

data citation similar papers at core.ac.uk

2010 > 1

Iterative Design Process For The Development A Testing Of Cooperative Applications

Tobias Lorenz

brought to you by Iterative Development > 2 and railway Institute of Transportation Systems > Aerospace technology O,

Content

- → Short Introduction
 - ✓ German Aerospace Center (DLR)
- - ✓ Overview
 - Model Selection
 - Model Parameterization
 - Simulation / Evaluation
 - Conclusion

Short Introduction – DLR and Institute TS

Iterative Development > 29 April 2010 > 3 Institute of Transportation Systems > Aerospace technology for road and railway

German Aerospace Center

Areas of Research

- → Aeronautics
- ✓ Space
- → Transport
- → Energy

DLR in numbers

Budget:
2006 1.168 M Euro
2007 1.224 M Euro

Locations and Employees

5.600 employees work at28 research institutes and facilities at ■ 13 locations.

Offices in Brussels, Paris and Washington.

Transportation Participating institutes

- ✓ Institute of Transport Research
- Project Transport Studies
- Institute of Transportation Systems
- ➤ Institute of Vehicle Concepts
- ... and 21 more institutes from aeronautics, space and energy

Institute of Transportation Systems

Residence:	Braunschweig and Berlin
Since:	March 2001
Director:	Prof. DrIng. Karsten Lemmer
Employees:	Presently 100 employees from various scientific disciplines

Range of tasks

- Basic research
- ➤ Creating concepts and strategies
- → Prototype development

Fields of Research

- → Automotive

Iterative Design Process Overview

Iterative Development > 29 April 2010 > 8 Institute of Transportation Systems > Aerospace technology for road and railway

Iterative Design Process Introduction and Motivation

- The determination of requirements for cooperative assistance and automation based on Car-to-X technologies emphasize research questions on different levels – e.g.
 - Reliability / availability
 - Interoperability of assistance and automation systems / security
 - Different penetration rates and their influence on the function of the system, traffic safety/-efficiency, driver behavior and acceptance

Iterative Design Process Introduction and Motivation

- Increasing importance of conducting simulation tests during the development and evaluation process because
 - → Basically field operational tests (FOTs) are applicable but
 - ✓ Large number of equipped vehicles
 - ➤ Huge testing areas especially urban areas required
 - ✓ Immense costs
 - ✓ Influence of different penetration rates
- To run these simulation tests systematically by using the right simulators an iterative design process including guidelines and code of practice is indispensible

Iterative Design Process Overview

- ➤ Different steps within this process
 - Accident analysis provides an application idea
 - Study statistics on road accidents
 - Reasons for the accidents
 - Development and testing of the application within different scenario views
 - ➤ Model selection
 - ✓ Parameterization
 - → Evaluation
- Prototype as final outcome

Deutsches Zentrum für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

Prototype

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Iterative Development > 29 April 2010 > 12 Institute of Transportation Systems > Aerospace technology for road and railway

Iterative Design Process Model Selection I – Overview

Iterative Design Process Model Selection II – Background

- Often Simulators/Models are used which are not applicable for the current research question because

 - ✓ Environmental influences are not considered
- ✓ Non-transferability of the results to the real world
- → Example
 - ✓ Often NS-2 is used with non-deterministic communication model but
 - Not applicable for the investigation of safety applications in urban environments
 - Buildings and other cars are not considered for the communication

Iterative Design Process Model Selection III – Key Parameters

- ✓ Two main key parameters for model selection
 - → Scenario scale
 - → Macroscopic
 - ➤ Microscopic
 - ✓ Certain parts of the traffic flow
 - ➤ Safety critical applications
 - ➤ Communication aspects (e.g. message propagation)
 - ✓ The description of the Car-to-X application
 - → Requirements
 - ✓ Intended Effect
 - ➤ Performance Indicators
 - **7** ...

Model Selection IV – "Stationary Vehicle Warning"

- Example "Stationary Vehicle Warning" (ETSI BSA¹)
 - Informs the driver about a stationary vehicle
 - Safety application
 - ➤ Microscopic view only

¹ European Telecommunications Standards Institute Basic Set of Applications

Model Selection V – "Stationary Vehicle Warning"

- Communication Model
 - Environmental influences
 - → Deterministic message propagation
 - ✓ No simulation of ISO/OSI layers like MAC/NET/TRA
 - → Latency times, Sample frequency
 - Signal Damping
 - → Communication range
- ➤ Driver Model of surrounding traffic
- ✓ Vehicle Model of ego vehicle
 - ➤ Non-linear two track model

Model Selection VI – Communication Simulator

Application select model ulation Environment parameterize simulating reject evaluating **Iterative Design Process** select model microscopic simulation **Model Parameterization** Environment parameterize simulating reject evaluating Prototype

Iterative Development > 29 April 2010 > 19 Institute of Transportation Systems > Aerospace technology for road and railway

Model Parameterization I – Overview

- Different models provide different influencing parameters
- Some of the parameters have to be varied and some are fixed within the simulation
 - → Static parameters
 - ✓ Variable parameters
- Variable parameters are varied until the intended effect of the application can be verified
 - - ➤ Macroscopic scenario view
 - e.g. identification of penetration rate and needed communication range to achieve the intended effect
 - ➤ Microscopic scenario view
 - Validation of the identified parameters by considering environmental influences, too

Model Parameterization II - "Stationary Vehicle Warning"

- → Stationary Vehicle Warning Safety application
 - One aim could be the investigation of communication aspects and their influence on driver behavior
 - ✓ Intended effect
 - ✓ e.g. warn driver 300 m before traffic obstruction
 - → Static parameters
 - ✓ Properties of environmental surroundings
 - ➤ Communication frequency 5.9 GHz
 - ✓ Variable Parameters
 - Transmitting power
 - ✓ Antenna position

Application select model ulation Environment parameterize simulating reject evaluating **Iterative Design Process** select model microscopic simulation Simulation / Evaluation Environm parameterize simulating reject evaluating Prototype

Iterative Development > 29 April 2010 > 22 Institute of Transportation Systems > Aerospace technology for road and railway

Simulation/Evaluation – "Stationary Vehicle Warning"

- ✓ For the simulation trials
 - ✓ The static parameters are fixed
 - ➤ The variable parameters will be varied
 - ✓ Iterative process
 - ✓ Fix all variable parameters but one
 - ✓ Vary the one left
 - If the intended effect is not verifiable change one or more of the fixed parameters and restart process
 - → Example
 - ✓ Fix antenna position
 - ✓ Vary the transmitting power

Iterative Design Process Conclusion

Iterative Development > 29 April 2010 > 24 Institute of Transportation Systems > Aerospace technology for road and railway

Iterative Design Process Conclusion

- The iterative design process emphasize the importance of simulation in the area of Car-to-X systems
- ✓ Selection of the right simulator models is indispensible
 - ✓ For Car-to-X the focus is on communication simulation
- ➤ Choice of the right model parameters is important
- When running the iterative design process successfully for simulation it can be adapted to FOT
 - ✓ There the model selection process is omitted

Institute of Transportation Systems Lilienthalplatz 7 38108 Braunschweig

- ✓ Tobias.Lorenz@dlr.de

