
Immersion and Invariance Control for an Antagonistic Joint
with Nonlinear Mechanical Stiffness
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Abstract— Tendon controlled robots with nonlinear mechani-
cal tendon stiffness are becoming more and more popular. With
the appropriate actuation, the joint position and the stiffness
between motor and link side can be prescribed at the same time.
In this paper, the modeling of tendon-driven elastic systems with
nonlinear couplings is recapitulated. Based on the Immersion
and Invariance (I&I) framework a control law is developed
that takes trajectories of the desired joint position and the
pretension as input. The contribution of this paper are the
application of the I&I framework to tendon-controlled syst ems
with variable stiffness which requires to consider the internal
degrees of freedom to realize the pretension, respectivelythe
mechanical joint stiffness. But also, and even more importantly,
the handling of nonlinear transmission elements between the
motor and the joint link is included. The performance and
sensitivity is analyzed by simulating an antagonisticallydriven
robot joint.

I. I NTRODUCTION

The antagonistic tendon actuation principle from biology
can be applied to robots by using tendons that connect the
joints with the motors allowing a relocation of the drives
to the base of the robot system. This design furthermore
reduces the inertia of the robot system leading to faster
motion while preserving safety for the human and the robot.
A limitation in such systems is that excessively large tendon
forces might occur in case of stiff tendons, which in the
worst case leads to their breaking. The introduction of elastic
elements into the tendon path relaxes this problem. This was
done in some developments using linear tendon stiffness and
by the introduction of variable stiffness (VS) elements [1]–
[6]. Another example is the DLR hand arm system depicted
in Figure 1 [7]. One of the first commercially available
light-weight arms, namely the WAM [8], [9], is also based
on tendon actuation. Controllers were presented that are
capable of keeping the tendon tension while moving the
robot joints with linear tendon stiffness [10]–[13]. A serial
stiffness acts furthermore as mechanical low-pass filter to
external forces, e.g. in case of a collision. In contrast to a
constant elastic element, a variable stiffness allows to adapt
the joint compliance to a given manipulation task, like for
catching a heavy object in order to prevent damage of the
robot or for fast assembly of parts. Another feature is that
the serially connected springs act as energy storage that can
be applied to e.g. a throwing task through transferring the
stored spring energy to kinetic energy and vice versa [6],
[14]. Furthermore, in [15] an impedance control law for a VS
joint was developed. A tracking controller has been proposed
and has been validated using a linearly coupled mechanism
through experiments [16]. In [5] Palli et al. studied the

Fig. 1. CAD drawing of the DLR hand arm system [7].

feedback linearization of uncoupled joints that are each
driven antagonistically. Furthermore, an adaptive motor level
PD controller was presented in [17] for a single antagonistic
joint that was verified by means of experiments. Passivity-
based impedance controllers for flexible joint robots were
presented by Ott and Albu-Schäffer [18], [19]. In this
framework, the emphasis was to derive controllers from
potential functions and to develop control laws that realize
a predefined stiffness characteristics in the joints by means
of control. In [20] we presented a particular PD controller
that can set joint positions and joint stiffness independently
in a robust fashion. However, since the controller was only
based on the motor positions, the transient behavior could
not fully be specified. The contribution of this paper are the
application of the I&I framework [21] to tendon-controlled
systems with variable stiffness which requires the handling of
nonlinear transmission elementsbetween the motor and the
joint link, and to consider the internal degrees of freedom that
are related to pretension, respectivelyeffective mechanical
joint stiffness.

In the second section we will first review the I&I sta-
bilization theorem as proposed by Astolfi et al. in [21].
The modeling of an antagonistic joint with nonlinear tendon
stiffness is described in section 3, while the I&I control is
applied in section 4. The developed controller is compared
in simulation with a motor PD controller in section 5.

