hypotheses 1.1.9 (3)

In this last section we prove a preliminary version of Hypotheses 1.1.9 (3). If X ⊆ R is

LRV-definable, the existence of a finite definable set S with the required property follows

by taking a point from each ball Bi in the statement of Proposition 2.1.17. However,

whether we can take S to be definable over the same parameters as X requires a further

argument. The following result of Y. Yin in [57] will help us in that task. Yin’s proof of

this lemma is offered in Appendix B.

Lemma 2.4.1 ([57, Lemma 2.19]). Suppose that A ⊆ R ∪ RV. Then every A-LRV-

definable closed ball B ⊆ R contains an A-LRV-definable point.

We can then take a first explicit step towards Hypotheses 1.1.9 (3).

Proposition 2.4.2. Let A ⊆ R∪RV and let X ⊆ R be A-LRV-definable. Then there is a

finite A-LRV-definable set S ⊆ R such that for every ball B ⊆ R \ S either B ∩X = ∅

or B ⊆ X .

Proof. By takingA′ ⊆ R to be the union ofA∩R and all r̂v−1(ξ) with ξ ∈ A, we obtain
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that X is A′-Lconvex-definable. Applying Proposition 2.1.17 to X , we have that X equals

X =
[
(R \ Ci1(B1)) ∩ Ci2(B2)

]
∪ · · · ∪

[
(R \ Cim−1(Bm−1)) ∩ Cim(Bm)

]
, (2.3)

where (i1, . . . , im) ∈ {0, 1}m and each Bi is an A′-Lconvex-definable ball or point (recall

that ±∞ are allowed as points; in such case the A′-definability is waived). It follows

that each cut-interval above is A-LRV-definable and thus, as done in the proof of Propo-

sition 2.1.17, we conclude that each Bi is A-LRV-definable.

We now collect the elements of S from each Bi. If Bi is a point in R, we put this point

in S (N.B. when Bi is∞ or −∞ we do not put any corresponding point in S). If Bi is

a closed ball, then by Lemma 2.4.1 there is an A-LRV-definable point in Bi, which we

put in S. Lastly, if Bi is an open ball B(a,> γ), then the closed ball B′ := B(a,≥ γ) is

A-LRV-definable too; by Lemma 2.4.1, B′ contains an A-LRV-definable point, wich we

put in S too. We claim that the set S so defined is as we want.

First of all, by construction, S is A-LRV-definable. Now let B ⊆ R \ S be a ball and

suppose that B ∩ X 6= ∅. It follows that B ∩ [(R \ Cij(Bj)) ∩ Cij+1
(Bj+1)

]
6= ∅ for

some 1 ≤ j < m. If B * X , then B must intersect either Cij(Bj) or R \ Cij+1
(Bj+1).

Say the first case holds. If Bj is a point, then by the convexity of B and the fact that

B ∩ X 6= ∅ we get that the point in Bj is in S ∩ B, a contradiction. If Bj is a closed

ball, then either B ⊆ Bj or Bj ⊆ B. We claim that the former containment cannot hold.

When ij = 0, B ⊆ Bj implies that B ∩ C0(Bj) = ∅, and when ij = 1, B ⊆ Bj implies

that B ⊆ C1(Bj), and so that B ∩X = ∅; a contradiction is reached in both cases. We

must then have that Bj ⊆ B. It follows that the point in S corresponding to Bj is in

B, a contradiction. Lastly, suppose that Bj is an open ball, and let B′j be the closed ball

with the same centre and radius of Bj . We have that either B ⊆ Bj or Bj ( B, and the

first containment cannot hold by an argument similar to the one when Bj was closed.

Hence we have that Bj ( B. Clearly then B′j ⊆ B, so the point in B′j ∩ S is in B, a

contradiction. Therefore, in any case, B ⊆ X . p
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Chapter 3

T-stratifications in power-bounded

T -convex fields

This chapter contains our first major new result. We prove that whenever T is a power-

bounded o-minimal L-theory expanding RCF, the theory of all T -convex fields satis-

fies Hypotheses 1.1.9 and has the Jacobian property. This proves consequently that

t-stratifications exist in such valued fields. A priori, these t-stratifications are LRVeq-

definable, however, we also show in this chapter that they can be made L-definable. For

the full picture on t-stratifications in T -convex fields, we give an example at the end of

the chapter to show that power-boundedness of T is in fact necessary for their existence.

Throughout the chapter we assume that L is a language containing Lor, and, except for

Section 3.4, we assume that T is a power-bounded o-minimal L-theory. We work with

two languages for T -convex fields, LRV described on page 51 and its expansion LRVeq

described on page 7. If (R,OR) is a T -convex field, we write (R,RV) when working

with LRV and (R,RVeq) when working with LRVeq .
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3.1 Hypotheses 1.1.9 and b-minimality for TRVeq.

We prove that Hypotheses 1.1.9 hold for TRVeq , the common LRVeq-theory of all T -

convex fields. We need to work in the languageLRVeq but we take advantage of the results

in the last section by reducing LRVeq-definability to LRV-definability, for ifA ⊆ R∪RVeq

and X is an A-LRVeq-definable subset of Rn, then there exists a tuple η of elements of

RV such that X is ((A ∩ R) ∪ {η})-LRV-definable. The similar process of changing an

LRVeq-formula with only field-sort variables into an LRV-formula is frequently performed

implicitly. In the whole of this chapter, by ‘definable’ we mean ‘LRVeq-definable’; all ref-

erences to LRV-definability will be made explicit.

Theorem 3.1.1. Assume that T is power-bounded. Then the theory TRVeq satisfies Hy-

potheses 1.1.9. That is, if (R,RVeq) � TRVeq and A ⊆ R ∪ RVeq, then,

(1) RV is stably embedded in (R,RVeq);

(2) every A-definable function g : RV −→ R has finite image;

(3) for every A-definable set X ⊆ R there exists a finite A-definable set S0 ⊆ R such

that every ball B ⊆ R \ S0 is either contained in X or disjoint from X;

(4) for every A-definable function f : R −→ R there exists an A-definable function

χ : R −→ RVeq such that for each q ∈ χ(R), f |χ−1(q) is either constant or inject-

ive.

Proof. (1) This is simply a consequence of rv being the only connection between R and

RV, and quantifier elimination of TRV. By a similar argument to the one in the discussion

just before the proof of Proposition 2.3.3, a definable subset Q of RV is defined by a

quantifier-free Lkog-formula φ(z, rv(t1(a)), . . . , rv(tm(a)), η) where z is a tuple of RV-

sort variables, and a and η are tuples of elements of R and RV, respectively. If we

set η′ := (rv(t1(a)), . . . , rv(tm(a))) ∈ RVm, then clearly Q is defined by the formula

φ(z, η′, η).

(2) Set A0 := A ∩ R and let η be a tuple of elements of RV such that g is (A0 ∪ {η})-
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definable. The result follows from Corollary 2.3.9.

(3) Let A0 and η be as above. Let S0 be the finite (A0 ∪ {η})-LRV-definable set given by

Proposition 2.4.2. Automatically, S0 has the required property with respect to all balls

B ⊆ R \ S0. Finally, since S0 is finite, using Lemma 2.3.8 we conclude that S0 is A-

definable.

(4) Let A0 and η be as before. By Corollary 2.3.4, there is an (A0 ∪ {η})-LRV-definable

map χ′ : R −→ RVm for which the desired conclusion holds. Let φ(x, y, z) be an A0-

LRV-formula such that φ(x, y, η) defines χ′. We define χ′′ : R× RVl −→ RVm ⊆ RVeq

by declaring χ′′(x, z) = y if and only if φ(x, y, z). Then χ′′ is A0-definable and for all

x ∈ R, we have that χ′′(x, η) = χ′(x). For x ∈ R, we set px : RVl −→ RVm as the map

z 7→ χ′′(x, z) and then consider the code ppxq of px. Notice that the map x 7→ ppxq is

A-definable. Furthermore, since RV is stably embedded, we may assume that ppxq is an

element of RVeq (as opposed to it being an imaginary from the field-sort R). Therefore,

if χ : R −→ RVeq is defined as χ(x) := ppxq for each x ∈ R, then χ is A-definable

and, since each fibre of χ is contained in a fibre of χ′, χ has the required property. p

We know from Proposition 1.1.10 that TRVeq is b-minimal over RVeq. The following is a

stronger notion of b-minimality introduced in [8, Section 6].

Theorem 3.1.2. Assume that T is power bounded. Then TRVeq is b-minimal with centres

over RVeq. That is, if (R,RVeq) is a model of TRVeq and A ⊆ R ∪ RVeq, then

(b′1) for everyA-definable setX ⊆ R, there areA-definable functions χ : X −→ RVeq

and c : χ(X) −→ R such that for each q ∈ χ(X), there is ξ ∈ RV for which

χ−1(q) = rv−1(ξ) + c(q);

(b2) there is no definable surjection from an auxiliary set to a ball in R;

(b3) for every X ⊆ R and A-definable function f : X −→ R there exists an A-defina-

ble function χ : X −→ RVeq such that for each q ∈ χ(X), f |χ−1(q) is either

constant or injective.

Proof. We only need to prove (b′1). Let S0 be the finite A-definable set obtained through
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Theorem 3.1.1 (3). We let χ : X −→ RVeq be given by χ(x) = prv(x− S0)q, for each

x ∈ X . By Lemma 1.1.6, for every q ∈ χ(X) either χ−1(q) = {s} with s ∈ S0, or

χ−1(q) is a maximal ball disjoint from S0. By compactness we obtain an A-definable

function c : χ(X) −→ R such that v̂(b − c(χ(b))) = max{v̂(b − t) | t ∈ S0} for all

b ∈ X . If χ−1(q) is a singleton, then clearly χ−1(q)− c(q) = {0} = rv−1(0). If instead

χ−1(q) is an open ball, where, say, q = χ(b), we have that

χ−1(q) = B(b, > v̂(b− c(q))) = {x ∈ R | rv(x− c(q)) = rv(b− c(q))}

= c(q) + rv−1(rv(b− c(q))). p

From b-minimality with centres we obtain a theorem on cell-decomposition with centres

([8, Theorem 6.4]). Although it could be interesting to explore this and other con-

sequences of b-minimality with centres we do not do so in this work.

We now make a remark of general interest. In the proof of Theorem 3.1.2 we used

Theorem 3.1.1 (3) to obtain Theorem 3.1.2 (b′1). The remark below shows that this works

the other way around too. The importance of this fact is that proving Theorem 3.1.2 (b′1)

could be a strategy to obtain Theorem 3.1.1 (3) in other contexts.

Remark 3.1.3. Assume that T is power bounded. Then the following argument shows

that Theorem 3.1.2 (b′1) can be used to deduce Theorem 3.1.1 (3).

Proof. Let X ⊆ R be A-definable, and suppose that χ and c are as in (b′1). The set

S0 := c(χ(X)) is A-definable and, by Corollary 2.3.9, finite. Let B ⊆ R be any ball

disjoint from S0 and suppose thatB∩X 6= ∅. We want to show thatB ⊆ X . Fix b ∈ B.

We first claim that for each x ∈ B, we have that rv(x−c(χ(b))) = rv(b−c(χ(b))). If this

failed, there would be x ∈ B such that v̂(b−c(χ(b))) ≥ v̂(x−b) and so c(χ(b)) ∈ B∩S0,

a contradiction. To finish, notice that χ−1(χ(b)) − c(χ(b)) = rv−1(rv(b − c(χ(b))))

because b ∈ χ−1(χ((b)); so, the previous claim implies that B ⊆ χ−1(χ(b)) ⊆ X . p
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3.2 The Jacobian property in power-bounded T -convex

fields

In this section we prove that the Jacobian property holds for TRVeq . The proof is inspired

by that of I. Halupczok of the Jacobian property for valued fields with analytic struc-

ture, [26, Subsection 5.3]. The strategy is as follows. We start an inductive argument on

n. In the inductive step we assume that n ≥ 1 and, if n > 1, that TRVeq has the Jacobian

property up to n−1 (in Halupczok’s original presentation the Jacobian property at n = 0

is simply Theorem 3.1.1 (4)). This assumption and Theorem 3.1.1 allow us to apply The-

orem 1.4.6 to ensure that for any m ≤ n, t-stratifications exist for every definable map

from Rm to RVeq. Using results from Chapter 2, if f : Rn −→ R is an A-definable

function, where A ⊆ R ∪ RVeq, we obtain an A-definable map ρ : Rn −→ RVeq such

that on each fibre ρ−1(q), f equals the restriction of an L-definable function, the Jac-

obian Jac(f) of f exists and rv(Jac(f)) is constant. We take a t-stratification for ρ and

improve it in such a way that the fibres of its rainbow χ have a particular form. The

final step is a calculation showing that f has the Jacobian property on each fibre of χ

containing an open ball.

The following easy lemma, an analogue of [26, Lemma 5.8], helps us to make the Jac-

obian property rest on properties of L-definable functions and will be used in the final

calculation.

Lemma 3.2.1. Let g : OR −→ OR be an L-definable differentiable function such that

for all x ∈ OR, g′(x) ∈ OR and res(g′(x)) is constant. Then for all distinct x, x′ ∈ OR,

v(g(x)− g(x′)− g′(0)(x− x′)) > v(x− x′).

Proof. We assume that g′(0) = 0, as otherwise we may replace g by g(x)− g′(0)x. It

follows that v(g′(x)) > 0 for all x ∈ OR. By the Mean Value Theorem for L-definable

functions (see [15, Chapter 7 §2]), for distinct x and x′ in OR, there exists x′′ ∈ OR such
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that g(x)− g(x′) = g′(x′′)(x− x′). Hence v(g(x)− g(x′)) > v(x− x′) as required. p

We now show how to improve a t-stratification so that the fibres of its rainbow have a

desired specific shape. We fix a set of parameters A ⊆ R∪RVeq and an A-definable set

B0 ⊆ Rn (typically a ball or the whole of Rn). When not specified otherwise, by (Si)i≤n

being a t-stratification we mean that (Si)i≤n is a t-stratification of the fixed set B0.

The following lemma is essentially [26, Lemma 4.3 and Lemma 4.22] and sheds more

light on the nature of the rainbow of a t-stratification.

Lemma 3.2.2. Let (Si)i≤n be anA-definable t-stratification and C a fibre of its rainbow.

The following hold.

(a) C either consists of a single point in S0 or it is entirely contained in a ballB ⊆ S≥1;

(b) if C ⊆ Sd and B ⊆ S≥d intersects C, then affdir(C) = tspB((Si)i≤n); in particu-

lar, C is subaffine;

(c) Let π : Kn −→ Kd be an exhibition of affdir(C). Then there exists an A-definable

function c : π(C) −→ Rn−d such that C = graph(c);

(d) Let d := dim(C) and for simplicity assume that π above is the projection to

the first d coordinates. The function ĉ : π(C) × Rn−d −→ π(C) × Rn−d defined as

ĉ(x, y) := (x, y + c(x)) is A-definable and can be written as ϕ ◦M , where ϕ is a riso-

metry, M ∈ GLn(OR), and π ◦ ϕ = π ◦M = π.

Proof. (a) Since r̂v(x − S0) = r̂v(x′ − S0) for all x, x′ ∈ C, C is contained in a fibre

of the map x 7→ r̂v(x− S0). Using that S0 is finite, the result follows immediately from

Lemma 1.1.6.

(b) Assume that C ⊆ Sd and let B ⊆ S≥d be a ball intersecting C. By Proposition 1.3.7

(Si)i≤n reflects C, so ((Si)i≤n, C) is d-translatable on B. Lemma 1.2.12 (b) implies that

dim(C) ≥ d; and we also have that dim(C) ≤ dim(Sd) = d, so dim(C) = d. We set

V := tspB(Si)i≤n and claim that affdir(C) ⊆ V . When d = 0, by an argument like the

one for (a), C must consist of a point in S0 and so affdir(C) = {0} ⊆ V trivially. As
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inductive hypothesis we assume that (b) holds for all the less-than-d-dimensional fibres

of rainbows of t-stratifications. By (a), there is a ball B′ ⊆ S≥1 containing C. Let ρ

be an exhibition of V ′ := tspB′((Si)i≤n). Let q ∈ ρ(B) and set Fq := ρ−1(q) ∩ B′.

Lemma 1.3.10 implies that (Si ∩ Fq)d≤i≤n is a t-stratification of B′ reflecting C ∩ Fq,

and, moreover, C ∩ Fq is a fibre of the rainbow of (Si ∩ Fq)d≤i≤n. By the inductive

hypothesis, for any ball B′′ ⊆ Fq intersecting C ∩ Fq, we have that

affdir(C ∩ Fq) = tspB′′((Si ∩ Fq)d≤i≤n).

Since ((Si)i≤n, C) is V ′-translatable onB′ and ρ exhibits V ′, tspB′′((Si∩Fq)d≤i≤n) does

not depend on q ∈ ρ(B) andB′′ as above; we denote this space by V ′′. We pick q ∈ ρ(B)

such that F := Fq = ρ−1(q) intersects C ∩B, and set B′′ := B ∩ F . It follows that that

V = tspB((Si)i≤n) = V ′ + V ′′. We are finally ready to show that affdir(C) ⊆ V . Let

(αw : B −→ B)w∈π(B−B) be a translater witnessing V -translatability of ((Si)i≤n, C) on

B. For distinct x, x′ ∈ C we have that απ(x−x′) takes π−1(π(x)) ∩B to π−1(π(x′)) ∩B,

so απ(x−x′)(x) = x′, and it follows that dir(x− x′) ∈ V by Definition 1.2.10 (iii).

(c) If C consists of a single point in S0 the result is trivial. We thus assume that C is

entirely contained in a ball B ⊆ S≥1. It is enough to show that for each q ∈ π(C),

C ∩ B ∩ π−1(q) is a singleton. Indeed, if x, x′ are in that intersection but x 6= x′, then

dir(x − x′) 6= 0 but π̃(dir(x − x′)) = 0 because π(x) = π(x′); this contradicts that π

exhibits affdir(C).

(d) If d = 0, then C consists of a single point in S0, and in such case the result is

trivial, so we assume that d > 0. It follows that C is contained in a ball B ⊆ S≥d

with B ∩ C 6= ∅. We set V := affdir(C); recall that by (b), V = tspB((Si)i≤n).

