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Immersion and Invariance Control for an Antagonistic Joint
with Nonlinear Mechanical Stiffness
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Abstract— Tendon controlled robots with nonlinear mechani-
cal tendon stiffness are becoming more and more popular. Wit
the appropriate actuation, the joint position and the stiffness
between motor and link side can be prescribed at the same time
In this paper, the modeling of tendon-driven elastic systemwith
nonlinear couplings is recapitulated. Based on the Immersin
and Invariance (I&l) framework a control law is developed
that takes trajectories of the desired joint position and the
pretension as input. The contribution of this paper are the
application of the I&l framework to tendon-controlled systems
with variable stiffness which requires to consider the intenal
degrees of freedom to realize the pretension, respectivelhe
mechanical joint stiffness. But also, and even more importatly,
the handling of nonlinear transmission elements between h
motor and the joint link is included. The performance and
sensitivity is analyzed by simulating an antagonisticallydriven
robot joint.

Fig. 1. CAD drawing of the DLR hand arm system [7].

|. INTRODUCTION

The antagonistic tendon actuation principle from biolog dback i ati f led ioints that h
can be applied to robots by using tendons that connect tgeee ack finearization ot uncoupled joints that are eac

riven antagonistically. Furthermore, an adaptive matael

joints with the motors allowing a relocation of the drives D iroll ted in L7 1 inal ; -
to the base of the robot system. This design furthermoFe. coniroller was presented in [17] for a single antagamisti

reduces the inertia of the robot system leading to fast gint th?t was verified by means of e>.<peri.m.ents. Passivity-
motion while preserving safety for the human and the robo lased impedance controllers for IIeX|bIe joint robots were
A limitation in such systems is that excessively large temdopresentecj by Ott and _AIbu-Schaffer _[18]’ [19]. In this

forces might occur in case of stiff tendons, which in theframev_vork, th_e emphasis was to derive controllers frqm
worst case leads to their breaking. The introduction oftielas potentlal_functhns and to develpp. Cof‘”o' Ia_w§ that realiz

elements into the tendon path relaxes this problem. This WA predefined stifiness characteristics n the joints by mean
done in some developments using linear tendon stiffness a& (;OerL Itn_ [.2?] we.tpresentgd_ a E)a:_t]:fcular P[()j conll':roller
by the introduction of variable stiffness (VS) elements{1] . at can set joint positions and joint stiffness indepetigien

[6]. Another example is the DLR hand arm system depicte? a robust fashion. However, since the controller was only

in Figure 1 [7]. One of the first commercially available ased on the motor positions, the transient behavior could

light-weight arms, namely the WAM [8], [9], is also basednot f.uIIy. be specified. The contribution of this paper are the
on tendon actuation. Controllers were presented that a?gphcatlon_ of th? &l frgmework .[21] t tgndon-contro]led
capable of keeping the tendon tension while moving thgystlc_ams Wt'th van_abl_e st|ff|nessdvb\;?tlch reqtuh|res thte hag(cjm:;
robot joints with linear tendon stiffness [10]-[13]. A sdri nonfiinear transmission elemerbetween the motor and the

stiffness acts furthermore as mechanical low-pass filter f8mt“r|'ké adn(: o co?sm_erthe mternﬁl degr(::_es offreﬁdbm tl
external forces, e.g. in case of a collision. In contrast to re related to pretension, respectivelffective mechanica

constant elastic element, a variable stiffness allows apad joint stiffness . I .

the joint compliance to a given manipulation task, like for __In t_he second section we will first review the l&l sta-
catching a heavy object in order to prevent damage of ﬂ%hzatlon theorem as propo_sgd_b_y As_tolf| et_al. in [21].
robot or for fast assembly of parts. Another feature is tha{p_'e mod_ellng of an antagonistic joint W'th nonlinear tend(_)n
the serially connected springs act as energy storage that n‘fngss_ IS despnbed in section 3, while the I&.I control is
be applied to e.g. a throwing task through transferring th%pp_hed n sect|.on 4. The developed con_troller 1S compared
stored spring energy to kinetic energy and vice versa [GT? simulation with a motor PD controller in section 5.