II. I&I S TABILIZATION

This section introduces the I&I framework with the main
theorem proposed by Astolfi et al. in [21].
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Theorem 1: Consider the system

ẋ = f(x) + g(x)u, (1)

with x ∈ R
n, u ∈ R

m, and an equilibrium pointx∗ ∈ R
n

to be stabilised. Assume that there exist smooth mappings
α : R

p → R
p, π : R

p → R
n, φ : R

n → R
n−p, c : R

p →
R

m and v : R
n×(n−p) → R

m, with p < n, such that the
following hold.

1) The target system

ξ̇ = α(ξ), (2)

with ξ ∈ R
p has a globally asymptotically stable

equilibrium ξ∗ ∈ R
p and

x∗ = π(ξ∗).

2) For all ξ ∈ R
p,

f(π(ξ)) + g(π(ξ))c(π(ξ)) =
∂π

∂ξ
α(ξ). (3)

3) The set identity

{x ∈ R
n|φ(x) = 0} = {x ∈ R

n|x = π(ξ), ξ ∈ R
p}
(4)

holds.
4) All trajectories of the system

ż =
∂φ

∂x
(f (x) + g(x)v(x, z)) (5)

ẋ = f (x) + g(x)v(x, z), (6)

are bounded and (5) has a uniformly globally asymp-
totically stable equilibrium atz = 0.

Thenx∗ is a globally asymptotically stable equilibrium of
the closed-loop system

ẋ = f (x) + g(x)v(x, φ(x)). (7)

�

Taken from [21], this theorem can be interpreted in the
following way. The objective is to find a manifoldM =
{x ∈ R

n|x = π(ξ), ξ ∈ R
p} based on the system (1) and the

target dynamics (2). This manifold can be rendered invariant
and asymptotically stable, and such that the well-defined
restriction of the closed-loop system toM is described by
the target system (condition 3). Note that the control input
u that makes the manifold invariant is not unique, since
it is uniquely defined only onM. One possible control,
that drives the off-the-manifold coordinatesz to zero and
keeps the system bounded, is selected. The I&I concept is
illustrated forp = 2 andn = 3 in Fig. 2.

III. M ODELING OF AN ANTAGONISTIC JOINT WITH

NONLINEAR TENDON STIFFNESS

In Fig. 3, a simple tendon-network consisting of one joint
and two tendons connected by nonlinear springs is shown.
In Table I, the variables to describe the equations of motion
of an antagonistic robot joint are given. The tendon inverse
kinematicshq(q) gives the motor positions as a function of
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Fig. 2. Illustration of the immersion and invariance approach according to
[21].
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Fig. 3. Simple example of an antagonistic joint with two tendons connected
via nonlinear springs to the joint.

q ∈ R Joint position
θ ∈ R

2 2 Motor positions
hq(q) ∈ R

2 2 Tendon length changes w. r. t. joints
M ∈ R Joint inertia

Mθ ∈ R
2×2 P. d. effective tendon inertia matrix

including motor inertia
τext ∈ R External torque
fm ∈ R

2 Tendon motor forces (control input)
ft ∈ R

2 Tendon forces
ff,θ ∈ R

2 Motor friction forces

TABLE I

DEFINITION OF VARIABLES.

the joint anglesq. The functionhq(q) can be used to derive
a differential mapP (q):

P (q) =

(

∂hq(q)

∂q

)T

. (8)

In the robotics literature, this map is also known ascoupling
matrix [22]. Note that in contrast to the Jacobian matrix of a
serial kinematic chain, the transposed coupling matrix maps
from joint to tendon velocities

ḣq = P T (q)q̇ (9)

and the tendon forces are related to the joint torques by

τ q = P (q)f t. (10)

For a well-designed mechanism, the coupling matrixP (q)
has full row rank over the whole configuration space [23].