The idea to prove (d) is that mapping π(C) to a lift of V is a linear map, and then V -

translatability implies that a risometry takes (a coset of) such lift to C. We fix a lift

V ⊆ Rn of V . We denote the projection to the last n − d coordinates by π⊥. Since

π exhibits V , for all x ∈ π(B) the set π−1(x) ∩ V consists of a single point (x, vx),
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with v̂(vx) ≥ v̂(x) (see Remark 1.2.7). For (x, y) ∈ Rd × Rn−d define M(x, y) :=

(x, y + π⊥(vx)). Then M is clearly linear and invertible, and, since the inequalities

v̂(M(x, y)) ≥ min{v̂(x), v̂(y), v̂(π⊥(vx))} ≥ v̂(x, y) hold for all (x, y) ∈ Rd × Rn−d,

we have that M ∈ GLn(OR). It only remains to show that ϕ := ĉ ◦M−1 is a risometry.

Let (x, y), (x′, y′) ∈ Rd×Rn−d. Note that r̂v(ϕ(x, y)−ϕ(x′, y′)) = r̂v((x, y)− (x′, y′))

is implied by v̂(−vx + vx′ + c(x)− c(x′)) > v̂(x− x′), which in turn follows from

r̂v(x− x′, vx − vx′) = r̂v(x− x′, c(x)− c(x′)), (3.1)

using that v̂(vx − vx′) ≥ v̂(x − x′). We thus only need to prove (3.1). Obviously,

π(x−x′, vx−vx′) = π(x−x′, c(x)−c(x′)), and dir(x−x′, vx−vx′) = dir(x−x′, 0) =

dir(x − x′, c(x) − c(x′)). Also notice that v̂(π(x − x′, vx − vx′)) = v̂(x − x′), so (3.1)

follows by Lemma 1.2.8 (c). p

Definition 3.2.3. Let (Si)i≤n be a t-stratification and let d ≤ n. We say that (Si)i≤n has

the property (∗)d if for any j ≥ d and fibre C ⊆ Sj of the rainbow of (Si)i≤n, the corres-

ponding function c : π(C) −→ Rn−j is the restriction of an L-definable differentiable

function to π(C).

The product of χ1, χ2 : B0 −→ RVeq is defined as the map x 7→ (χ1(x), χ2(x)). To

make the compactness arguments below to work, we assume that (R,RVeq) is a suffi-

ciently saturated model of TRVeq .

Lemma 3.2.4. Suppose that TRVeq has the Jacobian property up to n − 1. If the A-

definable t-stratification (Si)i≤n has property (∗)d+1 for some 0 ≤ d < n, then there is

an A-definable t-stratification (S ′i)i≤n reflecting (Si)i≤n and having property (∗)d.

Proof. Let C ⊆ Sd be a fibre of the rainbow of (Si)i≤n. Note that if d = 0, then there

is nothing else to do, so we assume that d > 0. We let π : Rn −→ Rd be an exhibition

of affdir(C) and c : π(C) −→ Rn−d be as in Lemma 3.2.2. By Proposition 2.3.3 there

is a pCq-definable map χπ : π(C) −→ RVeq (in fact with finite image) such that on any
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fibre of χπ, c is the restriction of an L-definable differentiable function. By composing

with π : C −→ π(C) we obtain a definable map C −→ RVeq. Now we do this for all

exhibitions of affdir(C), obtaining a collection of maps. We let χ
C

: C −→ RVeq be

the product of all the maps in said collection. Note that χ
C

is pCq-definable. We repeat

this construction for all the fibres of the rainbow of (Si)i≤n contained in Sd. Using that

these fibres cover the whole of Sd, and through a compactness argument, we obtain a

single A-definable map χ : Sd −→ RVeq such that for any C, π and c as above and

fibre X ⊆ C of χ, the map c|π(X) equals the restriction of an L-definable differentiable

function to π(X).

By Theorem 3.1.1 and the assumption that TRVeq has the Jacobian property up to n−1, we

can apply Theorem 1.4.6 to obtain an A-definable t-stratification (Ti)i≤n reflecting both

(Si)i≤n and χ. By Lemma 1.3.5, setting S ′≤j := T≤j for j < d and S ′≤j := S≤j ∪ T≤d−1

for j ≥ d, defines an A-definable t-stratification reflecting both (Si)i≤n and χ, and

satisfying that S ′j ⊆ Sj whenever j ≥ d (and of course S ′≤n = S≤n = B0). We claim

that (S ′i)i≤n has property (∗)d.

Let C ′ ⊆ S ′j be a fibre of the rainbow of (S ′i)i≤n, for some j ≥ d. Then there is

a fibre C ⊆ Sj of the rainbow of (Si)i≤n such that C ′ ⊆ C. It then follows that

affdir(C ′) = affdir(C) and, if π is an exhibition of this subspace, the corresponding

map c′ : π(C ′) −→ Rn−j is the restriction of the map c : π(C) −→ Rn−j to π(C ′).

If j > d, by property (∗)d+1 for (Si)i≤n, the map c is the restriction to π(C) of an

L-definable differentiable function, and this obviously implies a similar conclusion for

c′. Now we let instead j = d. Since (S ′i)i≤n reflects χ, Proposition 1.3.7 tells us that

the rainbow of (S ′i)i≤n refines χ, so χ is constant on C ′ (because said rainbow is con-

stant on C ′). The construction of χ then ensures that c′ is the restriction to π(C ′) of an

L-definable differentiable function. p

Incidentally, notice that by the proof of Lemma 3.2.4 (S ′i)i≤n can be taken such that

S ′≤j ⊆ S≤j for each j ≤ n. Iterating Lemma 3.2.4 we obtain the following corollary.

69



Section 3.2. The Jacobian property for TRVeq

Corollary 3.2.5. Under the assumptions of the last lemma, for any A-definable t-stra-

tification (Si)i≤n there exists an A-definable t-stratification (S ′i)i≤n reflecting (Si)i≤n,

satisfying that S ′≤j ⊆ S≤j for all j ≤ n and fulfilling (∗)0; that is, for any j ≤ n,

any fibre C ⊆ S ′j of the rainbow of (S ′i)i≤n, and any exhibition π of affdir(C), the map

c : π(C) −→ Rn−j is the restriction of an L-definable differentiable function to π(C).

The following remark is used in the proof of our next result. Recall that GLn(OR) stands

for the set of all invertible (n× n)-matrices M such that both M and M−1 have entries

in OR.

Remark 3.2.6. LetX, Y, Z ⊆ Rn and suppose that h : X −→ Y equals the composition

of a risometry and a matrix in GLn(OR). Then the order of composition does not matter;

that is, there are risometries ϕi and matrices Mi ∈ GLn(OR) for i = 1, 2, such that

M1 ◦ ϕ1 = h = ϕ2 ◦ M2. Moreover, if h′ : Y −→ Z is also the composition of a

risometry and a matrix in GLn(OR), then h′ ◦ h can be written as the composition of a

risometry and a matrix in GLn(OR).

Proof. We assume that h = M ◦ ϕ, with ϕ a risometry and M ∈ GLn(OR). By

Lemma 1.1.5 (c), ϕM := M ◦ ϕ ◦M−1 is a risometry. Trivially, ϕM ◦M = M ◦ ϕ = h,

showing that the order of composition in h does not matter. The second part of the

statement is then clear, using the trivial fact that the composition of two risometries is a

risometry. p

The lemma below is an adaptation of [26, Lemma 5.9] and provides a particular descrip-

tion of the fibres of the rainbow of (S ′i)i≤n in Corollary 3.2.5. In the proof we make use

of balls in different powers of R and frequently write that a ‘ball B ⊆ Rd is contained

in a ball B′ ⊆ Rd′’, with d < d′, to mean that B ⊆ π(B′) where π : Rd′ −→ Rd is a

coordinate projection. Most of the time we use this when B and B′ have the same radius

(and are either both open or both closed).

Lemma 3.2.7. Suppose that TRVeq has the Jacobian property up to n− 1 and let (Si)i≤n

70



Chapter 3. T-stratifications in power-bounded T -convex fields

be an A-definable t-stratification of Rn. Then there exists an A-definable t-stratification

(S ′i)i≤n satisfying that S ′≤j ⊆ S≤j for all j ≤ n, and such that whenever C ⊆ S ′n

is a fibre of the rainbow of (S ′i)i≤n, then there are open balls B1, . . . , Bn ⊆ R and an

L-definable differentiable bijection h : B1 × · · · ×Bn −→ C which equals the compos-

ition of a risometry and a matrix in GLn(OR).

N.B. Recall that by simply ‘L-definable’ we mean ‘L-definable with parameters’. In

particular, h above is L-definable with some parameters from R; however, we did not

make an effort to pin down what parameters are used (and their relation toA). This is not

important as the only place at which we use h later is to apply the technical Lemma 3.2.1.

Proof of Lemma 3.2.7. Let (S ′i)i≤n be as in Corollary 3.2.5, and let C ⊆ S ′n be a fibre

of its rainbow. To be able to start an inductive argument below from 0, we suppose

that S ′0 6= ∅ (otherwise, we apply the process below after putting S ′0 = {0}). Note that

C ∩ S ′0 = ∅ because S ′n ∩ S ′0 = ∅, so Lemma 3.2.2 (a) implies that C is entirely

contained in a ball B′ ⊆ Rn \ S ′0. Once we know this, we take x0 ∈ S ′0 and let B0

be a ball containing both x0 and B′ (it is enough to set B0 := B(a,≥ v̂(x0 − a)) for

some a ∈ B′). Since B0 ∩ S ′0 6= ∅, we have that (S ′i)i≤n is not d-translatable on B0 for

any d > 0, so tspB0
((S ′i)i≤n) = {0}. This situation corresponds to the case d = 0, with

π0 : Rn −→ R0 (= {0}) and λ := rad(B0), in the following set of conditions, which we

aim to prove for d = n.

For a coordinate projection π : Rn −→ Rd and λ ∈ Γ:

(1d) λ is maximal such that: for every q ∈ π(C), there exists an open ball Bq ⊆ π−1(q)

of radius λ satisfying that C ∩ π−1(q) ⊆ Bq;

(2d) for every q, q′ ∈ π(C), there exists a risometry between Bq and Bq′ respecting the

rainbow of (S ′i)i≤n;

(3d) for every q ∈ π(C), if B ⊆ Rn is the open ball of radius λ containing Bq, then π

exhibits tspB((S ′i)i≤n);

(4d) there are open balls B1, . . . , Bd ⊆ R and an L-definable differentiable bijection
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hd : B1 × · · · ×Bd −→ π(C) which can be written as the composition of a riso-

metry and a matrix in GLd(OR).

Clearly the result follows from (4n). We pursue an inductive argument to show that

indeed (4n), along with (1n)-(3n), holds. We argued earlier that (1d)-(4d) hold when

d = 0, and below we show that whenever d < n and there are π and λ as above satisfying

conditions (1d)-(4d), then there is d′ > d and corresponding π′ and λ′ such that (1d′)-(4d′)

hold.

Suppose that d < n and that there are λ ∈ Γ and π : Rn −→ Rd that make (1d)-(4d)

hold. We first propose d′ > d, λ′ ∈ Γ and π′ : Rn −→ Rd′ . To simplify notation we

assume that π is the projection to the first d coordinates. Fix q ∈ π(C) and let Bq and B

be as in (2d) and (3d). If S ′d ∩Bq = ∅, then S ′d ∩B = ∅ and (S ′i)i≤n would be (d+ 1)-

translatable on B, so dim(tspB((S ′i)i≤n)) ≥ d+ 1. But this is absurd because from (3d),

the space tspB((S ′i)i≤n)) is exhibited by π : Rn −→ Rd, so dim(tspB((S ′i)i≤n)) = d by

Lemma 1.2.12 (b). We conclude that S ′d ∩ Bq is non-empty. Again because π ex-

hibits tspB((S ′i)i≤n), Lemma 1.3.10 implies that (S ′i ∩ Bq)d≤i≤n is a t-stratification of

Bq and that C ∩ Bq is a fibre of its rainbow. Clearly (C ∩Bq) ∩ S ′d = ∅ (because

C ∩ S ′d = ∅ by Remark 1.3.9), so Lemma 3.2.2 (a) implies that C ∩ Bq is contained

in a ball Dq ⊆ Bq \ S ′d. Since S ′d ∩ Bq is the first stratum of a t-stratification, it must

be finite; so, if we further assume that Dq above is maximal, then Lemma 1.1.7 implies

that there is sq ∈ S ′d ∩ Bq and ξq ∈ RV(n−d) such that Dq = sq + ({0}d × r̂v−1(ξq)).

For any other q′ ∈ π(C), applying the risometry in (2d) from Bq to Bq′ provides us

with Dq′ and s′q ∈ S ′d ∩ Bq′ with analogous properties. For the balls Dq′ the corres-

ponding ξq′ equals ξq by construction, so all of these balls have radius λ′ := v̂RV(ξq).

We set V := tspDq((S
′
i ∩ Bq)d≤i≤n), and we claim that for any other q′ ∈ π(C),

tspDq′ ((S
′
i ∩ Bq′)d≤i≤n) = V . This can be easily seen by composing a translater wit-

nessing V -translatability of (S ′i ∩ Bq)d≤i≤n on Dq with the risometry in (2d) from Bq to

Bq′; the result is a translater witnessing V -translatability of (S ′i ∩Bq′)d≤i≤n on Dq′ . This

establishes our claim. Now, since S ′d ∩Dq = ∅, the collection (S ′i ∩Bq)d≤i≤n is at least

72



Chapter 3. T-stratifications in power-bounded T -convex fields

1-translatable on Dq, so dim(V ) ≥ 1. We set d′ := d+ dim(V ) and π′ : Rn −→ Rd′ as

the map x 7→ π(x)⊕ ρ(x− π(x)), where ρ : Rn−d −→ Rd′−d is an exhibition of V . We

show below that d′, λ′ and π′ validate (1d′)-(4d′).

Before starting the proof of (1d′)-(4d′), we point out that, if q ∈ π(C) and the corres-

ponding sq ∈ S ′d ∩ Bq is in a fibre C̃ of the rainbow of (S ′i)i≤n, then in fact the whole

collection {sq}q∈π(C) is contained in C̃, for the risometries in (2d) respect the rainbow

of (S ′i)i≤n. Fixing such C̃, it is also clear that π(C̃) = π(C) (by construction, each

sq ∈ C̃ correspond to the fibre π−1(q)). We also have that affdir(C̃) = tspB((S ′i)i≤n),

so π exhibits affdir(C) according to (3d).

To simplify notation we assume that ρ : Rn−d −→ Rd′−d is the projection to the first

d′−d coordinates. So π′ is the projection to the first d′ coordinates onRn. We also apply

π to elements of Rd′ in the obvious way, namely, π(x1, . . . , xd, . . . , xd′) := (x1, . . . , xd).

(1d′) For q ∈ π′(C) we set B′q := Dπ(q)∩π′−1(q). Since C ∩π−1(π(q)) ⊆ Dπ(q), clearly

C ∩ π′−1(q) ⊆ B′q ⊆ π′−1(q).

(2d′) Let q, q′ ∈ π′(C) and let ϕ := ϕπ(q),π(q′) : Bπ(q) −→ Bπ(q′) be the risometry given

by (2d). Also, let (αq
′
r : Dπ(q′) −→ Dπ(q′))r∈ρ(Dπ(q′)−Dπ(q′)) be a translater witnessing V -

translatability of (S ′i)i≤n on Dπ(q′). The needed risometry ψq,q′ : B′q −→ B′q′ is obtained

as follows: if x ∈ B′q, we have that x′ := ϕ(x) ∈ Bπ(q′), and since αρ(x′−q′) takes

ρ−1(x′) ∩ Dπ(q′) to ρ−1(q′) ∩ Dπ(q′), we have that x′′ := αρ(x′−q′)(x
′) ∈ B′q′; it is then

enough to put ψq,q′(x) := x′′. From the properties of ϕ and the maps αq′r we get that

ψq,q′ is a bijection from B′q to B′q′ . Using Lemma 1.2.8 (a), showing that ψq,q′ satisfies

that r̂v(ψq,q′(x1) − ψq,q′(x2)) = r̂v(x1 − x2) for all x1, x2 ∈ Bq, is a straightforward,

technical argument analogous to the one in the last part of the proof of Lemma 4.3.2.

(3d′) Fix q ∈ π′(C) and let B′ ⊆ Rn be the open ball of radius λ′ containing B′q. Follow-

ing (3d), we let B ⊆ Rn be the open ball of radius λ containing Bπ(q). Since π exhib-

its tspB((S ′i)i≤n) and ρ exhibits V = tspDπ(q)((S
′
i ∩Bπ(q))d≤i≤n), to see that π′ exhib-

its tspB′((S
′
i)i≤n) ⊆ kd

′ it is enough to notice that tspB′((S
′
i)i≤n) = tspB((S ′i)i≤n)⊕ V ,

which holds by construction.
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(4d′) Since C̃ ⊆ S ′d is a fibre of the rainbow of (S ′i)i≤n and π exhibits affdir(C̃), the

properties of (S ′i)i≤n described in Corollary 3.2.5 imply that the corresponding function

c̃ : π(C̃) −→ Rn−d (see Lemma 3.2.2 (c)) is the restriction to π(C̃) of an L-definable

differentiable function. Recall that π(C̃) = π(C); we use this fact below without further

mention. We let U be the open ball ρ(r̂v−1(ξπ(q))) ⊆ Rd′−d. By Lemma 3.2.2 (d), the

bijection g : π(C)× U −→ π′(C) defined as g(x, y) := (x, ρ ◦ c̃(x) + y) is the compos-

ition of a risometry and a matrix in GLd′(OR). We define hd′ : B1 × · · · × Bd × U −→

π′(C) as the composition g ◦ (hd × idU), that is, for any x ∈ B1 × · · · ×Bn and any

y ∈ U , hd′(x, y) := (hd(x), ρ ◦ c̃ ◦hd(x) + y). Using the property of hd in (4d), hd× idU

is the composition of a risometry and a matrix in GLd′ , so the same holds for hd′ by

Remark 3.2.6. Lastly, since both hd and c̃ are L-definable and differentiable, so is hd′ .

Thus (4d′) holds, and the proof is finished. p

We finally prove the main result of the section, which is Theorem B in the Introduction.