[14]. Furthermore, in [15] an impedance control law for a VS
joint was developed. A tracking controller has been progose
and has been validated using a linearly coupled mechanismThis section introduces the &I framework with the main
through experiments [16]. In [5] Palli et al. studied thetheorem proposed by Astolfi et al. in [21].

Il. 1&l S TABILIZATION
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Theorem 1: Consider the system

&= f(z)+g(z)u, 1)

with ¢ € R", u € R™, and an equilibrium pointc* € R”
to be stabilised. Assume that there exist smooth mappings
a:RF - R, w:RPF - R",¢p:R" - R"P c:RP —
R™ and v :R*™(=P) _ R™ with p < n, such that the
following hold.

1) The target system

£=al), )

with & € RP has a globally asymptotically stable (21]
equilibrium £* € R? and

2) For all £ € R?, Fom 5 \

Fig. 2. lllustration of the immersion and invariance appitoaccording to

fi
F(r()) + gm(€))e(m (€)= g—ga@. 3) </
3) The set identity g1 > q

{z e R"[¢(z) = 0} = {x e R"|z = 7(£), £ € R’}

(4) Fig. 3. Simple example of an antagonistic joint with two tensl connected

holds. via nonlinear springs to the joint.
4) All trajectories of the system _ _
8(;5 q € [RQ Joint position
6 ¢ R 2 Motor positions
= 9z (f(z) + g(z)v(z, 2)) (5) hy(g) € R? 2 Tendon length changes w. . t. joints
. M € R Joint inertia
z = f(z)+g(x)v(z,2), (6) My € R2*X2 | P.d. effective tendon inertia matrix
. including motor inertia
are bounded and (5) has a uniformly globally asymp- rowi € R Extema?torque
totically stable equilibrium at = 0. fm € Rz Tendon motor forces (control input)
. . S fi € R Tendon forces
Thenx* is a globally asymptotically stable equilibrium of fio € R Motor friction forces
the closed-loop system
. TABLE |
r = x x)v(x,p(x)). 7
F(@) +g(x)v(@, ¢(2)) () DEFINITION OF VARIABLES.
U

Taken from [21], this theorem can be interpreted in the

following way. The objective is to find a manifold1 =  the joint angles;. The functionh,(g) can be used to derive
{z € R"|x = w(£), £ € R?} based on the system (1) and thea differential mapP(q):
target dynamics (2). This manifold can be rendered invarian

and asymptotically stable, and such that the well-defined P(q) = Ohy(q) g ®)
restriction of the closed-loop system fof is described by dq '

the target system (condition 3). Note that the control inp% the robotics literature, this map is also knowncasipling

u that makes the manifold invariant is not unique, SINCEhatrix [22]. Note that in contrast to the Jacobian matrix of a

Ith IS (;Jr_ﬂqueliq de;nid only_folné\/l. Or(;(_e possible contr(zjl, serial kinematic chain, the transposed coupling matrix snap
that drives the off-the-manifold coordinatesto zero and ¢ joint to tendon velocities

keeps the system bounded, is selected. The I&l concept Is .
illustrated forp = 2 andn = 3 in Fig. 2. h, = P'(q)q (9)

I1l. M ODELING OF AN ANTAGONISTIC JOINT WITH and the tendon forces are related to the joint torques by

NONLINEAR TENDON STIFFNESS
: : i e T, = Plg)f; (10)
In Fig. 3, a simple tendon-network consisting of one joint
and two tendons connected by nonlinear springs is shown.For a well-designed mechanism, the coupling malig)
In Table I, the variables to describe the equations of motiomas full row rank over the whole configuration space [23].
of an antagonistic robot joint are given. The tendon inverse Using the coupling matrixP(q), it is straightforward to
kinematicsh,(q) gives the motor positions as a function offormulate the equations of motion for an antagonistic joint



[22]: with K,, K, > 0, & () € CL.