Using the coupling matrixP (q), it is straightforward to
formulate the equations of motion for an antagonistic joint



[22]:

Mq̈ = P (q)f t(q, θ) + τext (11)

Mθθ̈ + f f,θ = fm − f t(q, θ) , (12)

with the inertia matrix of the motor sideMθ being a diagonal
matrix. A joint with linear coupling is considered, i.e.

hq(q) = P T q, (13)

P = [1,−1],

This represents the most simple antagonistic system and as
nonlinear transmission element the exponential tendon force
characteristics

ft,i(q, θi) = kt,i(e
γi(−(P T q)i+θi) − 1), ∀i = 1, 2, (14)

is used [17]. This characteristics is parameterized byγ =
(γ1, γ2)

T and kt = (kt,1, kt,2)
T . The vectorf t(q, θ) =

(ft,1(q, θ1), ft,2(q, θ2))
T contains the forces in stacked no-

tation. Note that this choice of force characteristics doesnot
limit the applicability of the I&I control to other functions,
as long they are strictly increasing ensuring a unique inverse
solution. With the statexT = (q, q̇, θ, θ̇), assigningx1 = q,
x3 = θ, and u = fm the following state space model is
obtained

ẋ1 = x2

ẋ2 = M−1(P f t(x1, x3) + τext)
ẋ3 = x4

ẋ4 = −M−1
θ (f f,θ + f t(x1, x3) − u).

(15)

Rewriting this system aṡx = l(x) and setting the inputs
τext = 0, u = 0 it can be computed easily thatl(x) is
locally Lipschitz onR

6. With the physical interpretation that
the system equation models two bodies that are connected
by springs and one body dissipates energy by a friction term,
it is clear that it is possible to find a compact subset for any
initial condition, which contains the solution. Therefore, it is
concluded that the equation has aunique solutionfor t > 0.

IV. I&I C ONTROL OF AN ANTAGONISTIC JOINT

A. Specification of the target dynamics

The target systemα(ξ, t) is chosen to prescribe a desired
impedance behavior to the link side dynamics of the robot.
In this way, controllers that exist in various forms can be
used for this reduced order system. The I&I concept [21] is
used to robustify against the higher-order dynamics of the
motors side. This means that the motor dynamics that are
faster than the link dynamics are not considered in the target
system. The structure of the target systemα(ξ, t) hence
resembles the link dynamics in which acontroller for rigid
robots w̄(ξ, t) can be integrated, i.e.

ξ̇1 = ξ2

ξ̇2 = −M−1(w̄(ξ, t) − τext),
(16)

with ξ ∈ R
2. A PD controller plus feedforward terms is

considered1 that is given as

w̄(ξ, t) = Kp(ξ1− ξ∗1(t))+Kd(ξ2− ξ̇∗1(t))+Mξ̈∗1(t), (17)

1Certainly, the tracking controller proposed by Slotine andLi [24] could
be applied as well.

with Kp, Kd > 0, ξ∗1(t) ∈ C4.

B. Computation of the mapπ(ξ, t)

A major difficulty using the I&I framework is to solve the
partial differential equation (3). Sincēw(ξ, t) is an explicit
function of time, additionally the term∂π

∂t
has to be included

f(π(ξ, t))+g(π(ξ, t))c(π(ξ, t)) =
∂π

∂ξ
α(ξ, t)+

∂π

∂t
. (18)

Since the target system (16) resembles the link side dynamics
of the original system (15), the solution to this equation can
be obtained by starting to setπ1(ξ) = ξ1. Then, looking at
ẋ1 = x2 it follows directly thatπ2(ξ) = ξ2. Based on the
term ẋ2, the mappingπ3(ξ, t) = (π3,1(ξ, t), π3,2(ξ, t))T is
derived as

ẋ2 =
∂π2(ξ)

∂ξ
ξ̇,

using the systems (15) and (16)

M−1(P f t(ξ1, π3(ξ, t)) + τext) = −M−1(w̄(ξ, t) − τext),
(19)

with P tendon-controllable[23] and therefore with full row
rank. This equation is rewritten as

f t(ξ1, π3(ξ, t)) = −P +w̄(ξ, t) −N (P )wn(t) = −w(ξ, t).
(20)

with the nullspace basis ofP , N (P ) = −
√

2
2 [1, 1]T ,

wn(t) ∈ C2, andw(ξ, t) the modified rigid body controller.
This furthermore gives the possibility to use the nullspaceof
P to add feed-forward forceswn that shall realize pretension
between the motors while at the same time not affecting
the link motion. Note, that we assume in this paper that
the pretensionwn is set such that the pulling constraint for
the tendons is fulfilled. In the case of nonlinear mechanical
stiffness this will be used to specify a desired mechanical
stiffness between the motors and the robot link [1], [20].