Theorem 3.2.8. The theory TRVeq has the Jacobian property. That is, for any n ≥ 1,

any (R,RVeq) � TRVeq and any A ⊆ R ∪ RVeq, if X ⊆ Rn and f : X −→ R are

A-definable, then there exist an A-definable map χ : X −→ RVeq such f has the

Jacobian property on each n-dimensional fibre of χ, i.e. whenever q ∈ χ(X) is such

that dim(χ−1(q)) = n, either f |χ−1(q) is constant or there exists z ∈ Rn \ {0} satisfying

that for all distinct x, x′ ∈ χ−1(q),

v(f(x)− f(x′)− 〈z, x− x′〉) > v̂(z) + v̂(x− x′), (3.2)

Proof. We let n ≥ 1 and we assume as inductive hypothesis that TRVeq has the Jacobian

property up to n − 1 (no extra assumption is considered when n − 1 = 0). Let A,X

and f be as in the statement of the theorem. As usual, after picking parameters in RV,

we make f to be LRV-definable. By Lemma 2.3.6, there is an A-definable function

χ′ : Rn −→ RVeq such that if q ∈ χ′(Rn) and dim(χ′−1(q)) = n, then χ′−1(q) is open,

Jac(f) exists on χ′−1(q) and r̂v ◦ Jac(f) is constant on χ′−1(q).
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By the inductive hypothesis and Theorem 1.4.6, there exists an A-definable t-stratifi-

cation (Si)i≤n reflecting χ′. Let (S ′i)i≤n be the t-stratification obtained by applying

Lemma 3.2.7 to (Si)i≤n. By Proposition 1.3.7 the rainbow χ of (S ′i)i≤n refines χ′, so

on each n-dimensional fibre of χ, Jac(f) exists and r̂v ◦ Jac(f) is constant. Using this,

we prove below that (3.3) holds on all the n-dimensional fibres of χ.

We fix an n-dimensional fibre C of χ. It follows that C ⊆ Sn (by Remark 1.3.9 we

know that C ⊆ Sd for some d ≤ n, and if d < n, then dim(C) ≤ dim(Sd) ≤ d < n,

a contradiction); we then let B1, . . . , Bn and h : B1 × · · · × Bn −→ C be as in the

conclusion of Lemma 3.2.7. Let ϕ be a risometry and M a matrix in GLn(OR) such

that h = ϕ ◦ M . Let ξ be the (unique) value taken by r̂v ◦ Jac(f |C). If ξ = 0, then

Jac(f |C)(x) = 0 for all x ∈ C, so f(x) is constant on C and there is nothing left to

prove. We thus suppose that ξ 6= 0. Fix x0 ∈ C and set z := Jac(f |C)(x0). We use

Lemma 3.2.1 and properties of h to prove that for all x ∈ C \ {x0},

v(f(x)− f(x0)− 〈z, x− x0〉) > v̂(z) + v̂(x− x0). (3.3)

Let x ∈ C \{x0}. We set η : OR −→ B1×· · ·×Bn as η(t) := th−1(x)+(1− t)h−1(x0)

for each t ∈ OR. Clearly the function θ := h ◦ η : OR −→ C is L-definable and

differentiable. Moreover, for any distinct t, t′ ∈ OR, we have thatM ◦η(t)−M ◦η(t′) =

(t−t′)(M◦h−1(x)−M◦h−1(x0)) = (t−t′)(ϕ−1(x)−ϕ−1(x0)), so in turn, r̂v
(
θ(t)−θ(t′)
t−t′

)
equals

r̂v

(
ϕ ◦M ◦ η(t)− ϕ ◦M ◦ η(t′)

t− t′

)
= r̂v

(
M ◦ η(t)−M ◦ η(t′)

t− t′

)
= r̂v(ϕ−1(x)− ϕ−1(x0)) = r̂v(x− x0).

This means that r̂v
(
θ(t)−θ(t′)
t−t′

)
is constant for different t, t′ ∈ OR (and equals r̂v(x−x0)).
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It follows that r̂v ◦ Jac(θ) is constant on OR, and that for all t, t′, s ∈ OR with t 6= t′,

r̂v(Jac(θ)(s)) = r̂v

(
θ(t)− θ(t′)
t− t′

)
= r̂v(x− x0). (3.4)

Set g := f |C ◦ θ : OR −→ R. Then g is (the restriction of) an L-definable differentiable

function and by the chain rule, g′(t) = 〈Jac(f |C)(θ(t)), Jac(θ)(t)〉 for each t ∈ OR.

From Lemma 1.2.8 (d) it follows that for each t ∈ OR,

v(g′(t)) = v(〈Jac(f |C)(θ(t)), Jac(θ)(t)〉) ≥ v̂(Jac(f |C)) + v̂(Jac(θ)), (3.5)

where v̂(Jac(f |C)) := v̂(Jac(f |C)(x)) for some x ∈ C, and v̂(Jac(θ)) := v̂(Jac(θ)(t))

for some t ∈ OR (these definitions do not depend on the choices of x and t because both

r̂v ◦ Jac(f |C) and r̂v ◦ Jac(θ) are constant). Using again both Lemma 1.2.8 (d) and the

fact that r̂v ◦ Jac(f |C) and r̂v ◦ Jac(θ) are constant, we have that for t 6= t′ in OR,

v(g′(t)− g′(t′)) ≥ v̂(Jac(f |C)(θ(t))− Jac(f |C)(θ(t′))) + v̂(Jac(θ)(t)− Jac(θ)(t′))

> v̂(Jac(f |C)) + v̂(Jac(θ)). (3.6)

Let r ∈ R× be such that v(r) = v̂(Jac(f |C)) + v̂(Jac(θ)). By (3.5) and (3.6), the

function t 7→ g(t)/r from OR to itself satisfies the hypotheses of Lemma 3.2.1; thus, for

all distinct t, t′ ∈ OR, v(g(t)−g(t′)−g′(0)(t−t′)) > v(t−t′)+v̂(Jac(f |C))+v̂(Jac(θ)).

By considering t = 1 and t′ = 0 we obtain that

v(f(x)− f(x0)− g′(0)) > v̂(Jac(f |C)) + v̂(Jac(θ)). (3.7)

Since z := Jac(f |C)(x0) and θ(0) = x0, we have that g′(0) = 〈z, Jac(θ)(0)〉. Using that

rv ◦ Jac(f |C) is constant we also get that v̂(z) = v̂(Jac(f |C)), and from (3.4) we have
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that v̂(Jac(θ)) = v̂(x− x0). Then (3.7) becomes

v(f(x)− f(x0)− 〈z, Jac(θ)(0)〉) > v̂(z) + v̂(x− x0). (3.8)

Putting s = 0 in (3.4) tells us that v̂(Jac(θ)(0)− (x− x0)) > v̂(x− x0), and hence we

get that v(〈z, Jac(θ)(0)〉 − 〈z, x− x0〉) > v̂(z) + v̂(x− x0). Combining this inequality

with (3.8) proves (3.3).

The last part of the proof consists of showing that z := Jac(f |C)(x0) makes (3.2) hold

for all x 6= x′ in C (not just for x and x0). Let x and x′ be distinct arbitrary elements of

C. Notice that (3.3) holds after replacing x0 by x′ and z by z′ := Jac(f |C)(x′). Using

this and that r̂v(z) = r̂v(z′) (because r̂v ◦ Jac(f |C) is constant on C) we conclude that

v(f(x)− f(x′)−〈z, x−x′〉) ≥ min{v(f(x)− f(x′)−〈z′, x−x′〉), v(〈z− z′, x−x′〉)}

> v̂(z) + v̂(x− x′), as required. p

Therefore, t-stratifications exist for any definable map B0 −→ RVeq. We write this

explicitly for later reference.

Corollary 3.2.9. Let ψ and φ be LRVeq-formulas such that ψ has only field-sort free

variables and φ defines a map χφ(R) : ψ(R) −→ RVeq in each model (R,RVeq) of

TRVeq . Then there are LRVeq-formulas ψ0, . . . , ψn such that in every model (R,RVeq) of

TRVeq , the collection (ψi(R))i≤n is a t-stratification reflecting χφ(R).

Proof. We have proved that TRVeq satisfies Hypotheses 1.1.9 and has the Jacobian pro-

perty, the result then follows from the discussion after Theorem 1.4.6 (cf. [26, Corollary

4.13]) p

3.3 O-minimally definable t-stratifications

We have established the existence of t-stratifications definable in the language LRVeq . In

this section we prove that we can further assume that t-stratifications are L-definable.
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The meaning of this claim is that for any given t-stratification (Si)i≤n (say, of B0) there

exists a t-stratification (S ′i)i≤n reflecting (Si)i≤n and for which each set S ′i is the inter-

section of B0 with an L-definable set. In the case when L = Lor (i.e. when (R,OR) is

a real closed valued field with no extra structure) this was proved in [26, Section 6]. We

follow an analogous argument; however, this time we use deeper structural results about

definable sets in R, such as cell-decomposition.

Definition 3.3.1. Let x be a tuple of field-sort variables and φ(x) an LRVeq-formula. The

dimension of φ(x) is defined as dim(φ(x)) := max{dim(φ(R)) | (R,RVeq) � TRVeq}.

The following proposition is an improvement on [26, Proposition 6.2] (in the latter, the

formula φ∆ in (2) below is required to be minimal with respect to implication).

Proposition 3.3.2. Let ∆ be a set of LRVeq-formulas such that

(1) ∆ is closed under disjunctions and contains ⊥;

(2) for each LRVeq-formula φ there is a formula φ∆ ∈ ∆ satisfying that φ → φ∆ and

dim(φ) = dim(φ∆).

Also assume that (φi)i≤n is a tuple of LRVeq-formulas defining a t-stratification in all

models of TRVeq . Then there exists a tuple of formulas (ψi)i≤n in ∆ that defines a t-stra-

tification reflecting the t-stratification defined by (φi)i≤n in all models of TRVeq .

Proof. Let (φi)i≤n be a tuple of formulas as in the hypotheses and pick φ∆
i for each φi

as in (2). For each i ≤ n, we set φ≤i := φ0∨· · ·∨φi and similarly φ∆
≤i := φ∆

0 ∨· · ·∨φ∆
i .

Using (1) and Proposition 1.1.12 (d), we have that for each i ≤ n, φ∆
≤i ∈ ∆, φ≤i → φ∆

≤i

and dim(φ∆
≤i) = dim(φ≤i). Conventionally, for a formula φ with only field-sort free

variables, dim(φ) ≤ −1 simply expresses that φ has no solutions in any model of TRVeq

(i.e. TRVeq ` ¬∃xφ(x)). Let d ∈ {−1, 0, . . . , n} be such that dim(φ∆
≤i ∧ ¬(φ≤i)) ≤ d,

for all i ≤ n. If d = −1, we have finished, as in that case each φi is already equivalent

to the formula φ∆
i ∈ ∆. So we assume that d ≥ 0. As an abuse of terminology, we call a

tuple of formulas defining a t-stratification in all models of TRVeq simply a t-stratification.
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We also talk about reflection of formulas with the obvious meaning. Applying the next

claim inductively takes us back to the case when d = −1, finishing the proof.

Claim. There is a t-stratification (φ′i)i≤n reflecting (φi)i≤n, and formulas φ∗0, . . . , φ
∗
n ∈ ∆

such that for each i ≤ n, φ′i → φ∗i , and dim(φ∗≤i ∧ ¬(φ′≤i)) ≤ d − 1, where φ∗≤i :=

φ∗0 ∨ · · · ∨ φ∗i and similary for φ′≤i.

Proof of Claim. Set δn := φ∆
≤n ∧¬(φ≤n) and pick δ∆

n ∈ ∆ as in (2). Clearly, dim(δ∆
n ) =

dim(δn) ≤ d. Fix i < n and suppose that we have defined δi+1 with dim(δi+1) ≤ d and

taken δ∆
i+1 ∈ ∆ as in (2). We set

δi := (φ∆
≤i ∧ ¬(φ≤i)) ∨ (δ∆

i+1 ∧ ¬δi+1) ∨ · · · ∨ (δ∆
n ∧ ¬δn),

and we then fix a choice of δ∆
i ∈ ∆ as in (2). This process defines δi and δ∆

i recursively

for all 0 ≤ i ≤ n. Notice that dim(δi) ≤ d for all i ≤ n, so the set δ :=
∨
i≤n δi is

of dimension no greater than d by Proposition 1.1.12 (d). This condition is important to

apply Lemma 1.3.5 further down in the proof.

We claim that for each i ≤ n the formula φ≤i∨δ is equivalent to a disjunction of formulas

in ∆; indeed, using ≡ to denote logical equivalence, for each i ≤ n we have that

φ≤i ∨ δ ≡
∨
j≤i

(φ≤j ∨ δj ∨ · · · ∨ δn)

≡
∨
j≤i

(
φ≤j ∨ (φ∆

≤j ∧ ¬(φ≤j)) ∨ (δ∆
j+1 ∧ ¬δj+1) ∨ · · · ∨ (δ∆

n ∧ ¬δn) ∨ δj+1 ∨ · · · ∨ δn
)

≡
∨
j≤i

(
(φ≤j ∨ (φ∆

≤j ∧ ¬(φ≤j))) ∨ ((δ∆
j+1 ∧ ¬δj+1) ∨ δj+1) ∨ · · · ∨ ((δ∆

n ∧ ¬δn) ∨ δn)
)

≡
∨
j≤i

(φ∆
≤j ∨ δ∆

j+1 ∨ · · · ∨ δ∆
n ) ∈ ∆.

Applying Corollary 3.2.9, we let (ψi)i≤n be a t-stratification reflecting ((φi)i≤n, δ). Re-

calling that dim(δ) ≤ d, Lemma 1.3.5 implies that setting
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φ′≤i :=


ψ≤i if i ≤ d− 1,

φ≤i ∨ δ ∨ ψ≤d−1 if i ≥ d,

(and implicitly, φ′0 := φ′≤0 and φ′i := (φ′≤i ∧ ¬(φ′≤i−1)) for 0 < 1 ≤ n; when d = 0,

φ′≤−1 := ⊥) defines a t-stratification (φ′i)i≤n that reflects (φi)i≤n and—with the natural

meaning—coincides with (ψi)i≤n outside of φ≤d ∨ δ.

To define the formulas φ∗i we first fix formulas ψ∆
i ∈ ∆ as in (2) for each ψi (putting

ψ∆
−1 := ⊥ if d = 0). We use the notation ψ∆

≤i for ψ∆
0 ∨ · · · ∨ ψ∆

i , for each i ≤ n. Below

we implicitly replace φ≤i ∨ δ by
∨
j≤i(φ

∆
≤j ∨ δ∆

j+1 ∨ · · · ∨ δ∆
n ) for each i ≤ n. We put

φ∗≤i :=


ψ∆
≤i if i ≤ d− 1,∨
j≤i(φ

∆
≤j ∨ δ∆

j+1 ∨ · · · ∨ δ∆
n ) ∨ ψ∆

≤d−1 if i ≥ d.

(Again, when d = 0 we put φ∗≤−1 := ⊥.) Clearly φ∗≤i ∈ ∆ and φ′≤i → φ∗≤i for all i ≤ n.

Lastly, we check that for each i ≤ n we have that dim(φ∗≤i ∧ ¬(φ′≤i)) ≤ d − 1. To this

effect we show that for all i ≤ n the following implication holds

(φ∗≤i ∧ ¬(φ′≤i))→ ψ∆
≤d−1. (3.9)

By definition, φ∗≤i = ψ∆
≤i for all i ≤ d− 1, so (3.9) is trivial for such i. If instead i ≥ d,

we have that

φ∗≤i∧¬(φ′≤i) ≡ (φ≤i∨δ∨ψ∆
≤d−1)∧¬(φ≤i∨δ∨ψ≤d−1)→ (ψ∆

≤d−1∧¬(ψ≤d−1))→ ψ∆
≤d−1.

We have showed that (3.9) holds for all i ≤ n. Finally, since (ψi)i≤n is a t-stratification,

we have that dim(ψ∆
≤d−1) = dim(ψ≤d−1) ≤ d − 1 (also dim(ψ∆

≤−1) = dim(⊥) ≤ −1

when d = 0), so it follows from (3.9) that for each i ≤ n, dim(φ∗≤i ∧ ¬(φ′≤i)) ≤ d − 1,

finishing the proof of the claim. p
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We aim to apply Proposition 3.3.2 to the set ∆ of all L-formulas. Clearly such a set

satisfies condition (1) above. The rest of the section is devoted to proving that (2)

holds. Proving (2) translates to showing that any LRVeq-definable set is contained in

an L-definable set of the same dimension. This is enough by the completeness of TRVeq .

Furthermore, it is enough to show the statement is true for LRV-definable sets, and to

this end we digress slightly to talk about cell decomposition. We work with two kinds

of cells available for subsets of powers of R, the first kind coming from the o-minimal

setting of R as an L-structure, and the second coming from the weakly o-minimality of

R as the field-sort of (R,RV).

Cells in o-minimal structures were first introduced in [32].

Definition 3.3.3 (o-minimal cells). A 1-L-cell is simply a point or an open interval in R

(for intervals, we allow ±∞ as endpoints). We say that C ⊆ Rn+1 is an (n + 1)-L-cell

if there exists an n-L-cell C ′ ⊆ Rn such that either

(i) C = {(a, f(a)) ∈ Rn+1 | a ∈ C ′}, for some L-definable function f : Rn −→ R;

or

(ii) C = {(a, b) ∈ Rn+1 | a ∈ C ′ and f(a) < b < g(a)}, for some L-definable

functions f, g : Rn −→ R satisfying that f(x) < g(x) for all x ∈ C ′.

We say that X is an L-cell if it is an n-L-cell for some n ≥ 1.

The second kind of cells was introduced in [35, Subsection 4.2], where a cell decomposi-

tion theorem was proved for weakly o-minimal theories. Below R̂ denotes the Dedekind

completion of R as an ordered field. By ‘LRV-definable function f : Rn −→ R̂ ’ we

really mean an LRV-definable family of cuts (Cx)x∈Rn of R; so, f is simply the map

x 7→ Cx. Accordingly, b < f(x) means that b ∈ Cx, and so on.