. Mg = P(a)f+(¢,0) + Tear (11)  B. computation of the map (&,t)

Mo0+fro = Fu—Ffila:0), (12) A major difficulty using the 1&I framework is to solve the
with the inertia matrix of the motor sid&fy being a diagonal partial differential equation (3). Since(¢,t) is an explicit
matrix. A joint with linear coupling is considered, i.e. function of time, additionally the terr%% has to be included

hy(q) = Pq, (13) om om
P o— (1] Fw(&,0)+a(m (€, ))e(r(€,1) = Feal& )+ 57 (19)

This represents the most simple antagonistic system and Sigice the target system (16) resembles the link side dyrsamic

nonlinear transmission element the exponential tendareforof the original system (15), the solution to this equation ca

characteristics be obtained by starting to set (£¢) = &;. Then, looking at
Foila,0:) = kt,i(e%(_(PTq)”ei) 1), Vi=1,2, (14) &1 = x4 it follows directly thatms(€) = &. Based on the

term io, the mappingrs(&,t) = (73.1(€,t), m3.2(€,1))7 is
is used [17]. This characteristics is parameterizechby- deriveél as 38 t) = (13 (8,8), 7206, 1))

(71,72)T and k; = (k1,ki2)T. The vector f,(q,0) = . Om(8),
(fi1(q,01), fr.2(q,02))" contains the forces in stacked no- T2 = o€ 3
tation. Note that this choice of force characteristics duoats
limit the applicability of the I&l control to other functias

using the systems (15) and (16)

as long they are strictly increasing ensuring a unique Be/er MY PF (€1, 73(E, 1)) + Teat) = — M (W(E, 1) — Tewr),
solution. With the statee” = (q, ¢, 0, 6), assigningr; = q, (19)
x3 = 0, andu = f,, the following state space model is yith P tendon-controllablg23] and therefore with full row
obtained rank. This equation is rewritten as

1 = T

iy = M YPf,(21,23) + Teat) (15) Fi(&,m3(€1) = —P (&, t) — N(P)w,(t) = —w(ﬁ(,ztc))-)

ii‘3 = X4 . .

&y = —My'(fro+ Filar,zs) —u). with the nullspace basis of?, N(P) = —%5[1, 1]7,

" hi . d . he | wy, (t) € C?, andw(€&,t) the modified rigid body controller.
Rewriting this system ag = I(x) and setting the inputs This furthermore gives the possibility to use the nullspaice

Text = (_)’u D 0 it <6:an _be computgd e_aS|Iy thai(_m) 'S" P to add feed-forward forces,, that shall realize pretension
locally Lipschitz onR®. With the physical interpretation that between the motors while at the same time not affecting

the system equation modt_els.two bodies that are c_onnectﬁ% link motion. Note, that we assume in this paper that
.bY springs anq one body d|35|p.ates energy by a friction terhe pretensionu,, is set such that the pulling constraint for
!t 1S clear that itis possmle tp find a Com_pact subset_ fpr aMhe tendons is fulfilled. In the case of nonlinear mechanical
initial condition, which contains the solution. Therefpites stiffness this will be used to specify a desired mechanical
concluded that the equation hasiaique solutiorfor £ > 0. gitthess between the motors and the robot link [1], [20].

IV. 1&] C ONTROL OF AN ANTAGONISTIC JOINT This set of nonlinear equations needs to be solved for

A. Specification of the target dynamics w3(€,t). Since in each equation only th€& component of

The target systemx (€&, t) is chosen to prescribe a desiredﬂi”(g’ t_) Is a function of t.he knqwn terms, the solution will
impedance behavior to the link side dynamics of the roboﬂi derived componentwise. Using the force model (14), the
In this way, controllers that exist in various forms can bé component ofrs (&, ¢) can be computed to
used for this reduced order system. The I&I concept [21]is 7. (¢ ) = (PT¢)), + v In(1 — B Jwi(€,1). (21)
used to robustify against the higher-order dynamics of the '
motors side. This means that the motor dynamics that afide solution toms(£) can then be given by stacking the
faster than the link dynamics are not considered in the targgomponents
system. The structure of the target systen(,¢) hence 1 1
resembles the link dynamics in whichcantroller for rigid ms(€,t) = PTg + < M, in(i - :Ellwl(é’t)) ) (22)
robotsw(&,t) can be integrated, i.e. Yo In(l =k, ywa(€,t)