This set of nonlinear equations needs to be solved for
π3(ξ, t). Since in each equation only theith component of
π3(ξ, t) is a function of the known terms, the solution will
be derived componentwise. Using the force model (14), the
ith component ofπ3(ξ, t) can be computed to

π3,i(ξ, t) = (P T ξ1)i + γ−1
i ln(1 − k−1

t,i wi(ξ, t)). (21)

The solution toπ3(ξ) can then be given by stacking the
components

π3(ξ, t) = P T ξ1 +

(

γ−1

1 ln(1 − k−1

t,1 w1(ξ, t))
γ−1

2 ln(1 − k−1

t,2 w2(ξ, t))

)

. (22)

The expressionπ3(ξ) can be interpreted asvirtual desired
motor positionsthat are required to prescribe the target
dynamics.

Using ẋ3 = x4 appearing in the system equations (15) it
is straightforward to derive the mapπ4(ξ, t), respectively its
ith component as

π4,i(ξ, t) =
∂π3,i(ξ, t)

∂ξ
ξ̇ +

∂π3,i(ξ, t)

∂t
, (23)



while keeping in mind thatw(ξ, t) is also a function of time,
and with

∂π3,i(ξ, t)

∂wi

=
−γ−1

i k−1
t,i

1 − k−1
t,i wi(ξ, t)

. (24)

Note that the denominator becomes zero atwi(ξ, t) = kt,i.
This corresponds to the forceft,i(x1, x3,i) = −kt,i which
means thatx3,i − (P x1)i → −∞, and is not relevant here
since (positive) pulling forces are assumed. Together with
the system equations (15) the solution can be computed as

π4,i(ξ, t) = (P T ξ2)i (25)

+
∂π3,i(ξ, t)

∂wi

(

∂wi(ξ, t)

∂ξ1
ξ2

−∂wi(ξ, t)

∂ξ2
(M−1(Pw(ξ, t) − τext))

+
∂wi(ξ, t)

∂t

)

.

C. Derivation of the manifoldφ(x, t) = 0

The next step is to find an implicit definition of the
manifold φ(x, t) ∈ R

6−2, i.e.

φ(x, t) =

(

φ1(x, t)
φ2(x, t)

)

=









φ1,1(x, t)
φ1,2(x, t)
φ2,1(x, t)
φ2,2(x, t)









(26)

With the direct correspondences ofπ1(ξ) = x1, π2(ξ) = x2,
two equations of the manifold are constructed by

φ1(x, t) = x3 − π3(ξ, t)|ξ1=x1,ξ2=x2
(27)

φ1(x, t) = x3 − P T x1 −
(

γ−1

1 ln(1 − k−1

t,1 w1(x, t))
γ−1

2 ln(1 − k−1

t,2 w2(x, t))

)

.

In a similar fashionφ2(x, t) is constructed. First,̄φ2(x, t)
is derived as

φ̄2(x, t) = x4 − π4(ξ, t)|ξ1=x1,ξ2=x2
. (28)

Secondly, as pointed out in [21], the already obtained set
equationφ1(x, t) = 0 is used. Instead of using this function
directly we rewrite it asw(x, t) = −f t(x1, π3(x, t)) that is
inserted inφ̄2(x, t). In this way, we achieve thaṫφ1(x, t) =
φ2(x, t) which is helpful to simplify the controller design
to render the manifold attractive. Note that even though
the termπ4(ξ, t) = π̇3(ξ, t) = ∂π3

