

Institut für **Technische Physik**

Erzeugung und Charakterisierung stationärer **laser-induzierter Plasmen zur Reduktion des** Wellenwiderstands im Überschallflug

D. Sperber, H.-A. Eckel

- Erhaltung des Plasmas durch $(\mathbf{i}\mathbf{i})$ kontinuierliche Laserbestrahlung
 - Ausprägung eines thermisch beeinflussten Bereichs mit:
 - gesteigerter Temperatur T₁
 - reduzierter Machzahl M₁
- (iii) Beeinflussung des Wellenwiderstands durch die Modifikation von Lage und Geometrie der Verdichtungsstöße (reduzierte Stoßstärke)

Experimentalaufbau

- unter optimierten Versuchsbedingungen (Medium, Druck, Laserwellenlänge und -leistung)
- Plasmacharakterisierung durch - interferometrische Aufnahmen
 - Emissionsmessung (Spektroskopie, Leuchtintensität)
 - Abschätzung der absorbierten Energie (Transmissions- und Leistungsmessungen)
- Parametervariation im Stabilitätsbereich

Diskussion

- Erhaltung laser-geheizter Plasmen
 - in Argon und Überdruck mit moderaten Laserleistungen möglich
 - Lage der Absorptionsfront abhängig von lokaler Intensität, Wärmefluss und Absorptionskoeffizient

Experimentelle Ergebnisse

- Bestimmung der Lage der Absorptionsfront rstat aus dem Flächenschwerpunkt der Konturlinie

- Turbulenzstrukturen
- t > t _{Imax}
 - gleichmäßige Expansion in radialer und axialer Richtung mit bis zu 5 m·s⁻¹
 - Erreichen der Gleichgewichtslage

Argondruck 1,5ba 0,004 0,002 -0.000 -1E-6 1E-5 1E-4 1E-3 0,01 0,2 0,4 0,6 0,8 Zeit [s]

- stabile ED zwischen 15 und 40 kW·cm⁻²
- instabile ED zwischen 10 und 20 kW·cm⁻²
- Entscheidende Einflussparameter:
 - Leistungsdichte (energ. Wechselwirkung zwischen Vorionisation und Heizlaser)
 - Kaustik und Größe des Anregungsvolumens (Stabilität der ED)
- Superposition mit Überschallströmung
- Energetische Modellierung des Gleichgewichtszustands und der strömungsbedingten Verluste