& = & The expressionrs(€) can be interpreted agrtual desired
éz = M YD&) — Tent) (16)  motor positionsthat are required to prescribe the target
. ’ o ~ dynamics.
with _{ € R2. A_ PD_ controller plus feedforward terms is Using &3 = x4 appearing in the system equations (15) it
consideredithat is given as is straightforward to derive the map, (¢, t), respectively its
w(E, 1) = Kp(& — & (1) + Ka(§2 — & (1)) + ME (1), (17) i component as
1Certainly, the tracking controller proposed by Slotine &ngl4] could ) _ 8#3@({, t) ; 67"3,i(£a t)
be applied as well. (€, 1) = € £+ ot ) (23)



while keeping in mind thatv (€, ¢) is also a function of time, The equation o&; = z, is obtained by the construction of

and with ¢(x,t). With equation (29) the remaining system equations
oms ;(€,1) _%flk;il ” for z, are determined for each indéxy differentiation as
Ows 1=k jwi(€,1) 9 Zog = ma(a,t)+ (Mg )i, (30)
Note that the denominator becomes zeravalé, t) = k; ;. ™i(@:1) = —(My ii(frilwr, ma(®,0) + froq) — (P a2)i —
This corresponds to the forcg ;(z1,x3:) = —k:; which d {37T3,i(mvt)} <3wi(ﬂ%t) vy 4 2wi(@0)
means thatrs; — (Px;); — —oc, and is not relevant here di dw; A1 ot
since (positive) p_ulling forces are gssumed. Together with +3wi(myt) (Mfl(Pft(:clnrg(m,t))+rm)))
the system equations (15) the solution can be computed as Oz
oms,i(x,t) [ Owi(x,t) . 0%wi(x,t)
mi(t) = (I;T&)i(g - (25) - ;)wi ( oo 2T T o
73,i(&,1 w;(§,t . )
—%ﬁﬂ(M‘l(Pw(E, t) = Tewt)) The control law is then chosen as
~2
dw; (€, 1) u=v(xz,z,t) = —Mo(m(z,t) + K, 121 + K, 222),
o ) (31)

o i with K. 1, K. € R**? which are each positive-definite

C. Derivation of the manifold(x, ) = 0 matrices such that the off-the-manifold dynamics are stabi
The next step is to find an implicit definition of the lized. Note that the:; term represents the error term between
manifold ¢(x,t) € R6~2, i.e. the position of the motors and the desired virtual motor
d11(z,t) positions of the target system. This means the stabilizatio

NCR) bro(z, 1) of the off-the-manifold dynamics can be interpreted as an
Pz, t) = ( ) = i (z,1) (26)
(x,t

P (x, 1) P21 underlying motor position controller

Po,2(x,t) D. Discussion of the boundedness of the closed-loop system

With the direct correspondencesof(§) = 1, m2(§) = 2, In this paragraph the boundedness of the closed-loop
two equations of the manifold are constructed by equations with the stateér,z) is analyzed in order to

3

by (,t) = @3- 3(E)|e,—0y.b0m (27) show that condition 4 of the 1&I stabilization theorem halds
n ’ l_mi’fl—zi - . The closed loop equations are obtained by inserting the
¢ (x,t) = x3— Pl — ( Zalligl_kiﬁzlgiyt;; ) control law (31) in the system equation (15). Then, the
2 — Ny o W2,