∂ξ
ξ̇ appears inφ̄2(x, t)

this not equal toφ2(x, t) = φ̇1(x, t) = ∂φ
1

∂x
ẋ, since

f t(x1, π3(x, t)) does not appear in the target dynamics. The
term φ2(x, t) is obtained for indexi as

φ2,i(x, t) = x4,i − π̃4,i(x, t),

π̃4,i(x, t) = (P T x2)i +
∂π3,i(x,t)

∂wi

(

∂wi(x,t)
∂x1

x2

+∂wi(x,t)
∂x2

(M−1(Pf t(x1, π3(x, t)) + τext))

+∂wi(x,t)
∂t

)

.

Having defined the manifoldφ(x, t), the equations of the
off-the-manifold dynamics can be determined according to
the modified equation (5)

ż =
∂φ(x, t)

∂x
(f(x) + g(x)v(x, z, t)) +

∂φ(x, t)

∂t
. (29)

The equation oḟz1 = z2 is obtained by the construction of
φ(x, t). With equation (29) the remaining system equations
for ż2 are determined for each indexi by differentiation as

ż2,i = mi(x, t) + (M−1

θ )i,iui, (30)

mi(x, t) = −(M−1

θ )i,i(ft,i(x1, π3(x, t)) + ff,θ,i) − (P T ẋ2)i −

d

dt



∂π3,i(x, t)

∂wi

ff „

∂wi(x, t)

∂x1

x2 +
∂wi(x, t)

∂t

+
∂wi(x, t)

∂x2

(M−1(P f t(x1, π3(x, t)) + τext))

«

−
∂π3,i(x, t)

∂wi

„

∂wi(x, t)

∂x1

ẋ2 +
∂2wi(x, t)

∂t2

−
∂wi(x, t)

∂x2

(M−1(P ḟ (x1, π3(x, t)) + τ̇ext))

«

.

The control law is then chosen as

u = v(x, z, t) = −Mθ(m(x, t) + Kz,1z1 + Kz,2z2),
(31)

with Kz,1, Kz,2 ∈ R
2×2 which are each positive-definite

matrices such that the off-the-manifold dynamics are stabi-
lized. Note that thez1 term represents the error term between
the position of the motors and the desired virtual motor
positions of the target system. This means the stabilization
of the off-the-manifold dynamics can be interpreted as an
underlying motor position controller.

D. Discussion of the boundedness of the closed-loop system

In this paragraph the boundedness of the closed-loop
equations with the states(x, z) is analyzed in order to
show that condition 4 of the I&I stabilization theorem holds.
The closed loop equations are obtained by inserting the
control law (31) in the system equation (15). Then, the
(fast) coordinatesx3 andx4 are replaced by the coordinate
transformationφ1 = x3 −π3(x, t) andφ2 = x4 − π̃4(x, t).
To complete the change of coordinates we need to solve
for x3 = φ1 + π3(x, t) that is inserted into the remaining
systems equations

ż1 = z2 (32)

ż2 = −Kz,1z1 − Kz,2z2 (33)

ẋ1 = x2 (34)

ẋ2 = M−1(P f t(x1, φ1 + π3(x, t))) (35)

φ̇1 = z2 (36)

φ̇2 = −Kz,1z1 − Kz,2z2, (37)

while settingτext = 0 to zero for this analysis. By construc-
tion, the off-the-manifold dynamics converge exponentially.
Then, from equation (36) and (37) it can be seen thatφ1

is bounded. Therefore, it remains to show that the set of
equations (34) and (35) has a bounded solution. We there-
fore consider these equations assystem with nonvanishing
perturbationand follow Lemma 9.2 in [25]. The perturbation
is generated by the termφ1. Setting φ1 = 0, the set
of equations that represents the linear target dynamics is
obtained. Thenominal systemis then given as

ẋ1 = x2 (38)

ẋ2 = −M−1P w(x, t). (39)



In order to bring the equations (34), (35) into a form to
identify the total perturbation termb2(x1, x2, φ1, t) the term
M−1Pw(x, t) from (39) is added and subtracted from
equation (35) resulting in theperturbed system

ẋ1 = x2 (40)

ẋ2 = −M−1P w(x, t) + b2(x1, x2, φ1, t),

b2(x1, x2, φ1, t) = M−1Pw(x, t)

+M−1P f t(x1, φ1 + π3(x, t)).

