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Abstract— The capabilities of DLR’s multi-DOF humanoid
robot Justin are extended with the help of a dynamic torque
control component for base reaction minimization. Since the
mobile base of the robot comprises springs, reactions induced
by arm/torso motions lead to vibrations and deteriorate the
performance. The control component is derived from the equa-
tion of motion of the robot, represented as an underactuated
system, and partitioned into a “driven” subsystem (one of
the arms), and a “compensating” subsystem (the other arm,
with or w/o torso contribution). The control component is then
embedded into the existing sophisticated controller structure of
Justin, as a feedforward component, with additional control
signals from an augmented PD feedback controller. It was
possible to obtain satisfactory performance with a very “soft”
compensatory subsystem. The experimental results confirmed
the potential of this model-based approach for use in a complex
multi-DOF system. As far as we know, this is the first time that
a dynamic-coupling compensating controller is applied to a real
system of such complexity, utilizing thereby a torque control
interface.

I. I NTRODUCTION

Motion control for minimizing the reaction at a manip-
ulator base is an important control problem for mobile-
base robots, e.g. free-flying space robots, flexible-base space
robots, and others.

A class of flexible-base robots, being developed recently,
are humanoid-type robots, comprising an anthropomorphic
upper body mounted on a mobile base with wheels instead
on legs. Such robots have at least two advantages when
compared with conventional legged humanoids: (1) they are
much more stable since the wheel base of support can be
designed appropriately, and (2), they are much more efficient
from the point of view of energy consumption. Wheel-
base humanoids, on the other hand, have some disadvantage
because they can operate only within flat-floor environments.
This problem can be alleviated to some extent, though, by
including rubber tires and/or spring/dampers for suspension,
so that small obstacles can be negotiated, similar to automo-
biles. Note, however, that the passive elements may introduce
significant base deflection, which would deteriorate the ac-
curacy of manipulation. Therefore, such wheel-base robots
should be regarded as flexible-base robots, and appropriate
methods of control should be applied.
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Fig. 1. Justin’s photo.

Flexible-base robots represent a challenge from the control
point of view. The reason is the dynamic coupling between
the motion of the manipulator(s) and that of the flexible base.
Vibrations can be induced into the base by a disturbance
wrench, imposed via link motion. Base vibration leads in
turn to disturbances in the manipulator joint torque, and the
system may become unstable at the end. The problem has
been tackled in past studies, and various control methods
have been proposed. These can be classified into four wide
categories:

1) base vibration suppression control methods [1]–[4];
2) design of control inputs that induce minimum vibra-

tions [5];
3) end-point control in the presence of vibrations [6], [7];
4) end-point control for interaction tasks [8].

Appropriate control methods depend very much on the
structure of the manipulator, e.g. dual-arm or single-arm,on
the presence of kinematic and/or dynamic redundancy and
on the availability of sensors for measuring the deflection of
the base and/or in the joints. In our previous research, we
have proposed controllers for combining vibration suppres-
sion with reactionless motion, both for single arm [9] and
dual-arm [10] flexible-base manipulators, for simple planar
systems with deflection feedback based control.

In this work, we consider DLR’s humanoid robot Justin
[11] as an experimental platform (see Fig. 1). The robot
comprises a torso with two arms, two hands and a head,
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and is mounted on a mobile base with built-in spring and
dampers [12]. The two arms are made of two seven-DOF
DLR lightweight manipulators DLR-LWR-III, with flexible
joints and built-in joint torque sensors. The torso is a four-
joint three-DOF spatial system, the upper joint being driven
in a coupled manner via a cable drive. Thus, in addition to
the flexibilities in the base and in the joints, there is also
flexibility in the cable drive. The controller of the robot
consists basically of two closed loops — a fast (3 kHz) inner
torque feedback loop, and a passivity-based outer impedance
control loop [13]. With this controller, structural vibrations
can be suppressed at the individual joint level. The controller
does not account for base vibrations.