Definition 3.3.4. A 1-LRV-cell is a convex LRV-definable subset of R (note that points

are 1-LRV-cells). We say that D ⊆ Rn+1 is an (n+ 1)-LRV-cell if there exists an n-LRV-

cell D′ ⊆ Rn such that either

(i)D = {(a, f(a)) ∈ Rn+1 | a ∈ D′}, for some LRV-definable function f : Rn −→ R;
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or

(ii) D = {(a, b) ∈ Rn+1 | a ∈ D′ and f(a) < b < g(a)}, for some LRV-definable

functions f, g : Rn −→ R̂ satisfying that f(x) < g(x) for all x ∈ D′.

We say that X is an LRV-cell if it is an n-LRV-cell for some n ≥ 1.

Unlike the usual definition (e.g. [15, (2.3) Definition]), we did not ask for continuity for

the functions appearing in Definition 3.3.3; this has the purpose of easing the compatib-

ility between L-cells and LRV-cells—see the proof of Proposition 3.3.7.

Theorem 3.3.5 ([35]). Every LRV-definable subset of Rn admits a partition into finitely

many LRV-cells.

Proof. Every such subset is Lconvex-definable, so the conclusion follows from [35, The-

orem 4.6] by the weakly o-minimality of Tconvex. p

The following is a corollary of this theorem and Proposition 2.3.3.

Corollary 3.3.6. Let f : X −→ R be an LRV-definable function with X ⊆ Rn. Then

there are a partition of X into finitely many LRV-cells D1, . . . , Dm, and L-definable

functions f1, . . . , fm : Rn −→ R such that f |Di = fi|Di , for each i ∈ {1, . . . ,m}.

The following crucial result states that LRV-cells are suitably covered by L-cells.

Proposition 3.3.7. If D is an LRV-cell, then there are finitely many L-cells C1, . . . , Cm

such that D ⊆ C1 ∪ · · · ∪ Cm and dim(D) = dim(C1 ∪ · · · ∪ Cm).

Proof. Let D ⊆ R be a 1-LRV-cell. If D is a point, it is a 1-LRV-cell already. If D is

a convex set of dimension 1, we may take R as the L-cell required. We now let D be

an (n + 1)-LRV-cell and we assume that D′ is an n-LRV-cell from which D is obtained

through either (i) or (ii) in Definition 3.3.4. As inductive hypothesis we assume that

there are finitely many L-cells C ′i such that D′ ⊆
⋃
iC
′
i and dim(D′) = dim(

⋃
iC
′
i).

Case (i). D = {(a, f(a)) ∈ Rn+1 | a ∈ D′}, where f : Rn −→ R is an LRV-definable

function. By applying Corollary 3.3.6, let {Aj}j be a decomposition of
⋃
iC
′
i into LRV-
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cells and {fj : Rn −→ R}j L-definable functions such that f |Aj = fj|Aj , for each j.

Define for all i and j, Ci,j := {(a, fj(a)) | a ∈ C ′i}. Then clearly each Ci,j is an L-cell

and X ⊆
⋃
i,j Ci,j . Moreover, for any i and j, dim(Ci,j) = dim(C ′i), so

dim
(⋃

i,j
Ci,j

)
= dim

(⋃
i
C ′i
)

= dim(D′) = dim(X),

as required.

Case (ii). D = {(a, b) ∈ Rn+1 | a ∈ D′ and f(a) < b < g(a)}, where f, g : Rn −→ R̂

are LRV-definable functions satisfying f(x) < g(x) for all x ∈ D′. Following the idea

of covering an LRV-definable convex set of dimension 1 by the whole of R, we simply

put Ci := C ′i × R. Clearly each Ci is an L-cell and X ⊆
⋃
iCi. Lastly, notice that for

every i, dim(Ci) = dim(C ′i) + 1, so

dim
(⋃

i
Ci

)
= dim

(⋃
i
C ′i

)
+ 1 = dim(D′) + 1 = dim(D),

finishing this case and the whole proof. p

By Theorem 3.3.5 and the last proposition, for every LRV-definable setX ⊆ Rn there ex-

ists an L-definable set Y ⊆ Rn such that X ⊆ Y and dim(Y ) = dim(X), as postulated

earlier. We conclude with the claim at the beginning of the section.

Theorem 3.3.8. Let (φi)i≤n be a tuple of LRVeq-formulas defining a t-stratification in

all models of TRVeq . Then there exists a tuple of L-formulas (φ′i)i≤n such that for each

model (R,RVeq) of TRVeq , (φ′i(R))i≤n is a t-stratification reflecting (φi(R))i≤n.

Proof. By passing from LRVeq to LRV as usual, it follows from the previous paragraph

that each LRVeq-definable set X ⊆ Rn is contained in an L-definable Y ⊆ Rn such that

dim(X) = dim(Y ). By the completeness of TRVeq , we conclude that the set ∆ of all L-

formulas satisfies the hypotheses (1) and (2) of Proposition 3.3.2; the result follows. p

We present an application of this theorem in Chapter 5.
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3.4 No t-stratifications in arbitrary T -convex fields

The following example shows that the hypothesis of power-boundedness on T is es-

sential for the existence of t-stratifications. We consider the theory T = RCFexp (see

page 119), which is an o-minimal theory and is not power-bounded. We let R be a

non-principal ultrapower of the real field R as a model of RCFexp, and let OR be an

RCFexp-convex subring of R (say, OR is the convex hull of R in R). We consider the

model (R,RVeq) of the theory (RCFexp)RVeq . The following simple example was sug-

gested by I. Halupczok in private communication.

Recall that M denotes the maximal ideal of OR. Note that the continuity of the log-

arithm log : R>0 −→ R implies that log(1 +M) ⊆M . Indeed, on R it is true that

∀ε ∈ R>0∃δ ∈ R>0(‖1− x‖ < δ → ‖ log(x)‖ < ε). Fixing ε and consequently δ, it is

clear that any element x ∈ M satisfies that ‖1 − (1 + x)‖R < δ, so using the transfer

principle (see Fact 5.1.2) we have that ‖ log(1 + x)‖R < ε. Since this holds for arbitrary

ε ∈ R>0, we conclude that log(1 + x) ∈M whenever x ∈M .

Proposition 3.4.1. The definable map χ : R −→ RV given as χ(x) := rv(ex) does not

admit a t-stratification.

Proof. First of all we claim that χ cannot be 1-translatable on any closed ball B ⊆ R

with rad(B) ≤ 0. Assume the contrary, and let B be as said and let ϕ : B −→ B be a

straightener of χ on B; note that the direction of translatability must be V = R, so a lift

of V is simply R. Let x, x′ ∈ B be such that v(x− x′) = 0. Since trivially x− x′ ∈ R,

we have that χ ◦ ϕ(x) = χ ◦ ϕ(x′). Hence, rv(eϕ(x)) = rv(eϕ(x′)) and this is equivalent

to ϕ(x) − ϕ(x′) = log(eϕ(x)−ϕ(x′)) ∈ log(1 + M). By the comment preceding the

proposition, ϕ(x)−ϕ(x′) ∈M , and this contradicts that v(ϕ(x)−ϕ(x′)) = v(x−x′) = 0

(since rv(ϕ(x)− ϕ(x′)) = rv(x− x′)). The claim is proved.

We now address the proposition. Since the exponential map e is trivially definable in

any model of RCFexp, χ is clearly definable in (R,RVeq). Now we assume for the
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sake of a contradiction that (S0, S1) is a t-stratification of R reflecting χ. According to

this, χ must be 1-translatable on any ball disjoint from S0. So, by the first part of the

proof it is enough to find a closed ball B ⊆ R \ S0 with rad(B) ≤ 0. This follows

easily from the finiteness of S0: if a0 < · · · < am lists all of S0, then either one of

the balls B(b,≥ v̂(ai+1 − ai)) with b ∈ (ai, ai+1) and i ∈ {0, . . . ,m − 1} is as we

want or S0 ⊆ B(a0, > 0), which clearly also implies that the needed ball B exists (take

x /∈ B(a0,≥ 0) and set B := B(x,≥ 0)). p

Remark 3.4.2. The concrete choices of RCFexp and R were made with the purpose of

easing some of the arguments. The example is pertinent to any arbitrary not power-

bounded o-minimal theory T for Theorem A.1.13 ensures that an exponential is always

definable in any model of such T .
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Chapter 4

T-stratifications of tangent cones

Throughout this chapter, L will be a language containing Lor and T will be a power-

bounded o-minimal L-theory expanding RCF. We work in models (R,RVeq) of TRVeq ,

and by ‘definable’, we will always mean ‘LRVeq-definable’. We prove that a t-stratifica-

tion of a definable set X ⊆ Rn induces a t-stratification on each of the tangent cones of

X . This chapter corresponds to [23].

4.1 Tangent cones

Following the work of H. Whitney [53], the tangent cone of a set X ⊆ Cn at a point

p ∈ Cn is the union of all the limiting secant lines to X at p. This definition makes sense

for subsets of Rn but loses the tight relation with the local geometry of the set. This can

be seen in the cusp curve, the set X ⊆ R2 defined by the equation x3 − y2 = 0. At 0, X

has only one limiting secant line, the horizontal axis, so this line would be the tangent

cone of X at 0. Clearly the negative part of the axis conveys little information about the

set. In order to recover the tighter relation of the tangent cone with the local geometry of

the set, it is preferred to define the tangent cone as the union of all the limiting secant rays

to X at p. A ray is a set of points of the form tx, with fixed unitary x ∈ Rn (the direction
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of the ray) and t ranging in [0,∞). The propriety of this definition is exemplified by

the applications of these tangent cones in the research on the local geometry of subsets

of Rn, see for instance [21] and [20] on matching prescribed tangent cones to algebraic

subsets of Rn. We adopt this definition for subsets of Rn. Recall that by ‖·‖
R

we denote

the Euclidean norm on R (see page 42).

Definition 4.1.1. Let X ⊆ Rn and p ∈ Rn. The tangent cone of X at p, denoted as

Cp(X), is the set

{y ∈ Rn | ∀ε ∈ R>0∃x ∈ X, r ∈ R>0(‖x− p‖
R
< ε ∧ ‖r(x− p)− y‖

R
< ε)}.

A set C ⊆ Rn is called a cone if for all x ∈ C and r ∈ R>0, rx ∈ C. It is clear

that Cp(X) is always a cone. Some authors prefer the term semicone for what we call a

cone to stress that we only consider positive scalars r. We believe there is no chance of

confusion in our setting.

The following are further immediate properties of tangent cones.

Proposition 4.1.2. Let X, Y ⊆ Rn and p ∈ Rn. The following hold.

(a) If X ⊆ Y , Cp(X) ⊆ Cp(Y );

(b) Cp(X ∪ Y ) = Cp(X) ∪ Cp(Y );

(c) Cp(X ∩ Y ) ⊆ Cp(X) ∩ Cp(Y ), and the strict containment may hold;

(d) Cp(X) is a closed set;

(e) if X is definable in (R,RVeq), so is Cp(X);

(f) Cp(X) equals the set

{y ∈ Rn | ∀λ ∈ Γ∃x ∈ X, r ∈ R>0(v̂(x− p) > λ ∧ v̂(r(x− p)− y) > λ}.

Proof. (a), (b) and (e) are clear, while (f) follows from Remark 2.1.7. In (c), it is clear

that Cp(X∩Y ) ⊆ Cp(X)∩Cp(Y ). To see that the strict containment could hold, consider
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X := {(x, y) ∈ R≥0 ×R≥0 | y2 = x3} and Y := {(x, y) ∈ R≥0×R<0 | y2 = x3}. Then

C0(X ∩Y ) = {0} but C0(X)∩C0(Y ) = R≥0×{0}. For (d), suppose that z ∈ cl(Cp(X))

and take λ ∈ Γ. Then there is y ∈ Cp(X) such that v̂(y − z) > λ. Also, by (f), there

are x ∈ X and r ∈ R>0 for which v̂(x − p) > λ and v̂(r(x − p) − y) > λ. If follows

that v̂(x − p) > λ and v̂(r(x − p) − z) ≥ min{v̂(r(x − p) − y), v̂(y − z)} > λ. Thus

z ∈ Cp(X). p

If X ⊆ Rn, the tangent cone of X at p ∈ Rn is defined by replacing R with R in

Definition 4.1.1 and employing the usual norm ‖·‖ on Rn. We denote this tangent cone

by Cp(X). The motivation for our upcoming result about tangent cones in R is the

following proposition about tangent cones in R. The spirit of both results goes back

to [53, Theorem 11.8], where a similar statement is proved for complex analytic varieties.

Proposition 4.1.3. Let X be an L-definable subset of Rn and p a non-isolated point of

X . For u ∈ Rn, u ∈ Cp(X) if and only if there exists an L-definable differentiable curve

η : (0, 1) −→ X such that limt→0+ η(t) = p and

lim
t→0+

η′(t) = lim
t→0+

η(t)−p
t

= u.

Proof. See the proof of the next theorem; it is essentially the same, replacing Proposi-

tion 2.2.5 with Proposition A.1.9. p

Using Proposition 2.2.5 we obtain the same result for definable subsets of Rn.

Theorem 4.1.4. Let X ⊆ Rn be definable and p a non-isolated point of X . For y ∈ Rn,

y ∈ Cp(X) if and only if there exists a definable differentiable curve η : (0, 1) −→ X

such that limt→0+ η(t) = p and

lim
t→0+

η′(t) = lim
t→0+

η(t)−p
t

= y.

Proof. To simplify notation we put p = 0. We employ the deformation to the tangent
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cone described in [6, Subsection 3.5]. Set D(X) := {(x, r) ∈ Rn ×R>0 | rx ∈ X}.

Then D(X) is definable and cl(D(X)) ∩ (Rn × {0}) = C0(X) × {0}. If y ∈ C0(X),

then (y, 0) ∈ cl(D(X)) and by Proposition 2.2.5, there exists a definable differentiable

curve γ : (0, 1) −→ D(X) such that limt→0+ γ(t) = (y, 0). Let γ1 : (0, 1) −→ Rn

and γ2 : (0, 1) −→ R>0 be the definable curves satisfying γ(t) = (γ1(t), γ2(t)) for

all t ∈ (0, 1). Then clearly y ∈ C0(γ1 · γ2). The required curve η is then obtained by

reparametrising γ1 · γ2, if necessary. p

4.2 Risometries and tangent cones

In the following proposition and its proof, B0 will denote the ball B(0, > 0). The fol-

lowing indicates a strong relation between sets and their tangent cones.

Proposition 4.2.1. Let X, Y ⊆ Rn be definable sets and p be a non-isolated point of

both X and Y . If ϕ : B(p,> 0) −→ B(p,> 0) is a definable risometry sending

X ∩ B(p,> 0) onto Y ∩ B(p,> 0) and fixing p, then there exists a definable risometry

ψ : B0 −→ B0 taking Cp(X) ∩B0 onto Cp(Y ) ∩B0 and fixing 0.

Proof. We first construct ψ without referring explicitly to tangent cones; at the end of

the proof we indicate how the proposition follows from the construction. We assume

p = 0 for simplicity. Recall that a curve is an injective continuous function with an

interval (a, b) ⊆ R as domain.

Consider x ∈ B0 and a definable curve γ : (0, 1) −→ B0 such that limt→0+ t
−1γ(t) = x.

Notice that ϕ ◦ γ is definable and we can therefore regard it as a definable curve itself.

Also note that t−1ϕ ◦ γ(t) is bounded. By Lemma 2.2.2, the limit of t−1ϕ ◦ γ(t) as

t → 0+ exists in B0; we set ψ(x) := limt→0+ t
−1ϕ ◦ γ(t). We claim that so defined,

ψ : B0 −→ B0 is a definable risometry.

First of all, that ψ is well-defined is a consequence of ϕ being an isometry. Indeed, if

η : (0, 1) −→ B0 is another definable curve such that t−1η(t) converges to x as t→ 0+,
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then for each t ∈ (0, 1) it holds that,

v̂
(
t−1ϕ ◦ γ(t)− t−1ϕ ◦ η(t)

)
= v̂

(
t−1γ(t)− t−1η(t)

)
.

It is then clear that t−1ϕ ◦ γ(t) and t−1ϕ ◦ η(t) have the same limit when t → 0+. To

show that ψ is bijective, we consider the map ψ′ built from ϕ−1 in the analogous way as

ψ was built from ϕ. For x ∈ B0, let γ be a definable curve such that t−1γ(t) converges

to x as t → 0+. Without loss of generality, we assume that ϕ ◦ γ is already a definable

curve. Then

ψ′ ◦ ψ(x) = ψ′
(

lim
t→0+

t−1ϕ ◦ γ(t)
)

= lim
t→0+

t−1ϕ−1 ◦ ϕ ◦ γ(t) = lim
t→0+

t−1γ(t) = x,

where we have used that both maps ψ and ψ′ are well defined. Similarly, we can check

that ψ◦ψ′ is also the identity onB0. Finally, we show that rv(ψ(x)− ψ(y)) = rv(x− y)

for all x, y ∈ B0. First notice that if f : R −→ R is an injective function with

limt→0+ f(t) = x 6= 0, then for t > 0 sufficiently small, we have that rv(f(t)) = rv(x).

Let x 6= y be arbitrary elements of B0 and let γ, η : (0, 1) −→ B0 be definable curves

such that limt→0+ t
−1γ(t) = x and limt→0+ t

−1η(t) = y. Moreover, we assume that

γ(t) 6= η(t) for all sufficiently small t ∈ (0, 1) (there is no loss of generality here as we

can always reparametrise one of the curves). Then, for t sufficiently small,

rv(ψ(x)− ψ(y)) = rv
(
t−1ϕ ◦ γ(t)− t−1ϕ ◦ η(t)

)
= rv

(
t−1γ(t)− t−1η(t)

)
= rv(x− y).

Now we deduce the proposition. Notice that ψ(0) = 0 by construction. By The-

orem 4.1.4, if x ∈ C0(X) ∩ B0, then there is a definable curve γ : (0, 1) −→ X such

that x = limt→0+ t
−1γ(t). We can further assume that γ((0, 1)) ⊆ X ∩ B0, and so

ϕ ◦ γ((0, 1)) ⊆ Y ∩B0. Clearly then ψ(x) = limt→0+ t
−1ϕ ◦ γ(t) ∈ C0(Y )∩B0. In this

way, the function ψ constructed above maps C0(X) ∩B0 bijectively to C0(Y ) ∩B0. p
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4.3 T-stratifications induced on tangent cones

In this section we prove the main result of the chapter. We start by stating what is meant

by inducing a t-stratification on a tangent cone. Let (Si)i≤n be a t-stratification of Rn.