Together with the tendon force model (14), the definition
of π3(x, t) in (22) (that contains the inverse operation on
the tendon force model), and the identityea+b = eaeb, the
perturbation term can be reformulated as

b2(x1, x2, φ1, t) = −M−1P diag{δ}w(x, t) + M−1P Ktδ,
(41)

with δi = eγiφ1,i − 1, for i = 1, 2, and the matrix
Kt = diag{kt,1, kt,2}. Note, that the specific structure of
the perturbation term is due to the particular choice of force
characteristics. Note that asφ1 → 0 it follows that b2 → 0.

The linear nominal system (38), (39) is transformed to the
coordinates

e1 = x1 − ξ∗1(t), e2 = x2 − ξ̇∗1(t).

With these coordinates and inserting (17) the nominal system
becomes

ė1 = e2

ė2 = −M−1(Kpe1 + Kde2)

For the nominal linear system there exists a Lyapunov
function [25]

V (e) = eT P Le, (42)

with P LA + AT P L = −Q = −I (43)

and A =

[

0 1
−M−1Kp −M−1Kd

]

,

with e = (e1, e2)
T . This Lyapunov function will be used

as a candidate potential function for the perturbed system
(34), (35) for which we want to show boundedness. As
intermediate step, the perturbation termb2 (41) is rewritten
in the coordinatese, i.e.

b2(e, φ1, t) = −M−1Pdiag{δ}P +(Kpe1 + Kde2)

+M−1P (Ktδ − diag{δ}P+Mξ̈∗1)
.

(44)
The derivative ofV (e) along the trajectories of the perturbed
system satisfies

V̇ (e, t) = −‖e‖2 + eT Kδe + 2eT P Lδ̄, (45)

with δ̄ = (0, M−1P (Ktδ − diag{δ}P +Mξ̈∗1)), Kδ =
P LAδ + AT

δ P L, and

Aδ =

[

0 0
−M−1P diag{δ}P +Kp −M−1P diag{δ}P +Kd

]

.

(46)
For the quadratic perturbation term the inequality

eT Kδe ≤ λmax(Kδ)‖e‖2 (47)

can be used. For the second (indefinite) term the Cauchy-
Schwarz inequalityaT b ≤ ‖a‖‖b‖ is applied that gives

2eT P Lδ̄ ≤ 2‖eT P L‖‖δ̄‖ (48)

≤ 2λmax(P L)‖e‖‖δ̄‖. (49)

Using these two inequalities we obtain

V̇ (e, t) ≤ −‖e‖2 + λmax(Kδ)‖e‖2 + 2λmax(P L)‖e‖‖δ̄‖,
(50)

Supposeλmax(Kδ) ≤ (1 − ζ) , 0 < ζ < 1 2, we can write

V̇ (e, t) ≤ −‖e‖2 + (1 − ζ)‖e‖2 + 2λmax(P L)‖e‖‖δ̄‖ (51)

= −ζ‖e‖2 + 2λmax(P L)‖e‖‖δ̄‖

= −(1 − ν)ζ‖e‖2 − νζ‖e‖2 + 2λmax(P L)‖e‖‖δ̄‖

= −(1 − ν)ζ‖e‖2; ∀‖e‖ ≥ µ =
2λmax(P L)‖δ̄‖

νζ
,

where 0 < ν < 1. Since δ̄ is bounded andP L exists,
we conclude that the solutions of the perturbed system are
bounded. Hence, condition 4 of the I&I stabilization theorem
is fulfilled while considering the restrictions onν and ζ.
With the equations (22), (25), condition 2), and with the
equations (27),(29) condition 3) of the theorem are fulfilled.
Since condition 1) is valid by definition,x∗ = π(ξ∗) is a
globally asymptotically stable equilibrium of the closed-loop
system (15) with control law (31) that uses the modified rigid
body control law (17),(20).

