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ADbstract

In this paper, recently conceived polarimetric array sigmacessing techniques are applied for producing 3D images
over forested scenes from multibaseline POL-INSAR obsienvs Subsequently, the optimal scattering mechanises ar
investigated using polarimetric decomposition to derivaciural forest parameters. This three-dimensionalyemals
performed by employing multibaseline POL-INSAR datasets a temperate forest (Traunstein) acquired by the E-SAR
system of DLR at L-band and validated against LIDAR measerés)

1 Introduction 2 Polarimetric MB InSAR Array
_ _ _ o Signal Processing Techniques
While SAR polarimetry (POLSAR) permits the identifi-
cation of elementary scattering processes inside the re

olution cell, SAR interferometry (INSAR) determines thethe fully polarimetric MB INSAR configuration. The fol-

hF? 'g[]tl OSf Aslsatttlalrers. th Polat.nm?trlc SfAtE |nte:fer?111etrylowing adaptation to the fully polarimetric case not merely
E. -fn tt) alows : estima 'fn OT € }[/er Itcah 0Ca- i creases the number of observables, but especially finds
lon Of scattering mechanisms [1]. To extract p ys'_calthe optimal polarization combination for height estimatio
parameters from single-baseline POL-InSAR ObserVat'onﬁurthermore, these algorithms allow examining the scat-

different coherent models describing the reflection pro- hvsical ties b \vsis of their polaringetri
cesses have been proposed [2]. Schemes to inverse tegrE;\EJiO?/swa properties by analysis ot their polaring=tr

electromagnetic models for retrieving forest parameters
such as tree height and underlying ground topography have

been introduced [2, 3]. A three-dimensional model-base? . . .
radar imaging technique of vegetation using single- an 1 Polarimetric MB InSAR Signal Model

dual-baseline polarimetric interferometric SAR observa-r,o polarimetric multibaseline interferometric SAR re-
tions called Polarization Coherence Tomography has bee&aived signal fop sensors is modeled as [7]
developed lately [4].

T this section, spectral analysis techniques are extetaded

An extension of conventional two-dimensional SAR imag- N,

ing is SAR Tomography that permits the reconstruction of y(n) = Z VTixi(n) @ b(zi, k) +v(n) (1)
the three-dimensional scatterer distribution [5]. Thedem i=1

graphic imaging approach has been applied to forested ar-

eas where both the ground and the canopy have been distiwith n = 1,..., N, the number of looksV, and the
guished resulting in an estimation of tree height and groun&chur-Hadamard product (elementwise multiplication).
topography. The number of backscattering sourc¥s is considered

Recently, a new way of analyzing polarimetric multi- to be a dgterministic parameter. The observation vector
baseline (MB) InSAR data has been conceived by adap®(n) € C”, p = 4p, is a Gaussian random process with
ing array signal processing algorithms to this configuraZ€ro mean and covariance matkx The polarimetric re-
tion [6, 7]. These polarimetric methods permit the esti-flectivity 7 and the height of the scatterers are assumed
mation of the reflector height, the scattering mechanism© be deterministic unknown quantities. The additive white
and the polarimetric reflectivity. In this paper, they are ap Gaussian noise is denoted ©yn), and the multiplicative
plied for generating three-dimensional images of forested0ise byx; (n).

scenes from polarimetric multibaseline INSAR data. SubThe main modification with respect to the single polariza-
sequently, the with respect to the particular algorithni-opt tion model [11] is the structure of the MB polarimetric in-
mal scattering vectors are examined by a polarimetric deterferometric (MBPI) steering vectdr(z, k) € C?. Itis a
composition approach [8]. The polarimetric multibaselinelinear combination of four steering vectars, (), each of
interferometric data at L-band were acquired by the Ethem associated with one particular polarization [6, 7]
SAR system of DLR over the temperate forest of Traun-

stein. The results are validated using LIDAR measure-b(z, k) = kia, (z) + koa,,(2) + kza,, (z) + kia,,(2)
ments [9, 10]. )
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where has to be calculated. The polarimetric scattering fypg,

O(i—1)px1 permits to extract the physical behavior of the scatterer.
ay,(z) = a(z) . (3)  The frequency estimates= [%,..., 2y.] are given by
O0u—i)px1 the locations of theV, maxima of the spectrurit’. The
The single polarization steering vectatz) € C? for a polarimetric reflectivity at frequency; is determined by
general acquisition geometry is represented as i = PL(%).