Definition 4.3.1. For fixed p ∈ Rn, the partition (Cp,i)i≤n of Rn is defined as follows.

Cp,i :=


Cp(S0) if i = 0,

Cp(S≤i) \ Cp(S≤i−1) if 0 < i ≤ n.

Recall that by definition (Si)i≤n is a definable partition, so (Cp,i)i≤n is definable too.

If X ⊆ Rn and (Si)i≤n is a t-stratification of X , we say that (Si)i≤n induces a t-

stratification on Cp(X) if (Cp,i)i≤n turns out to be a t-stratification of Cp(X). We prove

below that this is always the case whenever X is definable.

The following lemma is a variant of [26, Corollary 3.22]. This lemma will be used later

to guarantee the existence of (uniformly) definable translaters. Recall that if B ⊆ Rn is

ball, pBq stands for the code of B in RVeq (page 9). Following our previous notion of

respecting (page 5) and under Convention 1.2.1, we say that a function α : X −→ Y

respects the tuple of sets and maps ((Ai)i≤l, (ρj)j≤m) if χAi ◦ α = χAi on Ai ∩ X and

ρj ◦ α = ρj on the intersection of X and the domain of ρj , for all i ∈ {0, . . . , l} and

j ∈ {0, . . . ,m}.

Lemma 4.3.2. Suppose that A ⊆ R ∪ RVeq and let (Si)i≤n be an A-definable t-stra-

tification of Rn reflecting the A-definable map ρ : Rn −→ RVeq. Fix 0 < d ≤ n and

let B ⊆ Rn be a ball disjoint from S≤d−1. If W := tspB((Si)i≤n, ρ) is exhibited by the

projection π : Rn −→ Rd, then there is a (A∪{pBq})-definable translater (αx)x∈π(B−B)

witnessing the W -translatability of ((Si)i≤n, ρ) on B.

Proof. Take Q := π(Rn) and let χ : Q × Rn−d −→ RVeq be the map (q, x) 7→ ρ(q̂ x),

where q̂ x denotes the concatenation of the tuples q and x. Also set Si,q := Si ∩ π−1(q)
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and χq := χ|π−1(q) for q ∈ Q. Since Sd−1 ∩ B = ∅, ((Si)i≤n, χ) is d-translatable on

B and this implies that in [26, Proposition 3.19 (1)-(3)] Q′ = Q and χ′ is a constant

map. Therefore, from [26, Proposition 3.19 (3)] we obtain a compatible (A ∪ pBq)-

definable family of risometries (αq,q′ : π−1(q) −→ π−1(q′))q,q′∈Q such that for every

q, q′ ∈ Q, the risometry αq,q′ takes (Si,q)i≤n onto (Si,q′)i≤n and respects ((Si)i≤n, χ).

Since π is an exhibition of W , the hypotheses of [26, Proposition 3.19 (3’)] hold too; so,

dir(αq,q′(z)− z) ∈ W , for all q 6= q′ in Q and z ∈ π−1(q).

For each x ∈ π(B −B) and each z ∈ B, set q := π(z) and then set αx(z) := αq,q+x(z).

This defines a family of maps (αx : B −→ B)x∈π(B−B), which we claim to be a translater

witnessing W -translatability of ((Si)i≤n, ρ) on B. The proof of this claim is straight-

forward and technical.

We first prove (i)-(iv) in Definition 1.2.10 and afterwards we prove that each αx is a

risometry. Let x, x′ ∈ π(B − B), z ∈ B and set q := π(z). The map αx re-

spects ((Si)i≤n, ρ) because αq,q+x respects ((Si)i≤n, χ), proving (i). The compatibility of

(αq,q′)q,q′∈Q means that αq′,q′′ ◦ αq,q′ = αq,q′′ for all q, q′, q′′ ∈ Q. Hence, the following

equations prove (ii),

αx′ ◦ αx(z) = αq+x,q+x+x′ ◦ αq,q+x(z) = αq,q+x+x′(z) = αx+x′(z).

For (iii), αq,q+x takes the set {q} × Rn−d to {q + x} × Rn−d, so π(αq,q+x(z)) = q + x.

It follows that π(αx(z)− z) = π(αq,q+x(z)− z) = x. Item (iv) follows easily because,

if x 6= 0, dir(αx(z)− z) = dir(αq,q+x(z)− z) ∈ W , from properties of the maps αq,q′ .

Now we check that each αx is a risometry. Fix x ∈ π(B − B). Clearly, αx is bijective.

Let z, z′ ∈ B and set q := π(z) and q′ := π(z′). We want to verify that

rv(αx(z)− αx(z′)) = rv(z − z′). (4.1)

If q = q′, (4.1) is clear, for in that case αx(z) = αq,q+x(z) and αx(z′) = αq,q+x(z
′), and
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αq,q+x is already a risometry. From now on we assume q 6= q′.

Let w := αq,q′(z); notice that π(w) = q′. We would like to use Lemma 1.2.8 (a) with

z−w andw−z′, and thus we first need to show that v̂(z−z′) = min{v̂(z−w), v̂(w−z′)}.

Since dir(z − w) ∈ W and π exhibits W , v̂(z − w) = v̂(π(z − w)) = v̂(q − q′). If the

needed equation fails, we would have v̂(z − w) < v̂(z − z′) ≤ v̂(q − q′) = v̂(z − w), a

contradiction. Thus, v̂(z− z′) = min{v̂(z−w), v̂(w− z′)} holds. To show (4.1) it then

suffices to prove the equations,

rv(αq,q+x(z)− αq′,q′+x(w)) = rv(z − w) (4.2)

and

rv(αq′,q′+x(w)− αq′,q′+x(z′)) = rv(w − z′). (4.3)

Equation (4.3) is clear because αq′,q′+x is a risometry. It remains to prove (4.2). By

Lemma 1.2.8 (c), it is sufficient to show that π(αq,q+x(z)− αq′,q′+x(w)) = π(z − w)

and dir(αq,q+x(z)− αq′,q′+x(w)) = dir(z − w). Indeed,

π(αq,q+x(z)− αq′,q′+x(w)) = (q + x)− (q′ + x) = q − q′ = π(z − w),

which proves the first equation. For the second equation, since π is an exhibition of W ,

we have that

π̃(dir(αq,q+x(z)− αq′,q′+x(w)) = dir(π(αq,q+x(z)− αq′,q′+x(w)))

= dir(π(z − w)) = π̃(dir(z − w)),

and therefore dir(αq,q+x(z)−αq′,q′+x(w)) = dir(z−w) because π̃|W is an isomorphism.

This finishes the proof. p

Before proving our main theorem, we prove the following about the dimension of tangent

cones.
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Lemma 4.3.3. For X ⊆ Rn definable and p ∈ Rn, dim(Cp(X)) ≤ dim(X).

Proof. As usual we assume that p = 0. As in the proof of Theorem 4.1.4, we let

D(X) := {(x, r) ∈ Rn×R>0 | rx ∈ X}. Then cl(D(X))∩ (Rn×{0}) = C0(X)×{0}

and by Proposition 1.1.12 (g),

dim(C0(X)) = dim(cl(D(X)) \D(X)) < dim(D(X)) ≤ dim(X) + 1.

The result follows. p

For their use in the proof of the upcoming theorem, we introduce the Grassmanians of

subspaces of R
n
. Fix d ≤ n. We let Gd(R

n
) be the Grassmanian of d-dimensional

subspaces of R
n
, which is simply the set of all d-dimensional subspaces of R

n
. We can

identify the elements of Gd(R
n
) with matrices with coefficients inR: every V ∈ Gd(R

n
)

corresponds (by considering the orthogonal projection along V ) to a symmetric matrix

M ∈ Matn(R) such that M2 = M and whose trace equals d. By this identification,

it is clear that Gd(R
n
) can be seen as an L-definable (in fact, semi-algebraic) subset of

R
n2

. There are other approaches to this view of the Grassmanian, for example, that in [4,

Subsection 3.4.2] which turns a Grassmanian into a real algebraic variety. The specific

way in which the Grassmanian is realised as an L-definable set in the residue field is

inconsequential.

We now prove the main theorem of the chapter; this is Theorem D in the introduction.

Theorem 4.3.4. Let X be a definable subset of Rn and let p ∈ Rn. Suppose that (Si)i≤n

is a t-stratification of X . Then (Cp,i)i≤n is a t-stratification of Cp(X).

Proof. For fixed d ≤ n, we introduce the notation Cp,≤d for the set Cp,0 ∪ · · · ∪ Cp,d.

We first prove Definition 1.3.1 (1), i.e. that for all d ≤ n, dim(Cp,≤d) ≤ d. Indeed, by

the previous lemma, dim(Cp(S≤i)) ≤ dim(S≤i) ≤ i for all i ≤ n, and from this and
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properties of dimension,

dim(Cp,≤d) = dim
( ⋃

0<i≤d

Cp(S≤i) \ Cp(S≤i−1)
)
≤ max{dim(S≤i) | i ≤ d} ≤ d.

Now we prove that Definition 1.3.1 (2’) holds for (Cp,i)i≤n and Cp(X). From now on,

as usual, we assume that p = 0. We also assume that 0 is a non-isolated point of X;

a simpler argument than the one below works otherwise. We need to prove that for

each d ≤ n and ball B ⊆ Rn disjoint from C0,≤d−1, the tuple ((C0,i)i≤n), C0(X)) is

d-translatable on B.

Fix d in {1, . . . , n}. Let x0 ∈ C0(Sd) and let µ ∈ Γ be such thatB := B(x0, > µ) is a ball

disjoint from C0,≤d−1. Appealing to Theorem 4.1.4, let γ : (0, 1) −→ Sd be a definable

curve for which limt→0+ γ(t) = 0 and limt→0+ t
−1γ(t) = x0. For each t ∈ (0, 1), set

Bt := B(γ(t), > µ+ v(t)). We prove the following claim.

Claim 1. The collection (Si)i≤n is at least d-translatable on Bt for all sufficiently small

t ∈ (0, 1).

Proof of Claim 1. For the sake of a contradiction, we assume that there always exist ar-

bitrarily small t in (0, 1) for which (Si)i≤n is not d-translatable on Bt. From the proof

of [26, Proposition 3.19 (1)] we can deduce that d-translatability of a t-stratification is

always a definable condition (the last six lines of the formula written there show this

explicitly). So the set T := {t ∈ (0, 1) | (Si)i≤n is not d-translatable on Bt} is a defin-

able subset of R. It follows that T is a finite union of definable convex sets, so there

exists ε ∈ (0, 1) such that (Si)i≤n is not d-translatable on Bt for all t ∈ (0, ε). For

such t, we have that Bt ∩ S≤d−1 6= ∅, otherwise d-translatability on Bt would be forced

by (Si)i≤n being a t-stratification. The definability of Bt ∩ S≤d−1 (taking t as a para-

meter) and the existence of definable Skolem functions for Tconvex,c (see Remark 2.2.4),

where c ∈ R is an arbitrary positive element of positive valuation, imply the existence

of a definable function η with domain (0, ε) and such that η(t) ∈ Bt ∩ Sd−1 for each
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t ∈ (0, ε). By Proposition 2.2.1, we may actually assume that η is a differentiable curve

and limt→0+ η(t) = 0. The function t−1η(t) is then bounded and Lemma 2.2.2 states

that limt→0+ t
−1η(t) exists; we let y denote this limit. By construction, y ∈ C0(S≤d−1),

and there is no loss of generality in assuming that y /∈ C0(S≤d−2); hence, y ∈ C0,≤d−1.

Notice that for all sufficiently small t,

v̂(y − x0) = v̂
(
t−1η(t)− t−1γ(t)

)
> µ,

so, in fact, y ∈ B ∩ C0,≤d−1, which is a contradiction. This proves our claim.

Claim 1 implies that for all sufficiently small t, there is a vector subspace Wt of R
n

of

dimension at least d such that (Si)i≤n is Wt-translatable on Bt. Our next claim is that we

can find uniformity on the direction of translatability.

Claim 2. There exists a subspace W0 of R
n

with dim(W0) ≥ d and such that (Si)i≤n is

W0-transltable on Bt for all sufficiently small t.

Proof of Claim 2. In order to guarantee the definability of some objects in our argument,

we point to a specific way of picking the spaces Wt, that is, we let Wt = tspBt((Si)i≤n)

(see definition on page 24). By d-translatability of (Si)i≤n on Bt, each Wt is indeed at

least d-dimensional. The main advantage of this choice is that by [26, Lemma 3.14] the

map F sending t to Wt is a definable map from Γ>0 into G≤d(R
n
) := G1(R

n
) ∪ · · · ∪

Gd(R
n
). By the discussion just before the statement of the theorem, F can be regarded

as a definable map into a cartesian power of R. It follows from Proposition 2.1.11 (d)

that F has finite image. Recall too that since T is power-bounded, the full structure on Γ

is o-minimal by Proposition 2.1.11 (c). It follows that there exists λ0 ∈ Γ>0 such that F

is constant on (λ0,∞) ⊆ Γ. The constant value of F on (λ0,∞) serves as the required

subspace W0. Finally, if ε0 ∈ R>0 is any element with v(ε0) > λ0, then Wt = W0 holds

for all t ∈ I := (0, ε0). Claim 2 is proved.

In the remainder of the proof we show that ((C0,i)i≤n, C0(X)) is W0-translatable on B.
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We show this by explicitly constructing a translater for ((C0,i)i≤n, C0(X)) on B from

given translaters of (Si)i≤n on the balls Bt, t ∈ I . Let π be an exhibition of W0. For

each t ∈ I , by W0-translatability of (Si)i≤n on Bt, Lemma 4.3.2 provides us with a

pBtq-definable translater (αt,u)u∈π(Bt−Bt) witnessing the W0-translatability of (Si)i≤n

on Bt (with respect to π). Being a translater of a t-stratification is expressible in a first-

order way since the conditions (i)-(iv) in Definition 1.2.10 are all first-order expressible.

Thus, a compactness argument ensures that there are finitely many formulas defining all

the translaters ((αt,u)u∈π(Bt−Bt))t∈I ; ultimately, there is a single formula that takes (at

least) t as parameter and defines all these translaters.

We now start our construction of a translater (αx)x∈π(B−B) witnessing W0-translatability

of ((C0,i)i≤n, C0(X)) on B. Let z ∈ B and x ∈ π(B−B). Let γz : I −→
⋃
t∈I Bt be the

map given by γz(t) := γ(t)+t(z−x0) for each t ∈ I . Clearly, v̂(γ(t)−γz(t)) > µ+v̂(t),

and so γz(t) ∈ Bt for each t ∈ I . Furthermore, v̂(t−1γz(t) − z) = v̂(t−1γ(t) − x0) is

true for all t ∈ I , and this implies that limt→0+ t
−1γz(t) exists and, necessarily, equals

z. Notice that αt,tx(γz(t)) ∈ Bt for each t ∈ I and t 7→ t−1αt,tx(γz(t)) is a definable

map thanks to the fact that all the translaters ((αt,u)u∈π(Bt−Bt))t∈I are defined by a single

formula. Appealing to Lemma 2.2.2, we set

αx(z) := lim
t→0+

t−1αt,tx(γz(t)).

This defines αx(z), and a simple calculation shows it belongs toB. Even though we used

the specific curve γz to define αx(z) we can show that αx(z) does not depend intrinsically

on such curve. To this end, suppose that η : I −→
⋃
t∈I Bt is another definable curve

for which η(t) ∈ Bt for each t ∈ I and limt→0+ t
−1η(t) = z. Since each risometry αt,u

is in particular an isometry, the following equation holds for every t ∈ I ,

v̂
(
t−1αt,tx(γz(t))− t−1αt,tx(η(t))

)
= v̂

(
t−1γz(t)− t−1η(t)

)
.

Since the right hand side goes to ∞ when t → 0+, it is clear that t−1αt,tx(γz(t)) and
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t−1αt,tx(η(t)) have the same limit when t→ 0+.

We have thus defined the maps (αx : B −→ B)x∈π(B−B). We now prove that such a fam-

ily of definable maps is a translater of ((C0, i)i≤n, C0(X)) witnessing W0-translatability

on B. The proof is straight-forward but technical. First we prove the bijectivity of each

αx. By replicating the construction of αx with the translaters (α−1
t,u)u∈π(Bt−Bt), we obtain

a map βx : B −→ B. For z ∈ B we have

βx ◦ αx(z) = βx(lim
t→0

t−1αt,tx(γz(t))) = lim
t→0

t−1α−1
t,tx(αt,tx(γz(t))) = z;

so βx◦αx is the identity onB. Symmetrically, we can show that αx◦βx is the identity on

B too. Hence each αx is bijective. Concurrently, for any z 6= z′ in B and a sufficiently

small t,

r̂v(αx(z)− αx(z′)) = r̂v(t−1αt,tx(γz(t))− t−1αt,tx(γz′(t)))

= r̂v(t−1γz(t)− t−1γz′(t)) = r̂v(z − z′);

thus, each αx is a risometry.

Lastly, we show that (i)-(iv) in Definition 1.2.10 hold for (αx)x∈π(B−B). Let z ∈ B,

x, x′ ∈ π(B − B). We let η : I −→
⋃
t∈I Bt be any definable curve such that

limt→0+ t
−1η(t) = z (for concreteness, we could put η = γz below, where γz is the

curve defined earlier for z).

To prove (i), that αx respects ((C0,i)i≤n, C0(X)), we need to prove that for each i ≤ n,

z ∈ C0,i if and only if αx(z) ∈ C0,i and z ∈ C0(X) if and only if αx(z) ∈ C0(X). Fix

i ≤ n. If z ∈ C0,i, we may, without loss of generality, assume that η(t) ∈ Si for all

sufficiently small t. So αt,tx(η(t)) ∈ Si for all t, because the family (αt,u)u∈π(Bt−Bt)

respects Si. Then clearly αx(z) = limt→0+ t
−1αt,tx(η(t)) ∈ C0,i. In the other direction,

if αx(z) ∈ C0,i, a similar argument applied to α−1
x tells us that z = α−1

x ◦ αx(z) ∈ C0,i.