The main goal of this work is to extend the capability of
the existing controller towards base reaction minimization,
with the help of a model-based, inertia-coupling feedback
control method, similar to that used in previous studies [9],
[10]. Note, however, that in these or other similar studies
velocity-driven controllers have been addressed. As far aswe
know, this is the first time that an inertia-coupling controller
will be applied to a real system of such complexity, utilizing
thereby atorque controlinterface. We emphasize thereby that
we intend to design torque control inputs for the upper body
links, that would induce minimumdynamicdeflections into
the base. For treatment of a similar problem regarding static
deflections, the interested reader is referred to [8].

II. BACKGROUND AND NOTATION

We will base our derivations on the Reaction Null Space
concept developed some time ago for free-flying [14] and
flexible-base manipulators [9] in zero gravity environment.
Recently, it was shown also that the concept can be applied
to humanoid robots (nonzero gravity), for controlling the
balance via the reaction imposed on the foot [15].

The equation of motion of a rigid-body multilink robot
system comprisingn-joints, mounted on a flexible base with
k flexible coordinates, can be written in the following form:
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where ∆ξ ∈ ℜk denotes the positional and orientational
deflection of the base from its equilibrium,νb is the twist
(velocity/angular velocity) of the base,q ∈ ℜn stands for
the joint coordinates of the robot links,Hb(q,∆ξ), Db,
andKb ∈ ℜk×k denote base inertia, damping and stiffness
matrices, respectively.Hm(q) ∈ ℜn×n is the inertia matrix
of the upper body andHbm(q,∆ξ) ∈ ℜk×n denotes the
so-calledinertia coupling matrix, which plays an important
role in the following derivations. Vectorscb(q, q̇,∆ξ,νb)
and cm(q, q̇,∆ξ,νb) include velocity-dependent nonlinear
terms,gb(∆ξ, q) and gm(∆ξ, q) are the gravity forces on
the base and on the links, respectively. The vectorτ ∈ ℜn is
the joint torque produced by the motors. No external forces
are acting neither on the base nor on the links.

Note that the above equation of motion does not include
link or joint flexibilities. In fact, the experimental robotwe
intend to use, Justin, comprises joint flexibilities, as already
mentioned. It is possible, though, to treat this robot as a
rigid-joint system, under the two-time scale notation and the
singular perturbation approach [13].

For the multi-DOF case under consideration, we can
assume thatn ≫ k, which means there are abundant active
redundant DOFs. This redundancy can be used to minimize
the wrench imposed on the flexible base coordinates via the
upper body motion. Assuming a motionless base (νb = 0) at
static equilibrium (gb = −Kb∆ξ), from the upper part of
the last equation, we have:

q̈ = −H+
bmcb + (U − H+

bmHbm)ζ, (2)

whereH+
bm ∈ ℜn×k denotes the Moore-Penrose generalized

inverse of the inertia coupling matrix,U is the unit matrix
of proper dimension, andζ is an arbitrary vector having the
dimension of joint acceleration. This vector is projected via
U−H+

bmHbm onto the kernel of the inertia coupling matrix.
We refer to this kernel as the Reaction Null Space [9].

It should be apparent that the set of joint accelerations, ob-
tained from the above equation, do not contribute to dynamic
forces at the base. By inserting these joint accelerations into
the lower part of the equation of motion (1), we obtain the
respective set of joint torque:

τ = cm +gm−HmH+
bmcb +Hm(U −H+

bmHbm)ζ. (3)

Based on this general form of the dynamics, in the follow-
ing section it will be shown how to present the dynamical
model of a multi-limb robot system, in a form suitable for
reaction minimization.

III. M ODELING AND COMPENSATIONSCENARIOS FOR

THE TWO-ARM ROBOT SYSTEM

The model under consideration has a tree-like structure,
comprising three branches — the torso, the right and the left
arm. The end-link of the torso is connected to the flexible
base (see Fig. 2).
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Fig. 2. Model of a humanoid two-arm system on a flexible base.



The system equation of motion is written as follows:
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where subscriptsb, t, r and l stand for base, torso, right
arm and left arm, respectively. Notations for the vectors
and matrices have the same meaning as those in (1). The
double subscripts in the inertia matrix signify inertia coupling
properties, e.g.Hbr is the inertia coupling matrix between
base and right arm,Htl is that between torso and left arm,
and so on.