B (fast) coordinates:; andx, are replaced by the coordinate
In a similar fashionp, (x,t) is constructed. Firsip,(x,t)  transformationp; = x3 — w3(x,t) andgs = x4 — 74(x, t).
is derived as To complete the change of coordinates we need to solve
5 for &3 = ¢1 + w3(x, t) that is inserted into the remaining
z,t) = Tg—ma(E)|e —ny tomas- 28 3 L A3
(1) 1= 7a(& ler=o1 go=rz (28) systems equations
Secondly, as pointed out in [21], the already obtained set

equatione, (x, t) = 0 is used. Instead of using this function 21 = 2 (32)
directly we rewrite it agw(x,t) = — f;(z1, w3(x,t)) thatis 2o = —K.1z1— K22 (33)
inserted ing, (x, t). In this way, we achieve thap, (x,t) = B = 2o (34)
¢, (x, t) which is helpful to simplify the controller design iy = MY PFf,(r1, 01+ w3(x,t))) (35)

to render the manifold attractive. Note that even though
the termmy(&,t) = 73(&,t) = 88—’?5 appears ing,(x,t) b, Z2 (36)
this not equal tog,(x,t) = ¢ (x,t) = %a’c, since b2 —K.az1 - K220, (37)
fi(21,m3(x, 1)) does not appear in the target dynamics. Theyhjle settingr..; = 0 to zero for this analysis. By construc-

term ¢, (x, t) is obtained for index as

iz, t) = ®y;— Ta4(2x,1),
- om3,i(x, i(x,
7'&'471'(:B,t) _ (PTSCQ)Z' + wgauflmt) (awag(:f t)SCQ

wi@ ) (N=1(Pf,(x1,75(2, 1)) + Tewt))

Oxo
Qw; (x,t)
+2ulet))

tion, the off-the-manifold dynamics converge exponehtial
Then, from equation (36) and (37) it can be seen that

is bounded. Therefore, it remains to show that the set of
equations (34) and (35) has a bounded solution. We there-
fore consider these equations sygstem with nonvanishing
perturbationand follow Lemma 9.2 in [25]. The perturbation

is generated by the termp,. Setting ¢y = 0, the set

Having defined the manifold(x, ), the equations of the ot equations that represents the linear target dynamics is
off-the-manifold dynamics can be determined according tgptained. Thenominal systenis then given as

the modified equation (5)

5= %?(f(w) +g(z)v(z, 2, 1)) +

op(x,t)
ot

x'l = X2 (38)
iy = —M 'Pw(x,t). (39)



In order to bring the equations (34), (35) into a form tocan be used. For the second (indefinite) term the Cauchy-
identify the total perturbation tery (1, 2, ¢1,t) the term  Schwarz inequality”» < ||a||||b]| is applied that gives
M~'Pw(z,t) from (39) is added and subtracted from

T S T S
equation (35) resulting in thperturbed system 2" Pro < 2let Pojfd] _ (48)
, < 2Xmas(Pr)llelll|0]. (49)
X1 = X2 (40) . . . .
b = —M'Pw(x,t)+ (w1, w0, é1,1), Using these two inequalities we obtain
by(x1, 29, 61,t) = M 'Pw(x,t) Viest) < —llel” + Anaw (Ks) €]l + 2Amaa (Pr) ][9],
FMTIPE (01, 61+ (). o0

SUPPOSEN e (K5) < (1—¢), 0< ¢ <172, we can write
Together with the tendon force model (14), the definitionv(e D o< —lel® + (1= Ollel + 2Amas (PL)llelll3] (1)
of w3(x,t) in (22) (that contains the inverse operation on” *~ "~ 2oy (P ”g””
the tendon force model), and the identityt® = e®e?, the - _lee”u)leelT;az(uCﬂl'leQHJl 2”)\ Pl
- - - max L

perturbation term can be reformulated as

2Amaz(P1)||3]
ba(w1, 22, ¢1,t) = —M ' Pdiag{S}w(x,t) + M~ PK,, = —-u)dlel’s Vel 2 p= =
41 _
with 6 = e%%.i — 1. for i — 1.2. and the m(atr?x where0 < v < 1. Sinced is bounded andP; exists,

we conclude that the solutions of the perturbed system are
bounded. Hence, condition 4 of the 1&I stabilization theare

K, = diag{k: 1,k 2}. Note, that the specific structure of
the perturbation term is due to the particular choice ofdorc X . o o
characteristics. Note that @ — 0 it follows that by — 0. is fulfilled while considering the restrictions om and (.