That z ∈ C0(X) if and only if αx(z) ∈ C0(X) is proved similarly.
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For (ii)-(iv) we use that for each t ∈ I , (αt,u)u∈π(Bt−Bt) is already a translater of (Si)i≤n

witnessing W0-translatability on Bt. For (ii), using that αt,u ◦αt,u′ = αt,u+u′ for all t ∈ I

and u, u′ ∈ π(Bt −Bt), we have that

αx ◦ αx′(z) = lim
t→0

t−1αt,tx ◦ αt,tx′(η(t)) = lim
t→0

t−1αt,t(x+x′)(η(t)) = αx+x′(z).

So αx ◦ αx′ = αx+x′ . We turn to (iii). For each t ∈ I, u ∈ π(Bt − Bt) and y ∈ Bt,

π(αt,u(y)− y) = u. So,

π(αx(z)− z) = lim
t→0

t−1π(αt,tx(η(t))− η(t)) = lim
t→0

t−1(tx) = x.

Lastly we prove (iv). Suppose that x 6= 0. For all t ∈ I, 0 6= u ∈ π(Bt−Bt) and y ∈ Bt,

we have that dir(αt,u(y)− y) ∈ W0. Therefore, for sufficiently small t,

dir(αx(z)− z) = dir(t−1αt,tx(η(t))− t−1η(t)) = dir(αt,tx(η(t))− η(t)) ∈ W0.

The proof is now complete. p

In Section 5.3 we present a consequence of this theorem in an archimedean setting.
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Chapter 5

Archimedean t-stratifications

Throughout this chapter we keep T as a power-bounded o-minimal theory in a language

L ⊇ Lor. To make sense of most definitions, we also assume that the real field R can

be made into a model of T (this restricts what T can be; in a brief note at the end of the

chapter we discuss removing this assumption). We present applications of the results in

previous chapters to the o-minimal setting of R. An ultrapower of R is naturally made

into a T -convex field, which allows us to consider t-stratifications and tangent cones. By

taking the standard part of these objects, we obtain results on stratifications and tangent

cones of L-definable sets in R.

5.1 From archimedean to non-archimedean fields, and

vice versa

From now on we regard the real field R as anL-structure satisfying T . We let ∗R denote a

non-standard model of R; by this we mean that ∗R = RN/U , where U is a non-principal

ultrafilter on N. Then ∗R is a model of T and, since U is non-principal, ∗R is a non-

archimedean field1. We conventionally use s, t and u for elements of Rn while we use

1i.e. the set of natural numbers N is bounded in ∗R.
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x, y and z for elements of ∗Rn.

Notation 5.1.1. We follow the usual notation from non-standard analysis; see [25, Sec-

tion 3.7 and Chapter 4] for precise details.

• The canonical injection from R into ∗R is denoted by the ∗ operation, i.e. for s ∈ R,

∗s is the class in ∗R of the constant sequence (s, s, . . . ). Nevertheless, we frequently

identify ∗s with s for s ∈ R; so, R ⊆ ∗R.

• We employ the ∗-transform of sets A ⊆ Rn, functions and relations on R. We

treat, respectively, ∗X , ∗f and ∗E as extensions of the set X ⊆ Rn, the function

f : Rn −→ Rm and the relation E ⊆ Rn, i.e. by identifying ∗s with s whenever s ∈ X ,

X ⊆ ∗X , ∗f |X = f and E ⊆ ∗E.

• The ∗-transform ∗ϕ(x, ∗a) of the L-formula ϕ(x, a) is defined as usual by induction

on the structure of ϕ, see [25, Section 4.4].

The following is the main result we need to transfer statements from ∗R to R and vice

versa; for an exposition of the result see, e.g., [25].

Fact 5.1.2 (The transfer principle). R is an elementary L-substructure of ∗R.

By Example 2.1.2 (3) the convex hull O∗R of R in ∗R is a T -convex subring. Thus,

from now on we work with the T -convex field (∗R, O∗R). Notice that O∗R equals

{x ∈ ∗R | ∃N ∈ N(−N ≤ x ≤ N)}, the set of all finite numbers of ∗R. The residue

field of (∗R, O∗R) is R and the residue map res : O∗R −→ R is traditionally known as the

standard part map. Recall from Chapter 2 that ‖ ·‖ denotes the usual Euclidean norm on

Rn. We let ‖ · ‖∗ denote the norm on ∗R given by setting ‖(x1, . . . xn)‖∗ :=
√∑n

i=1 x
2
i ,

for each (x1, . . . , xn) ∈ ∗Rn. By L-definability, ‖ · ‖∗ coincides with the ∗-transform of

‖ · ‖.

Let (sm) be a sequence of elements of Rn. The class of (sm) in the ultrapower ∗Rn

will be denoted by [sm]. Let s ∈ R and suppose that (sm) is a sequence in Rn con-
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verging to s. Since U must contain every cofinite subset of N, we have that for all

n ∈ Z+, {m ∈ Z+ | R � ‖sm − s‖ < 1/n} ∈ U . It follows that for all n ∈ Z+,

∗R � (‖[sm]− ∗s‖∗ < 1/n), and hence that v̂([sm]− ∗s) > 0. We have thus showed that

for every sequence (sm) converging to s, [sm] ∈ res−1(s). Conversely, if [tm] ∈ res−1(s),

then for each n ∈ Z+ the set {m ∈ Z+ | ‖tm− s‖ < 1/n} is in U and is thus not empty;

let tmn be in this set. Clearly, (tmn) is a sequence converging to s and [tmn ] = [tm].

In short, res−1(s) consists of all [sm] with (sm) a sequence converging to s. This turns

convergence in Rn into closeness in ∗Rn—the paradigma of non-standard analysis.

The fact in the previous paragraph will be used in the form of the following lemma.

Recall that cl(X) denotes the topological closure of X .

Lemma 5.1.3 ([26, Lemma 7.9]). Let X ⊆ Rn be L-definable and let s ∈ Rn. Then,

s ∈ cl(X) if and only if ∗s ∈ cl(∗X) if and only if res−1(s) ∩ ∗X 6= ∅.

Proof. For the first equivalence, s ∈ cl(X)⇔ R � ∀ε ∈ R>0∃t ∈ X(‖s− t‖ < ε) ⇔
∗R � ∀ε ∈ ∗R>0∃y ∈ ∗X(‖∗s − y‖∗ < ε) ⇔ ∗s ∈ cl(∗X). For the remaining

equivalence, s ∈ cl(X) ⇔ there exists a sequence (sm) of elements of X converging to

s ⇔ there exists a sequence (sm) of elements of X such that [sm] ∈ res−1(s) ∩ ∗X ⇔

res−1(s) ∩ ∗X 6= ∅. p

5.2 Archimedean t-stratifications

We keep the notation used in previous chapters to work in the T -convex field (∗R, O∗R).

In particular, we make this valued field into an LRVeq-structure (∗R,RVeq). As in previ-

ous chapters, ‘definable’ will mean ‘LRVeq-definable’.

5.2.1 T-stratifications in (∗R,RVeq)

We now turn to study t-stratifications in (∗R,RVeq).
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Fact 5.2.1. Since T is power-bounded, for any A ⊆ ∗R ∪ RVeq, B0 ⊆ ∗Rn and A-defi-

nable map χ : B0 −→ RVeq, there exists an A-definable t-stratification reflecting χ.

Proof. By Theorems 3.1.1 and 3.2.8, Theorem 1.4.6 holds for TRVeq . The fact is simply

the conclusion of Theorem 1.4.6 specialised to the model (∗R,RVeq). p

The following result will be needed in the next subsection and is considered as an explicit

‘regularity’ condition observed in t-stratifications.

Proposition 5.2.2 ([26, Corollary 7.6]). Let A ⊆ ∗R ∪ RVeq. Suppose that (Si)i≤n is

an A-definable t-stratification of an A-definable ball B0 ⊆ ∗Rn. Let B ⊆ B0 be a ball

and let d be maximal such that B ⊆ S≥d. Then there exists a (A∪ {pBq})-definable set

M ⊆ Γ such that: for j > d, x ∈ Sd ∩B and y ∈ Sj ∩B, if v̂(x− y) /∈M , then for any

ball B′ ⊆ S≥j containing y, dir(x− y) ∈ tspB′((Si)i≤n).

Proof. This in fact holds in arbitrary T -convex fields (with T power-bounded). In

Chapter 3 we proved that TRVeq satisfies Hypotheses 1.1.9 and has the Jacobian pro-

perty; additionally, Proposition 2.1.11 (d) states that the value group Γ and the residue

field R are orthogonal. The result is then a particular case of [26, Corollary 7.6]. p

Later we will apply this proposition when A ⊆ R and B is definable with parameters

only from R. In that case, the set M above is definable with parameters only from R,

so the orthogonality of Γ and the residue field R implies that M must be either ∅ or

{0}. Indeed, by Remark 2.1.12, there exist 0-definable subsets M1, . . . ,Mk of Γ such

that M =
⋃
i≤kMi. By the definition of LΓ on page 45, it follows that each Mi is 0-

LΓ-definable. Furthermore, by Proposition 2.1.11 (c), Γ as an LΓ-structure is simply an

expansion by definitions of a non-trivial ordered vector space over the field of exponents

E of T in the language {+, 0, <, {r}r∈E} (note that E must be a subfield of the real

field R since T has an archimedean model). The map x 7→ 2x is an automorphism of

(Γ,+, 0, <, {r}r∈E) that fixes 0 and nothing else, so the definable closure of ∅ equals

{0}. It follows that each Mi is either empty or equals {0}, and thus the same holds for
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M .

5.2.2 Archimedean t-stratifications and Whitney stratifications

Definition 5.2.3. Let X ⊆ Rn and (Si)i≤n be an L-definable partition of Rn. We say

that (Si)i≤n is an archimedean t-stratification of X if (∗Si)i≤n is a t-stratification of ∗X .

The following is the first main result in this chapter; it is a consequence of Fact 5.2.1, thus

ultimately a corollary of the results in Chapter 3, and an application of Theorem 3.3.8.

Theorem 5.2.4. Let A ⊆ R. Every A-L-definable set X ⊆ Rn admits an A-L-definable

archimedean t-stratification.

Proof. Since ∗X is in particular LRVeq-definable, by Fact 5.2.1 it admits an A-LRVeq-

definable t-stratification. By Theorem 3.3.8 it follows that ∗X admits an A-L-definable

t-stratification (Si)i≤n. Then (res(∗Si ∩ O∗R))i≤n is an A-L-definable archimedean t-

stratification of X . p

In the rest of the section we aim to prove that archimedean t-stratifications are C1-

Whitney stratifications. The proof of I. Halupczok’s in the case when L = Lor and

T = RCF works verbatim in our setting and we present it below. The proof consists

of no more than exploiting Proposition 5.2.2 via non-standard analysis. We first explain

how this works intuitively.

The set of all non-trivial vector subspaces of Rn, G(≥ 1,Rn), admits an Euclidean

topology given by the metric

d(V,W ) := sup
v∈V,‖v‖=1

inf {‖v − w‖ | w ∈ W};

where we assume that dim(V ) ≥ dim(W ). This is the topology we use to work with

limits of sequences of vector spaces below. If X is a submanifold of Rn, by Ts(X) we
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denote the tangent space of X ⊆ Rn at s ∈ X , whenever it exists (e.g. when X is a

Ck-manifold for some k ≥ 1).

Definition 5.2.5. Let X and Y be C1-submanifolds of Rn. We say that the pair (X, Y )

satisfies Whitney’s condition (b) if for every s ∈ X and every pair of sequences (sm) and

(tm) of elements of X and Y , respectively, both converging to s, if lim
m→∞

R(sm − tm)

and lim
m→∞

Ttm(Y ) exist, then lim
m→∞

R(sm − tm) ⊆ lim
m→∞

Ttm(Y ).

Historically, Whitney’s condition (a) is another condition originally considered but it was

soon showed to follow from Whitney’s condition (b) (see, e.g., [36, Proposition 2.4]).

This is why we only work with Whitney’s condition (b).

In a Whitney stratification, Whitney’s condition (b) appears as a requirement for every

pair of strata (Si, Sj) with i < j (see below). On the other hand, it is not reasonable

to required this condition for t-stratifications. There are two obvious ways in which a

t-stratification might not satisfy Whitney’s condition (b): first, sequences might not be

enough to witness convergence in a valued field (so the limits above might not make

sense), and second, even if we allow longer sequences for convergence, t-stratifications

were never asked to be smooth at any level, rendering the consideration of tangent spaces

to the strata meaningless. However, not all is lost as we explain below.

The driving idea is that if (Si)i≤n is a t-stratification of ∗Rn then for each x ∈ Sd and

suitable ballB containing x, tspB((Si)i≤n) serves as an approximate tangent space to Sd

at x. (The definition makes obvious that this approximate tangent space does not depend

too much on x—any other x′ ∈ Sd∩B has the same approximate tangent space—and this

may be seen as evidence of the non-local nature of t-stratifications; see [26, Section 1].)

With this notion, Proposition 5.2.2 can be seen as an analogue of Whitney’s condition (b)

since it ensures that, with a few exceptions, the direction of secants between points close

to x belongs to the approximate tangent space tspB((Si)i≤n). Applying Lemma 5.1.3,

the character of ‘approximate’ above is dropped after transferring to Rn.

Notation 5.2.6. We explain some abuses of notation used below. For any X ⊆ ∗Rn we
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write res(X) for the set res(X ∩ On
∗R). Another convention is that the brackets notation

can be applied to sequences of subspaces of Rn; for instance, for a convergent sequence

(Wm) of vector subspaces of Rn we get that [Wm] ∈ res−1
(

lim
m→∞

Wm

)
, as we did before

for sequences of points.

Let (Si)i≤n be an archimedean t-stratification of Rn. We assume for now that each Si is

a C1-submanifold of Rn. Fix d ≤ n. Recall that G≥1(Rn) := G1(Rn) ∪ · · · ∪Gn(Rn)

can be regarded as an L-definable set in a power of R (see the discussion just before

Theorem 4.3.4). We can then see that the map from Sd to G≥1(Rn) sending each s ∈ Sd

to Ts(Sd) is L-definable. By the transfer principle, we deduce that each x ∈ ∗Sd is

associated to a vector subspace of ∗Rn, which we conveniently denote by Tx(∗Sd). By

definition and the transfer principle, if s ∈ Sd, res(T∗s(
∗Sd)) = Ts(Sd). To be able to

use Proposition 5.2.2 we need to associate the latter space to tspB′ (
∗Si)i≤n for some B′.

We prove something slightly more general.

Lemma 5.2.7. With the notation and assumptions in the paragraph above, for any

x ∈ ∗Sd there is a ballB′ ⊆ S≥d containing x such that res(Tx(
∗Sd)) = tspB′((

∗Si)i≤n).

Proof. By the definition of tangent spaces in Rn and the transfer principle, there is a ball

B′′ containing x such that for all x′ ∈ ∗Sd∩B′′ with x′ 6= x, dir(x−x′) ∈ res(Tx(
∗Sd)).

LetB′ ⊆ B′′∩∗S≥d be a ball containing x for which dim(tspB′((
∗Si)i≤n)) = d. Clearly,

∗Sd is tspB′((
∗Si)i≤n)-translatable on B′. It follows from Lemma 1.4.2 (a) and the

property of Tx(∗Sd) above that tspB′((
∗Si)i≤n) ⊆ affdir(∗Sd ∩ B′) ⊆ res(Tx(

∗Sd)).

Moreover, tangent spaces of Sd have dimension dim(Sd) = d, so by definability of

dimension and the transfer principle, dim(Tx(
∗Sd)) = d. Hence, the desired equation

follows because tspB′((
∗Si)i≤n) and res(Tx(

∗Sd)) are both d-dimensional. p

We are now ready to prove that archimedean t-stratifications are C1-Whitney stratific-

ations. The latter were introduced by H. Whitney in [53] and a classical definition of

them can be found in [4, Subsection 9.7]; we provide a slightly different definition.
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Definition 5.2.8. An L-definable partition (Si)i≤n = (S0, . . . , Sn) of Rn is said to be a

C1-Whitney stratification if the following hold.

(1) For each d ≤ n, Sd is a C1-submanifold of Rn;

(2) for each d ≤ n, either Sd = ∅ or dim(Sd) = d;

(3) for all d ≤ n, S≤d := S0 ∪ . . . ,∪Sd is topologically closed;

(4) for all d < j ≤ n, the pair (Sd, Sj) satisfies Whitney’s condition (b).

Furthermore, if X ⊆ Rn, we say that (Si)i≤n is a Whitney stratification of X if the

following extra property holds.

(5) X is a union of some of the connected components of the strata S0, . . . , Sn.

Theorem 5.2.9. Let X ⊆ Rn be L-definable. Then every non-archimedean t-stratifica-

tion (Si)i≤n of X is a C1-Whitney stratification of X .

Proof. This is (essentially) Halupczok’s proof in the case when L = Lor and T = RCF

in [26, Subsection 7.3]; only more details and adaptations needed to move from Lor to L

are new.

Fix d ≤ n. To prove that Sd is a C1-submanifold of Rn we first claim that

affdir(∗Sd ∩ res−1(s)) = tspres−1(s)(
∗(Si)i≤n). (5.1)

We denote res−1(s) and tspres−1(s)(
∗(Si)i≤n) by Bs and Vs, respectively. We showed

earlier (just before Lemma 5.1.3) that Bs consists of all points y = [sm] with (sm) a

sequence in Rn converging to s. Lemma 1.3.4 (a) states that ∗s is in a ball entirely

contained in ∗S≥d; it follows that Bs ⊆ ∗S≥d, and thus that (∗Si)i≤n is d-translatable on

Bs. We prove (5.1) below.

Let π : ∗Rn −→ ∗Rd be an exhibition of Vs. We claim that each fibre of π intersects

∗Sd ∩ Bs in a single point. By Vs-translatability, it is enough to prove the claim for

the fibre F := π−1(π(∗s)). Notice that (Sd \ {s}) ∩ res(Bs ∩ F ) = ∅, so we get

that ∗s /∈ cl((Sd \ {∗s}) ∩ Bs ∩ F ) by Lemma 5.1.3. Thus ∗Sd ∩ Bs ∩ F = {∗s}.