One can think of several strategies for compensation con-
trol, depending on the task. There is a class of applications
that would require just a single-arm motion. Then, one can
assign the desired motion for that arm (e.g. the right arm)
in the usual way, and use the other arm (the left arm) for
compensation, leaving the torso thereby ideally motionless.
Another possibility is to use the links of the torsoandthat of
the left arm for compensation. In other cases, it will be more
important to assign a desired motion to the torso, and use
both arms for compensation. Also, there is a dual-arm motion
scenario, when both arms hold an object and compensation is
done through arm redundancy (if available) [10], and through
the torso. In short, because of the abundant DOF’s, there are
many combinations, and the envisioned controller should be
flexible enough to cover all practically valuable scenarios.

Below we consider two representative cases whereby the
right arm is executing a specified task, while compensation
is done either by the left arm only, or by the left arm and the
torso. In either case, we will use the term “driven arm” for
the right arm and “compensating subsystem” for the rest.

Consider first the simplest case, when only the left arm is
compensating. Since the torso remains motionless, the rows
and columns containing subscriptt can be taken out of the
equation of motion (4):
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where subscriptc stands for “compensating.” Under the
assumption of reactionless motion and stationary base at
static equilibrium, the dynamic base constraint is obtained
from the first row of the above equation, as:

Hbrq̈r + Hbcq̈c + cb = 0. (6)

With the help of this constraint, we will eliminate the com-
pensating (left arm) joint acceleration̈qc from the equation

of motion. From the last equation, we have:

q̈c = −H+
bc(Hbrq̈r + cb) + (U − H+

bcHbc)ζc, (7)

where the first term on the r.h.s. denotes compensating accel-
eration (for the reaction from the right arm and for nonlinear
coupling), while the second term stands for acceleration from
the kernel of the inertia coupling matrix of the left arm. The
latter acceleration will not contribute to base disturbance.
Henceforth, we will make use just of the compensating
acceleration, assuming the arbitrary vectorζc = 0.

The joint acceleration from the last equation is substituted
into the second and third rows of the equation of motion (5).
Then, the joint torque of each arm becomes a function of the
joint acceleration of the driven arm (the right arm). Thus, the
right-arm joint torque is:

τ r = H̃rrq̈r + c̃r + gr, (8)

where H̃rr ≡ (Hrr − HrcH
+
bcHbr) and c̃r ≡ cr −

HrcH
+
bccb). The left arm (the compensating arm) joint

torque is:
τ c = H̃

T

rcq̈r + c̃c + gc, (9)

where H̃
T

rc ≡ (HT
rc − HccH

+
bcHbr) and c̃c ≡ cc −

HccH
+
bccb.

Next, consider the case when compensation is done also
with the torso, in addition to the left arm. Referring to (4),
we introduce the following notation:

Hcc ≡

[
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]
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[
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τ t
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]T
,
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[
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]

, Hrc ≡
[

Hrt Hrc

]

.

With this notation, we can represent the original equation of
motion (4) again in the reduced form (5).

IV. CONTROL LAW FORMULATION

We assume that the driven arm (right arm) tracks an arbi-
trary trajectory(qd

r , q̇
d
r , q̈

d
r), assigned in joint coordinates1.

During path tracking, a nonzero wrench will be then imposed
on the base from the right arm. In order to minimize the total
reaction at the base, this wrench will be compensated by a
wrench generated by the compensating subsystem.

This strategy will be realized with the help of a torque
controller, having the capability to deal with dynamic mo-
tions. We employ a model-based approach, whereby the
compensating wrench is generated via a desired torque
component. This component is obtained, in turn, from the
joint acceleration of the compensation subsystem, as given
in (7):

q̈d
c = −H+

bc(Hbrq̈
d
r + cb). (10)

In addition to the desired acceleration̈qd
c , we assign a

desired final state for the compensating subsystem, prefer-
ably the stationary one:̇qd

c = 0 and qd
c = const. One

1Superscript(◦)d denotes a desired value.



reasonable choice for the desired configurationqd
c is the

initial one. Hence, a regulator-type configuration controller
with feedforward component will be obtained. Other choices
for the behavior of the compensatory subsystem are also
possible, e.g. assigning a desired path for its CoM, such that
gravity based disturbance wrenches will be compensated, in
addition to the dynamic ones envisioned here.