The linear nominal system (38), (39) is transformed to tthith Fhe equations (22)2 _(25)’ condition 2), and With_ the
coordinates equations (27),(29) condition 3) of the theorem are fulfille

) Since condition 1) is valid by definitiong* = = (£*) is a
e1=z1—& (), ea=mz2 (). globally asymptotically stable equilibrium of the clostemp

With these coordinates and inserting (17) the nominal systeSYStem (15) with control law (31) that uses the modified rigid
body control law (17),(20).

becomes
61 = e V. SIMULATIONS
Fa—- _M—l(erl + Kges) For the simulations an antagonistic joint was conS|der<_ad.
_ _ _ The plant parameters and the controller parameters ara give
For t.he nominal linear system there exists a Lyapunay Table Il with the friction modelf ; , = ffoxs. The sam-
function [25] ple time was set t®.1 ms. The I&I controller is compared
Vie) = e"Ppe, (42) \(/jvith adsfimpletzhm((j)tor. PlelcclzntroI.It_er Withd Zetp_oir;ts tht::n are
. Ty B erived from the desired link position and desired pretamsi
with PLA+A P =-Q=-1 (43)  Both controllers are tested to change the pretensig(r)
and A= 0 1 from 0 to 5v/2 Nm starting at timet = 0s. At time t = 2s a
M K. MK ) . . . « . .
M P d link side motion¢; (¢) to move sufficiently smooth froirad

with e = (e1,e2)”. This Lyapunov function will be used t00.2 rad is commanded. The reaction to a first order filtered

as a candidate potential function for the perturbed systeftep (time constanit) ms) in external torque of.;; = 1 Nm
(34), (35) for which we want to show boundedness. A§N the link was examined at time= 4s. The trajectories of
intermediate step, the perturbation tebm(41) is rewritten these input values are illustrated in Flg 4. At the end of thi

in the coordinateg, i.e. section the sensitivity to parameter uncertainty is exaahin
bo(e, ¢1,t) = —M~'Pdiag{6} Pt (Kye1 + Kqez) A. 1&l Control
+M ' P(K 6 — diag{6} PTM¢&}) The positions of the link and the motors for this simulation

o ] ] for the 1&I controller are depicted in Fig. 5. In the followgn
The derivative ofi’(e) along the trajectories of the perturbedpresentation then only the tracking erroveill be discussed.

system satisfies At time t = 0s, the pretensionu, (t) is changed frond to
V(e,t) = —|le|? + e'Kse +2ePLé, (45) 5v/2 Nm. It can be seen in the figures 5 and 6 that both the
motors move in the same direction such that they wind up

Hh s -1 : +aré _ . . . Lo .
with 6 = ;0, M~ P(K6 — diag{6} PTM(7)), K5 = against each other, and in this way the pretension is realize
PLAs + A5 Py, and Since the tendon stiffness is nonlinear this pretensionltses

0 0
As = 1 + 1 + . 2This condition can only be fulfilled for sufficiently small s of§; <
—M™ Pdiag{d} P K, —M" Pdiag{6}P"Kq |6maz|. This threshold grows by choosing smaller values for therotiar
(4 ) parametersk,, K.

For the quadratic perturbation term the inequality 3The displacements in the motor positions are represented ihe
T 5 corresponding desired link position. Therefore, the matmplacements
e Kse < M\pax(K5)|le]] (47)  were computed a®”'¢} — x3.



M 1 kgm?
0.5 0
My 0 05 kgm?
P 1 —1] m
Yi 1 1/rad
Ei,i 500 Nm/rad
fr.o0 0.001 Nms/rad
K, 500 Nm/rad
Ky 50 Nms/rad
100 25
K. 1 2% 100 Nm/rad
50 5
K2 5 50 Nms/rad
TABLE 1l
PLANT AND CONTROLLER PARAMETERS

Fig. 5.

of the motion command at = 2s, the tracking error, that
can be observed in Fig. 6, remains beldwi0~5rad which
demonstrates the excellent tracking capabilities. Thisrer
stems from the gains dk .. With increasingK .. the tracking
error decreases. Note that the acceleration feedforward te
M 5; (t) requires sufficiently smooth trajectories. Otherwise,

it generates very large peaks for the control input, singe it
second derivative is used in equation (30). These peaks are
generated to minimize the effect of the motor inertia and
enables therefore the accurate tracking of the link pasitio