If x, x′ ∈ ∗Sd ∩Bs are distinct, a translater (αq)q∈π(Bs−Bs) witnessing Vs-translatability
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of (∗Si)i≤n on Bs must be such that απ(x−x′)(x) = x′, so dir(x − x′) ∈ Vs. We have

proved that affdir(∗Sd ∩ Bs) ⊆ Vs. The equality must hold because both spaces are of

dimension d. Indeed, the maximality of Bs as a ball such that res(∗Sd ∩ Bs) = {s} and

translatability imply that dim(Vs) = d; on the other hand, ∗Sd has local dimension d

(Lemma 1.3.4) , so d = dim(∗Sd ∩Bs) ≤ affdir(∗Sd ∩Bs).

We have proved that (5.1) holds. We are now able to prove the conditions (1)-(5) in

Definition 5.2.8.

(1) We first need to construct an atlas for Sd. By translatability of Sd in balls contained

in S≥d and the fact that the valuative and the norm topologies coincide on ∗R, the fol-

lowing holds for any s ∈ Sd: there are an open neighbourhood B of ∗s and a coordinate

projection π : ∗Rn −→ ∗Rd such that π is a bijection from B ∩ ∗Sd to an open neigh-

bourhood in ∗Rd. Using the transfer principle it follows that for any s ∈ Sd there are

an open neighbourhood D ⊆ Rn of s and a coordinate projection π̄ : Rn −→ Rd such

that π̄ is a bijection from Sd ∩ D to an open set in Rd. This defines a coordinate chart

(Sd ∩ D, π̄) and therefore we have an atlas for Sd. To prove that Sd is a C1-manifold

we actually show that the tangent space of Sd at s ∈ Sd is Vs. We prove that for any

two sequences (sm) and (s′m) of elements of Sd converging to s, with sm 6= s′m for all

m, if the sequence of secant lines R(sm − s′m) converges, then the limit is a subspace of

Vs. By (5.1), dir ([sm]− [s′m]) ∈ Vs, so the span res(∗R ([sm]− [s′m])) of this vector is a

subspace of Vs. Hence,

lim
m→∞

R(sm − s′m) = res ([R(sm − s′m)]) = res(∗R ([sm]− [s′m])) ⊆ Vs,

as required.

(2) Lemma 1.3.4 (b) states that either ∗Sd = ∅ or dim(∗Sd) = d, so, using the transfer

principle and that in Definition 1.1.11 we can swap valuative open balls with open Euc-

lidean discs, we have that either Sd = ∅ or dim(Sd) = d.

(3) By Lemma 1.3.4 (a) ∗S≤d is closed, hence, using Lemma 5.1.3, for any s ∈ Rn,
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s ∈ cl(S≤d)⇔ ∗s ∈ cl(∗S≤d) = ∗S≤d⇔ s ∈ S≤d, proving that S≤d is closed.

(4) Fix d < j ≤ n. Let s ∈ Sd and let (sm) and (tm) be sequences of elements of Sd and

Sj , respectively, both converging to s and such that sm 6= tm for all m. As earlier, let

Bs := res−1(s). Then clearly, d is maximal such that Bs ⊆ ∗S≥d. By Proposition 5.2.2,

there is a set M ⊆ Γ definable over psq plus the parameters in R used to define (Si)i≤n,

and such that for any x ∈ ∗Sd ∩ Bs and y ∈ ∗Sj ∩ Bs, if v̂(x− y) /∈ M and B′ ⊆ ∗S≥j

is any ball containing y, then dir(x − y) ∈ tspB′((
∗Si)i≤n) . Moreover, it follows by

the discussion following Proposition 5.2.2 that M must be either ∅ or {0}, for it is

definable with parameters solely from the residue field. In either case, since res([sm]) =

res([tm]) = s, we have that v̂([sm]−[tm]) /∈M , so dir([sm]−[tm]) ∈ tspB′((
∗Si)i≤n) for

any ball B′ containing [tm]. Thus, res(∗R([sm]− [tm])) is a subspace of tspB′((
∗Si)i≤n).

This in particular holds for the ball B′ in Lemma 5.2.7, so

lim
m→∞

R(sm − tm) = res
(
[R(sm − tm)]

)
= res

(
[∗R([sm]− [tm])]

)
⊆ tspB′((

∗Si)i≤n) = res(T[tm](
∗Sj))

= res([Ttm(Sj)]) = lim
m→∞

(Ttm(Sj)).

This proves Whitney’s condition (b).

(5) By general topology, it is enough to show that for each d ≤ n both Sd∩X and Sd\X

are open in Sd. Fix d ≤ n. In general, if D ⊆ Rn is L-definable, D is open if and only if

R � ∀s ∈ D∃ε ∈ R>0∀t ∈ Rn(‖s− t‖ < ε −→ t ∈ D),

and by the transfer principle this is equivalent to

∗R � ∀x ∈ ∗D∃ε ∈ ∗R>0∀y ∈ ∗Rn(‖x− y‖∗ < ε −→ y ∈ ∗D).

So it suffices to show that both ∗Sd ∩ ∗X and ∗Sd \ ∗X are open in ∗Sd. We prove

this simultaneously by showing that for each x ∈ ∗Sd there exists a ball B ⊆ ∗S≥d
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containing x for which either ∗Sd ∩B ⊆ ∗Sd ∩ ∗X or ∗X ∩B = ∅. Indeed, it is enough

to take B small enough such that the fibres of an exhibition π : ∗Rn −→ ∗Rd of V :=

tspB((∗Si)i≤n) intersect ∗Sd ∩ B in a single point (this can be done by translatability,

e.g., takeB such that affdir(∗Sd∩B) = V and then repeat the argument for Lemma 3.2.2

(c) replacing C with ∗Sd ∩B to show that the required intersection is a singleton). Then

suppose that ∗X ∩ B 6= ∅. By the property of π, ∗Sd ∩ B must be straightened to the

same single coset of V to which ∗X ∩ B is straightened. Since any straightener is a

bijection, it follows that ∗Sd ∩B ⊆ ∗Sd ∩ ∗X , as required. p

Through Theorems 5.2.4 and 5.2.9 we obtain a new proof of the existence of Whitney

stratifications for L-definable set in Rn. This is not a new result; and in fact is weaker,

for T has been assumed to be power-bounded: T. L. Loi proved in [34] that Whitney

stratifications exist for all definable sets in any o-minimal expansion of the real field.

Corollary 5.2.10. Let A ⊆ R and let X ⊆ Rn be A-L-definable. Then X admits an

A-L-definable C1-Whitney stratification.

5.3 Classical tangent cones and archimedean

t-stratifications

Our goal in this section is to obtain an analogue of Theorem 4.3.4 in the archimedean

setting.

Recall from page 89 that the tangent cone Cp(X) of X ⊆ Rn at p ∈ Rn is the set

{t ∈ Rn | ∀ε ∈ R>0∃s ∈ X, r ∈ R>0(‖s− p‖ < ε ∧ ‖r(s− p)− t‖ < ε)}. Notice that

if X ⊆ Rn is L-definable and p ∈ Rn, then ∗Cp(X) = C∗p(∗X) since Cp(X) is L-

definable as well.

The following can be seen as a definition of Cp(X) in the style of non-standard analysis.
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Lemma 5.3.1. Let X ⊆ Rn be L-definable and fix p ∈ Rn. For any t ∈ Rn, t ∈ Cp(X)

if and only if

(∗R,RVeq) � ∃x ∈ ∗X, r ∈ ∗R>0 (v̂(x− ∗p) > 0 ∧ v̂(r(x− ∗p)− ∗t) > 0) . (5.2)

Proof. We assume as usual that p = 0. Since the valuative topology on ∗Rn coincides

with the topology induced by ‖ · ‖∗, (5.2) is equivalent to,

for all n ∈ Z+, ∗R � ∃x ∈ ∗X, r ∈ ∗R>0 (‖x‖∗ < 1/n ∧ ‖rx− ∗t‖∗ < 1/n) ,

which by the transfer principle (Remark 5.1.2) is in turn equivalent to,

for all n ∈ Z+, R � ∃s ∈ X, r ∈ R>0 (‖x‖ < 1/n ∧ ‖rs− t‖ < 1/n) .

Clearly this last statement holds if and only if t ∈ C0(X). p

Using this lemma we now prove a result of the nature of Proposition 4.2.1.

Proposition 5.3.2. Let X, Y ⊆ Rn be L-definable and let p be a non-isolated point of

X and Y . If there is a definable risometry ϕ on B(∗p,> 0) taking ∗X ∩B(∗p,> 0) onto

∗Y ∩B(∗p,> 0) and fixing ∗p, then Cp(X) = Cp(Y ).

Proof. We assume that p = 0 and denote the ballB(0, > 0) byB0. If t ∈ C0(X), by Pro-

position 5.3.1, there are x ∈ ∗X and r ∈ ∗R>0 such that v̂(x) > 0 and v̂(rx− ∗t) > 0.

In particular, v̂(rx) ≥ 0, because v̂(∗t) ≥ 0. Then ϕ(x) ∈ ∗Y ∩ B0 and, since

r̂v(ϕ(x)) = r̂v(x),

v̂(rϕ(x)− ∗t) ≥ min{v̂(rϕ(x)− rx), v̂(rx− ∗t)} > min{v̂(rx), 0} = 0.

By Proposition 5.3.1, t ∈ C0(Y ). We have proved that C0(X) ⊆ C0(Y ). The contain-

ment C0(Y ) ⊆ C0(X) is proved similarly. p
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Under the hypotheses of the last proposition, Proposition 4.2.1 implies that there is a

risometry between Cp(∗X)∩B0 and Cp(∗Y )∩B0. This can be used to give another proof

of Proposition 5.3.2.

We now turn to study archimedean t-stratifications of Cp(X). Imitating the definition

of (Cp,i)i≤n for a t-stratification (Definition 4.3.1) we define the partition (Cp,i)i≤n as

follows.

Definition 5.3.3. For an archimedean t-stratification (Si)i≤n of Rn and fixed p ∈ Rn,

the partition (Cp,i)i≤n is defined as Cp,0 := Cp(S0) and Cp,i := Cp(S≤i) \ Cp(S≤i−1) for

0 < i ≤ n.

Naturally, by the L-definability of each Si, we have that ∗Cp,i = C∗p,i for all i ≤ n,

where the latter comes from the t-stratification (∗Si)i≤n. If (Si)i≤n is an archimedean

t-stratification of X ⊆ Rn and p ∈ Rn, we say that (Si)i≤n induces an archimedean

t-stratification on Cp(X) if (Cp,i)i≤n is an archimedean t-stratification of Cp(X). Our

next result is that this is always the case whenever X is L-definable; this theorem is

an immediate but important corollary to Theorem 4.3.4. The second part follows from

Theorem 5.2.9.

Theorem 5.3.4. Suppose that X ⊆ Rn is L-definable and fix p ∈ Rn. If (Si)i≤n is

an archimedean t-stratification of X , then (Cp,i)i≤n is an archimedean t-stratification of

Cp(X). Particularly, (Cp,i)i≤n is a C1-Whitney stratification of Cp(X).

The second part of the statement reveals a property of archimedean t-stratifications that

Whitney—and other classical kinds of—stratifications do not posses: Whitney and, e.g.,

Verdier stratifications, do not induce Whitney stratifications on tangent cones in general.

A Verdier stratification is a Whitney stratification whose strata satisfy (the stronger)

condition (w) in [52, Subsection 2.1], or, in a more model-theoretic context, satisfy the

‘Verdier condition’ in [34, Section 1].

Example 5.3.5. Consider the set X := {(x, y, z) ∈ R3 | x3 − y2 − z2 = 0}. The
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sets S ′0 := {0}, S ′1 := ∅, S ′2 := X \ {0} and S ′3 := R3 \ X constitute a Verdier

stratification (hence a Whitney stratification) of X . The tangent cone C0(X) is the set

R≥0 × {0} × {0}. Following Definition 5.3.3, we obtain the sets C ′0,0 = {0}, C ′0,1 = ∅,

C ′0,2 = R>0 × {0} × {0} and C ′0,3 = R3 \ (R≥0 × {0} × {0}). The dimension of C ′0,2

is 1 and this makes it impossible for (C ′0,i)i≤3 to be a Whitney stratification of C0(X).

On the other hand, as an example of an archimedean t-stratification, the sets S0 := {0},

S1 := R>0 × {0} × {0}, S2 := X \ {0} and S3 := R3 \ (X ∪ R>0 × {0} × {0})

form an archimedean t-stratification of X . In this case we obtain the sets C0,0 = {0},

C0,1 = R>0 × {0} × {0}, C0,2 = ∅ and C0,3 = R3 \ (R≥0 × {0} × {0}), and they do

constitute a Whitney stratification of C0(X) as expected.

A generalisation of this chapter’s results

The condition that T has archimedean model was mainly needed to make sense of the

objects in Subsection 5.2.2, namely, manifolds, Whitney stratifications, etcetera. After

removing said condition on T , there is no obstacle to obtain the straight analogues of

Theorem 5.2.4, Proposition 5.3.2 and the first part of Theorem 5.3.4 after exchanging

R and ∗R with R and ∗R, respectively, where R is an arbitrary model of T and ∗R is

a (non-principal) ultrapower of R. While this allows us to remove the condition that T

possesses an archimedean model, we consider that remaining in the archimedean setting

of R is more suitable for applications.
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Afterword

We discuss a few open problems orbiting the topics in this thesis. First of all, we direct

the reader’s attention to [26, Section 9] where several open problems on t-stratifications

in general valued fields are introduced and discussed.

Problem 1. [26, Problem 9.3] was partially addressed in Chapter 5 of this thesis, where

we showed that, if T is power-bounded, the existence of t-stratifications for definable sets

in T -convex fields implies the existence of C1-Whitney stratifications for definable sets

in R � T . It remains open to find the suitable context (the appropriate valued fields) from

which the existence of Whitney stratification follows for more general definable sets in

C and R. For instance, we suspect that the existence of C∞-Whitney stratifications for

analytic subsets of Cn follows from considering t-stratifications in valued fields with

analytic structure [7]; the difficulty here is obtaining the analogue of Theorem 3.3.8.

Problem 2. As mentioned in page 25, it is still open how to define stratifications ana-

logous to t-stratifications in valued fields of mixed characteristic.

Problem 3. Determine how the valuative Lipschitz stratifications introduced in [28]

relate to t-stratifications; this question is of relevance now that both have been found

to exist for all closed L-definable sets in T -convex fields if T is power-bounded. As

mentioned in the introduction, there are good reasons to believe that every valuative

Lipschitz stratification is a t-stratification. If proved true, this could also lead to proving

that in the setting of R, Lipschitz stratifications are archimedean t-stratifications.

The next two problems were a constant concern during the work on Chapters 4 and 5.

Problem 4. Develop applications to local geometry from the results on tangent cones

and t-stratifications in Chapter 4. The pioneering paper Whitney [53] already deals with

some interactions between such kinds of objects.
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Problem 5. Determine the right notion of equi-singularity that archimedean t-stratifica-

tions entail. As mentioned earlier, Whitney stratifications entail normal equi-singularity

of points in the same stratum. We expect that a stronger notion of equi-singularity holds

for points in the same stratum of an archimedean t-stratification. Perhaps understanding

the equi-singularity implicit in Lipschitz stratifications could direct these investigations.

The paper [48] could start off this project.
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Appendix A: O-minimality and weakly

o-minimality

A.1. O-minimality

For a thorough account of o-minimality see [15]. Let L be a first order language con-

taining a symbol < invariably interpreted as a linear order. Open intervals are sets of the

form (a, b) = {x ∈M | a < x < b}, with a, b ∈M ∪ {±∞}.

Definition A.1.6. We say that the L-structure M is o-minimal if it is densely ordered

and every L-definable set X ⊆ M is a finite union of points and open intervals. An

L-theory T containing the axioms for dense linear orders is said to be o-minimal if each

of its models is an o-minimal structure.

O-minimality is preserved under elementary equivalence [32], so a complete theory is

o-minimal if and only if one of its models is. We only deal with complete theories from

now on. Recall that Lor := {+,−, ·, 0, 1, <}.

Example A.1.7. (1) The real field R is an o-minimal Lor-structure. The Lor-definable

sets in this structure are also known as semi-algebraic sets.

(2) The ordered group of rational numbers Q is an o-minimal structure in the language

Log := (+,−, 0, <). On the other hand, the field structure of Q in the language Lor is

not. The Lor-definable set {x ∈ Q | x2 < 2} can not be written as a finite union of points

117



A. O-minimality and weak o-minimality

and intervals.

Definition A.1.6 says that all the L-definable subsets of M are definable using only the

order < on M . While nothing is asked explicitly about definable sets in more variables,

plenty of properties can be proved for such sets. See [15, Chapter 3 §2] for the prominent

Cell-decomposition Theorem, briefly mentioned in Section 3.3. The foundation of these

results is the Monotonicity Theorem. We fix an o-minimal L-structure M .

Theorem A.1.8 (Monotonicity Theorem). Let A ⊆ M and let f : M −→ M be an

A-L-definable function. Then there are A-definable points a1 < · · · < an in M such

that, after putting a0 := −∞ and an+1 := ∞, for each i ∈ {0, . . . , n}, the function

f |(ai,ai+1) is continuous and either constant or strictly monotone.

Continuity is relative to the topology determined by the order. If L ⊇ Lor andM expands

an ordered field, f |(ai,ai+1) can be made differentiable.

The dimension of a definable set is expressed in Definition 1.1.11, with the obvious

difference that in Mn an open ball is simply a product of open intervals. This defin-

ition coincides with the dimension defined through cells, and also with the algebraic

dimension—exploiting that the exchange principle holds for M .

If M expands an ordered group (and accordingly L ⊇ {+,−, 0, <}), it is not difficult to

check that M has definable Skolem functions, that is, for any n-tuple x, m-tuple y and

every formula φ(x, y) there exists a definable function fφ : Mn −→Mm such that

M � ∀x(∃yφ(x, y)→ φ(x, fφ(x))).

The following result is useful when working with convergence in M . Recall that with

cl(X) we denote the topological closure of X .

Proposition A.1.9 (O-minimal curve selection lemma). Assume M expands an ordered

group. Let X ⊆Mn be L-definable and let p ∈ cl(X) \X . Then there is an L-definable

injective continuous function γ : (0, 1) −→ X such that limt→0+ γ(t) = p.
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If M expands a field, then the function γ above can be assumed to be differentiable.