a(z) = [L,exp(jrz,2), - exp(nz, )" (@) 24 Polarimetric MUSIC Algorithm

with the vertical wavenumbet., = 4777@—99”“- The com- |f N, is the assumed number of scatterers, the matrix of
plex weighting coefficients form a vector the noise eigenvectors B, € CP*? with ¢ = § — N,.
B T The pseudo-spectrum of MUSIC for the fully polarimetric
k = [k, k2, ks, ka] ©®)  sar configuration is [7]
that is a scattering mechanism. This can be written in ma- . 1
trix notation as Piiy(z) = i = (13)
Amin(BH (2) E,EFB(2))
b(z,k) = B(2)k (6)

with A\, the smallest eigenvalue of thex 4 Hermitian

with the matrix of MBPI steering vectors .
linear system

B(z) = [a.h(z),a% (Z)’a'Yg (z),a,u (Z)} . BHEqEHBkmin = AminKumin. (14)

The estimate of the sample covariance mafftx e

e The eigenvectok,,;,, describes the physical features of the
Mat;(C) is given by

scatterer and permits a polarimetric analysis. The linear
LN system (14) must be of full rank, otherwisg;, = 0. This
R — = Z y(n)y™ (n). (8) leads toan infinite spectrum (_13)_ and the hel_ght cannot be
1 determined. A necessary criterion for the linear system
having full rank isp > Ny + 4.

2.2 Polarimetric Beamforming

The spectrum of the polarimetric beamforming method is3 Exper iImental Results

given by [7]

The performance of the introduced algorithms is vali-
dated using fully polarimetric multibaseline interferame

ric datasets over a temperate forest (Traunstein). The mea-
surements were acquired by the E-SAR system of DLR at
L-band and consist of five tracks with nominal spatial base-
Sines of 5 m. Furthermore, LIDAR data [9, 10] comprising
topography height andél;o forest height is available for
validation purposes.

Amax (B (2)RB(z
(BY(:)RB(:) ©)

p
This means that for each frequencyhe maximal eigen-
value and its corresponding eigenvector of the linear sy
tem

ng(Z) =

BH(Z)RB(Z)kmax = AmaxKmax (10)

has to be computed. The eigenvedtgy,, is a polarimet-

ric sca_lttering mech_anism allowing a polarimetric analysis3 1 3p | mages

to retrieve the physical properties of the reflector. The fre

quency estimateg = [21,...,2x.]7 are related to the Figure1shows in 3D the optimal reflection vectors eval-
positions of theN, largest peaks of the spectrum. The uated by beamforming, Capon, and MUSIC of model or-
polarimetric reflectivity at frequency; is estimated by der four along a line of 121 samples. Since the spectral

Fi= ng(éz‘)- peaks of beamforming are quite large, this method is not
appropriate for efficient focusing in the vertical directio
2.3 Polarimetric Capon Method The polarimetric Capon algorithm and even to a greater

extent the polarimetric MUSIC enhance the resolution and
The spectrum of the polarimetric Capon algorithm is ob-considerably suppress the sidelobes. These methods are

tained as [7] capable to extract several components within one azimuth-
R 1 range resolution cell: one at the ground, others inside the
PE(z) = = . (11) forest volume beneath the forest height measured by the
Amin(B¥ (2)R71B(2)) LIDAR system. This behavior can be explained by the
For each frequency the minimal eigenvalue and associ- Property of electromagnetic waves at L-band to penetrate
ated eigenvector of the linear system into a semi-transparent volume. The defocusing on the
right hand side for the MUSIC approach is due to over-
BH(z)f{_lB(z)kmin = AminKmin (12) modeling and does not occur for model orders one and two.
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Polarimetric Beamforming — Optimal Scattering Mechanisms
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Figure 1: 3D optimal scattering mechanisms in the Pauli polarizakiasis. Top: Polarimetric beamforming, middle:
Polarimetric Capon, bottom: Polarimetric MUSIC with modedier four.
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Figure 2: Three-component decomposition of polarimetric MUSIC witbdel order four: Double-bounce red, surface
reflection blue, volume diffusion green.
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3.2 Polarimetric Decomposition
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