A filtered step in external torque afNm was exerted on
the link at timet = 4s. A compliant behavior of the link is
observed and behaves accordingly to the target dynamies sys
tem (16). For the steady-state the deflectiof.i®2rad that
corresponds to the expected. /K, = 1/500rad. In Fig. 7
the control signal shows the additional component to realiz
the pretension. The off-the-manifold dynamics converge to

rad]

positionsc1, x3 |

Link and motor
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1&I control: Link and motor positions. Note that inettpretension
phase both motors move in the same direction while movingénopposite
direction in the case of moving the link position. The exértorque
displaces the link position as specified in the target dynanmt the same

as well in an increased mechanical joint stiffness. In trsecatime the motor positions are displaced as well.
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I&I control: Position error for link and motor pogitis.

Fig. 6.

zero (c.f. Fig. 8) and therefore the required virtual motoB. Comparison with simple PD motor control

positions are realized. Note that for this parametrization
term & stay by far below the threshold,, .| ~ 0.164.

em
diag{250,250} Nm/rad, K4, = diag{25,25}Nms/rad
the motor stiffness and the motor damping matrices
respectively. The inertia matrix for the feedforward of
the acceleration termM,, is defined by the sum of

the motor inertia M, and the reflected joint inertia

PT*M P The desired motor positions are computed by

The performance of the controller is compared with a
simple motor PD controller with setpoints that are derived
from the desired link position and desired pretension

—Kpmem—Kamém+Mpisatf+N(Pw, (52)

= Tr3 — Png_’d, and Kp_’m =

= P"¢ + 97 'In(1 — k;wy). In Fig. 9 it can be
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Fig. 4. Trajectories of the commanded desired joint pasijoof the

pretension, and of the external torque.

seen that the pretension is well adjusted. It can be further
observed that the tracking error is by several magnitudes
larger than the one of the 1&I controller. The corresponding
control signal f,,, is depicted in Fig. 10. Parallel to this
controller we computed the off-the-manifold dynamics that
are shown in Fig. 11 in which weakly damped oscillations

4The motor controller gains have been chosen to fulfill theatiqns
K, =PKp, Pl andK, = PK, ,PT.
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stiffness The model of a tendon controlled variable stiffness
the 1&l controller. These vibrations can also be seen isPecified to behave as desired second order impedance while
figure 9 in the time intervat = [2.5s...3.0s]. at the same time a pretension was commanded to the tendon
forces that lie in the nullspace of the tendon coupling matri
C. Sensitivity Analysis In this way, we were able to assign on the one side the
The same task was performed again for the 1&I controlleSontrolledimpedance behavior for the link and at theme
whereas the friction parameter, that is often not well knowHMme Set the mechanical stiffness of the mechanism by vary-
in practice, was replaced by an estimﬁye) = 1.3f0,and NG the pretension. Furthermore, we discussed the physical
at the same time the motor inertia was éssumed' ﬁ%be: meanings of the mapr that corresponds to virtual desired
0.7M, in order to study the sensitivity of the controller toMotor positions and that the off-the-manifold stabilipati
parameter errors. Note, that the friction compensatiom ter"®Presents annderlying motor position controllefThe 1&I
F 1.0 appears in the control law (31). In Fig. 12 it can pecontroller was compared in simulations with a simple motor

seen that the tracking error and the settling time is inegas PP based controller. The &I controller clearly outperfarm
in the case of the link motion command @at= 2.0s. This the motor PD controller and the off-the-manifold coordesat

indicates a robust behavior w.r.t. parameter uncertaintie &€ Well damped and converge to zero - even in the case of
comparison the simulation results are shown for the case BRrameter uncertainties. As future work we plan to imple-
the simple motor controller in Fig. 13. From that we defefMent this controller on hardware and to expand to the case

that even in the case of (reasonable) parameter unceesint?f Multiple degrees of freedom. Furthermorg, we consider to
the 1&I controller has a better tracking performance. use a reduced-order observer for the robotic system.
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