The following are further and important examples of o-minimal structures.

Examples A.1.10. (1) The Lor-structure of R enriched with restricted analytic func-

tions (see [12] for the original model-theoretic approach) is o-minimal. This structure is

denoted by Ran, its language by Lan, and its theory by RCFan.

(2) The Lor-structure of R with the exponential function exp : R −→ R added is o-

minimal (a result combining work of A. Wilkie and of A. Khovanskii, see [54]). This

expansion is denoted by Rexp, its language by Lexp := Lor ∪ {exp}, and its theory by

RCFexp.

The examples above illustrate two different kinds of behaviours in o-minimal structures.

In Ran every L-definable function from R to itself is eventually bounded by a polyno-

mial (see [12, Page 192]). In Rexp, that is obviously not true. C. Miller proved in [37]

that in fact in every o-minimal structure on R either all definable functions are eventu-

ally bounded by a polynomial—in which case the structure is said to be polynomially

bounded—or the exponential function is definable in the structure. Below we discuss

the generalisation of this fact to arbitrary o-minimal fields, also due to C. Miller.

Let L ⊇ Lor and let R be an o-minimal L-structure expanding an ordered field. It is not

difficult to see that in particular, R is a real closed field.

Definition A.1.11. A power function in R is an L-definable group morphism from

(R>0, ·, 1) to itself.

A power function g is differentiable at 1 and, moreover, g′(1) determines g entirely (if h

is another power function with h′(1) = g′(1), then h = g). Additionally, once g′(1) is

known, it can be easily checked that g is differentiable everywhere and that the equation

xg′(x) = g′(1)g(x) holds. The name of these functions comes from the case when

g′(1) = m is an integer, because in that case g equals the map x 7→ xm on R.

The set E := {g′(1) | g : R>0 −→ R>0 is a power function in R} forms a subfield of R
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called the field of exponents of R. For example, the field of exponents of R as an Lor-

structure is (isomorphic to) the field of rational numbers. The field of exponents of an

o-minimal theory T is defined as the field of exponents of the prime model of T (which

always exists, after expanding T by definitions if necessary, see [16, (2.3)]). Whenever

T has an archimedean model, then its field of exponents is (isomorphic to) a subfield of

R.

Definition A.1.12. We say that R is power-bounded if for every L-definable function

f : R −→ R there exist a power function g and x0 ∈ R>0 such that |f(x)| ≤ g(x) for

all x ≥ x0. Naturally, we say that the complete o-minimal theory T is power-bounded

if all of its models are power-bounded (by [14, 3.2], this is equivalent to the existence of

one power-bounded model of T ).

Polynomial-boundedness, is defined analogously by requiring g above to be a polynomial

xm, for some m ∈ Z. Clearly then, whenever the field of exponents is archimedean,

power-boundedness and polynomial-boundedness are equivalent.

The following theorem is the dichotomy discovered by C. Miller.

Theorem A.1.13 ([38]). If L ⊇ Lor and R is an o-minimal L-structure expanding an

ordered field, then eitherR is power-bounded or there exists anL-definable isomorphism

e : (R,+, 0) −→ (R>0, ·, 1).

In the second case of the statement we call e an exponential map on R and we say that

‘R defines an exponential’. It follows that a complete o-minimal theory T ⊇ RCF is

either power-bounded or one of its models define an exponential (eq. all models of T

define an exponential).

The main results in this thesis are exclusive to power-bounded o-minimal fields; the

presence of an exponential map does complicate several results and makes others fail

(see e.g. Section 3.4).
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A.2. Weak o-minimality

Weakly o-minimal structures were introduced by A. Dickmann in [11] and their theory

was extensively developed by D. Macpherson, D. Marker and C. Steinhorn in [35]. We

again let L be a language containing a symbol < for a linear order.

Definition A.2.14. We say that the L-structure M is weakly o-minimal if every L-

definable X ⊆ M is a finite union of convex sets. We say that an L-theory containing

the axioms for dense linear orders is weakly o-minimal if each of its models is a weakly

o-minimal structure.

Examples A.2.15. (1) Since points and intervals are convex sets, any o-minimal struc-

ture is weakly o-minimal. Accordingly, any o-minimal theory is weakly o-minimal.

(2) Let L = {<,D}, where D is unary predicate. In Q, D is interpreted as the set

{x ∈ Q | x2 < 2}. Then Q is a weakly o-minimal L-structure. Note that this structure is

not o-minimal. In general, it is true that an o-minimal structure expanded by predicates

for convex sets is weakly o-minimal (see [1, §4]).

Contrary to the situation in o-minimality, weak o-minimality is not preserved under ele-

mentary equivalence, see [35, Example 2.5].
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Appendix B: Proof of Lemma 2.4.1

In this appendix we present the proof of Lemma 2.4.1 due to Y. Yin [57]. This appendix

does not contain original material—we only present Yin’s proof with more details.

We keep the notation of Section 2.3. We let T be a power-bounded complete o-minimal

theory expanding RCF in a language L ⊇ Lor, and we fix a T -convex field (R,OR). We

let (R,RV) be the corresponding LRV-structure (R,RV) (Definition 2.3.1).

We fix a large saturated model (R∗, OR∗) of Tconvex, which we take to be an elementary

extension of (R,OR). By transforming (R∗, OR∗) into an LRV-structure we obtain a big

saturated model (R∗,RV∗) of TRV, which is of course an extension of (R,RV). By ‘sub-

structure’ we will always mean ‘LRV-substructure of (R∗,RV∗)’, and such substructures

will be denoted as simply M , N , etcetera. For a substructure M , we make use of the

(self-explanatory) notation VF(M) := M ∩ R∗ and RV(M) := M ∩ RV∗. If M is a

substructure, then rv(VF(M)) := {rv(x) | x ∈ VF(M)} ⊆ RV(M), and the strict con-

tainment could occur. When the equality holds, i.e. when rv(VF(M)) = RV(M), we

say thatM is field-generated. ForA ⊆ R∗∪RV∗, 〈A〉 denotes the substructure generated

by A. Recall that if X ⊆ R∗, 〈X〉L denotes the L-substructure of R∗ generated by X ,

and that in fact 〈X〉L = VF(〈X〉).

Remark B.1.16. (a) If A ⊆ R∗, then 〈A〉 is field-generated.

(b) The substructure M is an elementary substructure of (R∗,RV∗) (i.e. a model of

TRV) if and only if it is field-generated and v(M) 6= {0}.

Proof. (a) Note that VF(〈A〉) = 〈A〉L, so it is enough to show that (〈A〉L, rv(〈A〉L))
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is the minimal substructure containing A; this is true because rv(〈A〉L) will always be

contained in the RV-sort of any other LRV-structure with 〈A〉L as field-sort .

(b) This is easily justified by looking at the axiomatisation of TRV given in [57, Definition

1.3] (which we decided not to present here). p

As we have done before, every model of Tconvex can be easily (and canonically) trans-

formed into a model of TRV. It can also be seen that each model of TRV can be canonically

turned into a model of Tconvex: for this it is enough to recall that the valuation ring can

be defined from the language LRV (see the paragraph following Definition 2.3.1). This is

frequently exploited to turn arguments about LRV-morphisms between substructures into

arguments aboutLconvex-morphisms betweenLconvex-substructures of (R∗, OR∗), and vice

versa. By ‘morphism’ between substructures we will always mean ‘LRV-morphism’, and

similarly for embeddings and isomorphisms.

Definition B.1.17 ([57]). LetM be a substructure. An embedding σ : M −→ (R∗,RV∗)

is said to be immediate if σ(ξ) = ξ for all ξ ∈ RV(M). The notion of an immediate

isomorphism between two substructures M and N is defined in accordance.

Notice that if there is an immediate isomorphism between M and N , then necessarily

RV(M) = RV(N).

If M is a substructure and x ∈ R∗ ∪ RV∗, Mx denotes the set M ∪ {x}. Also, for a

substructureM we denote the setM∩OR∗ byO(M). WhenM is field-generated, Γ(M)

denotes is its value group and M its residue field; recall that M is regarded as a model

of T by Proposition 2.1.6 (b).

Lemma B.1.18 ([57, Lemma 1.13]). LetM andN be substructures and let σ : M −→ N

be an immediate isomorphism. Suppose that a ∈ R∗ \M and a′ ∈ R∗ \ N are such

that rv(a− c) = rv(a′ − σ(c)) for all c ∈ M . Then σ can be extended to an immediate

isomorphism σ′ : 〈Ma〉 −→ 〈Na′〉 such that σ′(a) = a′.

Sketch of proof. We omit some details whose justification would need far more material
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from [14, 16] than the presented so far. We aim at illustrating the important steps in the

proof employing some results from the said papers as blackboxes. For now we assume

thatM andN are field-generated, in the last paragraph of the proof we comment on why

this is enough. The advantage of this assumption is that all the substructures considered

below correspond immediately to Lconvex-substructures.

According to σ, a and a′ make the same kind of cut on R∗, so there is an L-isomorphism

α : Ma −→ Na′ that extends σ onM and takes a to a′. The rest of the proof is to ensure

that we can extend α to an immediate LRV-isomorphism. We first focus on just extending

α to an LRV-isomorphism, immediateness is dealt with later. We need to ensure that the

elements of RV(〈Ma〉)\RV(M) can be sent suitably to elements of RV(〈Na′〉)\RV(N)

(recall that RV(M) = RV(N)). We do this by analysing how the new elements of

VF(〈Ma〉) lie among the elements of VF(M). We particularly ask whether an element

in VF(〈Ma〉) lies between O(M) and the rest of M ; regardless of the case, we show

that α maps O(〈Ma〉) bijectively to O(〈Na′〉). Having done this, α is then naturally

an Lconvex-isomorphism from (VF(〈Ma〉), O(〈Ma〉)) to (VF(〈Na′〉), O(〈Na′〉)), and by

previous comments, α then induces an LRV-isomorphism from 〈Ma〉 to 〈Na′〉.

Case I. No x ∈ VF(〈Ma〉) is such that |O(M)| < x < |VF(M)\O(M)|. It also follows,

since α : VF(〈Ma〉) −→ VF(〈Na′〉) is an L-isomorphism, that no x ∈ VF(〈Na′〉) is

such that |O(N)| < x < |VF(N) \ O(N)|. We claim that O(〈Ma〉) is simply the

convex hull of O(M) in VF(〈Ma〉). Indeed, if this did not hold, there would be an

element x ∈ O(〈Ma〉) such that O(M) < x. By the initial hypothesis, there must be a

positive y ∈ VF(M) \ O(M) such that y < x. The convexity of O(〈Ma〉) implies that

y ∈ O(〈Ma〉), so y ∈ VF(M) ∩ O(〈Ma〉) = O(M), contradicting that y /∈ O(M). We

can similarly see that O(〈Na′〉) is the convex hull of O(N) in VF(〈Na′〉). Since α is an

L-isomorphism (and in particular it preserves the ordering), it mapsO(〈Ma〉) bijectively

to O(〈Na′〉). The extension of α to an LRV-isomorphism from 〈Ma〉 to 〈Na′〉 is then

done as commented earlier.
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Case II. There is b ∈ VF(〈Ma〉) such that |O(M)| < b < |VF(M) \O(M)|. We aim to

show that α maps O(〈Ma〉) bijectively to O(〈Na′〉). If b /∈ O(〈Ma〉), [14, Lemma 5.4]

implies that Γ(〈Ma〉) = Γ(M) ⊕ (E · v(b)), where E is the field of exponents of T

(see page 120). In particular, Γ(〈Ma〉) ) Γ(M) and by Proposition 2.1.13 there is

d ∈ VF(〈Ma〉) such that v(a − d) /∈ Γ(M). We then have that v(a′ − α(d)) /∈

Γ(N). We now use the Wilkie inequality as a blackbox. If V is a vector space over

E, dimE(V ) denotes its dimension as vector space. If S � S ′ � T , then rk(S ′ |S)

stands for the minimal size of a set of generators of S ′ over S (equivalently, the max-

imal size of a dclL-independent set X ⊆ S ′ over S). The Wilkie inequality tells us

that 1 = rk(VF(〈Na′〉) |VF(N)) ≥ dimE(Γ(〈Na′〉)/Γ(N)) + rk(〈Na′〉 |N). Since

v(a′ − α(d)) /∈ Γ(N), we get that dimE(Γ(〈Na〉))/(Γ(N))) ≥ 1, so 〈Ma〉 and M have

the same residue field; this easily implies that O(〈Na′〉) is the convex hull of O(N) in

VF(〈Na′〉). Notice then that if α(b) ∈ O(〈Na′〉), then, using that α preserves the or-

dering, b ∈ O(〈Ma〉), which is absurd. Symmetrically, if we start with b′ /∈ O(〈Na′〉)

we see that α−1(b′) /∈ O(〈Ma〉), and thus α maps O(〈Ma〉)) bijectively to O(〈Na′〉) as

required. The extension of α to an LRV-isomorphism follows as previously.

We have thus extended the L-isomorphism α : VF(〈Ma〉) −→ VF(〈Na′〉) to (first

an Lconvex-isomorphism (VF(〈Ma〉), O(〈Ma〉)) −→ (VF(〈Na′〉, O(〈Na′〉)) and then

naturally to) an LRV-isomorphism σ̄ : 〈Ma〉 −→ 〈Na′〉. Clearly also σ̄ coincides with

σ on M . We now show immediateness, so far hidden in the construction. If the RV-

sort of M did not grow when adding a, i.e. if RV(〈Ma〉) = RV(M), there is nothing

left to check because by immediateness of σ we obtain that RV(〈Ma〉) = RV(M) =

RV(N) = RV(〈Na′〉). So we assume that RV(M) ( RV(〈Ma〉). Similarly as in the

valuation property (Proposition 2.1.13) we can find d ∈ VF(M) such that rv(a − d) /∈

RV(M) (we may do cases knowing that 1 = dimE(Γ(〈Ma〉)/Γ(M)) + rk(〈Ma〉 |M)

by the Wilkie inequality). Since σ̄ is an LRV-isomorphism, rv(a − d) = rv(a′ − σ̄(d)).

Set ξ = rv(a − d). Since Ma ⊆ rv−1(RV(M)ξ), clearly 〈Ma〉 ⊆ 〈RV(M)ξ〉. On

the other hand, ξ ∈ 〈Ma〉 because a, d ∈ 〈Ma〉, so in fact 〈Ma〉 = 〈RV(M)ξ〉. It
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follows that σ̄ is an LRV-isomorphism from 〈RV(M)ξ〉 to 〈RV(N)ξ〉, and since σ is

already the identity on RV(M) and σ̄(ξ) = ξ, we must have that σ̄ is the identity on

RV(〈Ma〉) = RV(〈RV(M)ξ〉).

Lastly, we assume that M and N are not field-generated. Recall that RV(M) = RV(N).

Let ξ ∈ RV(M) \ rv(M) and pick d ∈ VF(M) such that rv(d) = ξ. It follows that

rv(σ(d)) = ξ and according to σ, d and σ(d) make the same kind of cut on R∗. An

argument like the one above using further results from [14] allows us to find an imme-

diate isomorphism extending σ from 〈Md〉 to 〈Nσ(d)〉. Iterating this process for all

ξ ∈ RV(M) \ rv(M), allows us to reach a point at which we have an immediate iso-

morphism between two field-generated substructures M ′ ⊇ M and N ′ ⊇ N . This case

is thus reduced to the previous one. p

The following is an easy and important consequence.

Corollary B.1.19 ([57, Lemma 1.14]). Let M and N be substructures. Then every

immediate isomorphism σ : M −→ N can be extended to an immediate automorphism

σ̄ of (R∗,RV∗).

Proof. Recall that RV(M) = RV(N). Since σ is immediate, for all c ∈M we have that

rv(c) = rv(σ(c)), so v(c − σ(c)) > v(c). Fix ξ ∈ RV∗ \ RV(M) and a ∈ rv−1(ξ). For

all c ∈ M we have that rv(a) = ξ 6= rv(c), so v(c) ≥ v(a − c). The two inequalities

above imply that rv(a − c) = rv(a − σc) for all c ∈ M . By Lemma B.1.18, there is an

immediate isomorphism from 〈Ma〉 to 〈Na〉 extending σ. By iterating this process over

all ξ ∈ RV∗ \ RV(M), we eventually obtain an immediate embedding σ′, extending σ,

from a substructure M ′ into (R∗,RV∗), where M ′ is such that RV(M ′) = RV∗. By the

quantifier elimination for Tconvex (Theorem 2.1.8), σ′|R∗ can be extended to a full Lconvex-

automorphism of R∗. By putting this automorphism on the field-sort and keeping σ′ on

the RV-sort, we obtain the desired immediate automorphism σ̄. p

As in Chapter 2, dcl and dclL denote the definable closure operators with respect to LRV
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and L, respectively. We have that VF(〈X〉) = dcl(X) ∩ R = dclL(X) = 〈X〉L for any

X ⊆ R∗.

Remark B.1.20. Let M be a substructure. For a, a′ ∈ VF(M), rv(c − a) = rv(c − a′)

for all c ∈ dclL(VF(M)) if and only if B(a,≥ v(a− a′)) ∩ dclL(M) = ∅.

Proof. For c ∈ dclL(M), rv(c−a) 6= rv(c−a′) if and only if v(c−a) ≥ v(a−a′). p

Lemma 2.4.1 follows easily from the next version of [57, Lemma 2.19].

Lemma B.1.21. LetM be a substructure. AnyM -definable closed ballB ⊆ R∗ contains

an M -definable point.

Proof. Suppose otherwise, i.e., that B ∩ dclL(M) = ∅. By the saturation of (R∗,RV∗),

there is an open ball D ⊆ R∗ such that D ∩ dclL(M) = ∅ and B ( D. Let a ∈ B and

a′ ∈ D \ B. Since clearly B(a,≥ v̂(a − a′)) ⊆ D, it follows from Remark B.1.20 that

rv(c − a) = rv(c − a′), for all c ∈ dclL(M). By Lemma B.1.18 and Corollary B.1.19,

there is an immediate LRV-automorphism σ of (R∗,RV∗) fixing M such that σ(a) = a′.

Hence σ(B) 6= B, which contradicts the M -definability of B. p

Proof of Lemma 2.4.1. Put M = dcl(A) in Lemma B.1.21. p
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