V. SIMULATIONS

For the simulations an antagonistic joint was considered.
The plant parameters and the controller parameters are given
in Table II with the friction modelff,θ = ff,0x4. The sam-
ple time was set to0.1 ms. The I&I controller is compared
with a simple motor PD controller with setpoints that are
derived from the desired link position and desired pretension.
Both controllers are tested to change the pretensionwn(t)
from 0 to 5

√
2 Nm starting at timet = 0s. At time t = 2s a

link side motionξ∗1 (t) to move sufficiently smooth from0 rad
to 0.2 rad is commanded. The reaction to a first order filtered
step (time constant10 ms) in external torque ofτext = 1 Nm
on the link was examined at timet = 4s. The trajectories of
these input values are illustrated in Fig. 4. At the end of this
section the sensitivity to parameter uncertainty is examined.

A. I&I Control

The positions of the link and the motors for this simulation
for the I&I controller are depicted in Fig. 5. In the following
presentation then only the tracking errors3 will be discussed.
At time t = 0s, the pretensionwn(t) is changed from0 to
5
√

2 Nm. It can be seen in the figures 5 and 6 that both the
motors move in the same direction such that they wind up
against each other, and in this way the pretension is realized.
Since the tendon stiffness is nonlinear this pretension results

2This condition can only be fulfilled for sufficiently small values ofδi <
|δmax|. This threshold grows by choosing smaller values for the controller
parametersKp, Kd.

3The displacements in the motor positions are represented w.r.t. the
corresponding desired link position. Therefore, the motordisplacements
were computed asPT ξ∗1 − x3.



M 1 kgm2

Mθ

»

0.5 0
0 0.5

–

kgm2

P [1 − 1] m
γi 1 1/rad
kt,i 500 Nm/rad
ff,0 0.001 Nms/rad

Kp 500 Nm/rad
Kd 50 Nms/rad

Kz,1

»

100 25
25 100

–

Nm/rad

Kz,2

»

50 5
5 50

–

Nms/rad

TABLE II

PLANT AND CONTROLLER PARAMETERS.

as well in an increased mechanical joint stiffness. In the case
of the motion command att = 2s, the tracking error, that
can be observed in Fig. 6, remains below3 · 10−5rad which
demonstrates the excellent tracking capabilities. This error
stems from the gains ofKz. With increasingKz the tracking
error decreases. Note that the acceleration feedforward term
Mξ̇∗2(t) requires sufficiently smooth trajectories. Otherwise,
it generates very large peaks for the control input, since its
second derivative is used in equation (30). These peaks are
generated to minimize the effect of the motor inertia and
enables therefore the accurate tracking of the link position.

A filtered step in external torque of1 Nm was exerted on
the link at timet = 4s. A compliant behavior of the link is
observed and behaves accordingly to the target dynamics sys-
tem (16). For the steady-state the deflection is0.002rad that
corresponds to the expectedτext/Kp = 1/500rad. In Fig. 7
the control signal shows the additional component to realize
the pretension. The off-the-manifold dynamics converge to
zero (c.f. Fig. 8) and therefore the required virtual motor
positions are realized. Note that for this parametrizationthe
term δ stay by far below the threshold|δmax| ≈ 0.164.
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Fig. 4. Trajectories of the commanded desired joint positions, of the
pretension, and of the external torque.
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Fig. 5. I&I control: Link and motor positions. Note that in the pretension
phase both motors move in the same direction while moving in the opposite
direction in the case of moving the link position. The external torque
displaces the link position as specified in the target dynamics. At the same
time the motor positions are displaced as well.
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Fig. 6. I&I control: Position error for link and motor positions.

B. Comparison with simple PD motor control
The performance of the controller is compared with a

simple motor PD controller with setpoints that are derived
from the desired link position and desired pretension

f m = −Kp,mem−Kd,mėm+M mẍ3,d+f f,θ+N (P )wn (52)

with em = x3 − P T x3,d, and Kp,m =
diag{250, 250}Nm/rad, Kd,m = diag{25, 25}Nms/rad
the motor stiffness and the motor damping matrices4,
respectively. The inertia matrix for the feedforward of
the acceleration termMm is defined by the sum of
the motor inertia Mθ and the reflected joint inertia
P +MP +T . The desired motor positions are computed by
x3,i,d = P T ξ∗1 + γ−1

i ln(1 − k−1
t,i wn). In Fig. 9 it can be

seen that the pretension is well adjusted. It can be further
observed that the tracking error is by several magnitudes
larger than the one of the I&I controller. The corresponding
control signalfm is depicted in Fig. 10. Parallel to this
controller we computed the off-the-manifold dynamics that
are shown in Fig. 11 in which weakly damped oscillations

4The motor controller gains have been chosen to fulfill the equations
Kp = PKp,mPT andKd = PKd,mPT .
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Fig. 8. I&I control: Off-the-manifold dynamicsz.

can be observed which are quickly damped in the case of
the I&I controller. These vibrations can also be seen in
figure 9 in the time intervalt = [2.5s . . . 3.0s].

C. Sensitivity Analysis

The same task was performed again for the I&I controller,
whereas the friction parameter, that is often not well known
in practice, was replaced by an estimatef̂f,0 = 1.3ff,0, and
at the same time the motor inertia was assumed to beM̂θ =
0.7Mθ in order to study the sensitivity of the controller to
parameter errors. Note, that the friction compensation term
ff,θ appears in the control law (31). In Fig. 12 it can be
seen that the tracking error and the settling time is increased
in the case of the link motion command att = 2.0s. This
indicates a robust behavior w.r.t. parameter uncertainties. In
comparison the simulation results are shown for the case of
the simple motor controller in Fig. 13. From that we defer
that even in the case of (reasonable) parameter uncertainties
the I&I controller has a better tracking performance.

VI. CONCLUSION

In this paper the Immersion and Invariance controller was
applied to anantagonistic joint with nonlinear mechanical
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Fig. 9. Motor PD control: Position error for link and motor position.

0 1 2 3 4 5 6

x 10
4

0

1

2

3

4

5

6

7

8

9

10

 

 

v
1

v
2

Time [0.1ms]

f
m

[N
m

]

Fig. 10. Motor PD control: Control inputv = fm.

stiffness. The model of a tendon controlled variable stiffness
mechanism was briefly introduced. The target system was
specified to behave as desired second order impedance while
at the same time a pretension was commanded to the tendon
forces that lie in the nullspace of the tendon coupling matrix.
In this way, we were able to assign on the one side the
controlled impedance behavior for the link and at thesame
time set the mechanical stiffness of the mechanism by vary-
ing the pretension. Furthermore, we discussed the physical
meanings of the mapπ that corresponds to virtual desired
motor positions and that the off-the-manifold stabilization
represents anunderlying motor position controller. The I&I
controller was compared in simulations with a simple motor
PD based controller. The I&I controller clearly outperforms
the motor PD controller and the off-the-manifold coordinates
are well damped and converge to zero - even in the case of
parameter uncertainties. As future work we plan to imple-
ment this controller on hardware and to expand to the case
of multiple degrees of freedom. Furthermore, we consider to
use a reduced-order observer for the robotic system.
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[19] A. Albu-Schäffer, Ch. Ott, and G. Hirzinger, “A unifiedpassivity
based control framework for position, torque and impedancecontrol
of flexible joint robots,” International Journal of Robotics Research,
vol. 26, no. 1, pp. 23 – 39, January 2007.
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