Further on, we set the desired motion of the base to be
stationary, for achieving reactionless motion, i.e.ν̇d

b , νd
b and

∆ξd all are zeros.
A reasonable choice for a joint-space dynamic trajectory

tracking controller is the augmented PD controller [16].
The joint damping and stiffness torque components of this
controller can then be matched with those of the original
controller of Justin, used for adjusting the joint impedance.

The augmented PD controller is written as:

τ d = H(q)q̈d + c(q, q̇, q̇d) + g(q) − Kdė − Kpe, (11)
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the inertia matrixH contains3 × 3 submatrices, as those
shown in (5),Kp andKd denote positive definite feedback
gain matrices, the nonlinear termc(q, q̇, q̇d) is of the form
C(q, q̇)q̇d [16], and the errors areeb = ∆ξ, ei = qi −
qd

i , i ∈ {r, c}. The closed-loop equation is:

H(q)ë + C(q, q̇)ė + Kdė + Kpe = 0. (12)

It should be noted that, when a regulator-type configuration
controller for the compensating subsystem is employed, an
additional term should appear in the above equations, stem-
ming from the nonzero desired acceleration (10). This term
can be regarded as a disturbance, which will be compensated
by the feedback control torque, in addition to other sources
of disturbance, e.g. residual joint friction.

The linearizing control joint torque for the right arm is
obtained from (11) in the following form:

τ d
r = H̃rrq̈

d
r + c̃r +gr −∆dr(Kd, ė)−∆pr(Kp,e) (13)

and that for the compensating subsystem, as:

τ d
c = H̃

T

rcq̈
d
r + c̃c +gc −∆dc(Kd, ė)−∆pc(Kp,e). (14)

The∆ terms are linear in the errors, and can be computed in
a straightforward manner. Thẽ(◦) quantities have the same
meaning as in (8) and (9).

It is seen that the two control joint torques are linear
functions of the desired joint acceleration of the driven arm.
Comparing these control torques with the joint torques (8)
and (9), respectively, it becomes apparent that the feedback
error ∆ terms will induce some base disturbance. This
disturbance will be small, though, as long as the errors
remain small. This can be ensured by appropriate feedback
gain selection. As noted in [16], gain selection for the
augmented PD controller requires some care, especially in

the case of trajectory tracking, i.e. for the right arm in our
case. We will come back to this problem in the following
section, which discusses implementation issues. What should
be mentioned here is that, intuitively, the feedback gains
for the right arm should have higher values for achieving
best trajectory tracking performance, while that for the
compensating subsystem should have smaller values, to avoid
interference with the compensating, feedforward component,
as much as possible.

Another important point is related to the specific feed-
forward acceleration component of the compensating sub-
system, given in (10). Because of this component, the˜(◦)
quantities are all functions of the pseudoinverse of the inertia
coupling matrix Hbc. Hence, any rank-deficiency of this
matrix should avoided. In other words, well-conditioned
inertia coupling is a necessary condition for this controller
to work appropriately.

V. EXPERIMENTAL VERIFICATION WITH JUSTIN

The kinematic structure of Justin is the one shown in
Fig. 2. Justin has two seven-DOF arms, attached to a torso
with four joints. The torso has only three DOFs, though,
since the motion in the joint closest to the arms, is not inde-
pendent [11]. Justins’s body is mounted on a sophisticated
mobile base, with four wheels attached to extendable legs.
The legs are connected via four sliding joints, comprising
spring/dampers, to the base of the torso. Thus, the torso
base has three DOFs for motion in the plane, plus four
active DOFs for extending/retracting the legs, in parallelwith
four spring/dampers [12]. In our experiments, though, the
base is modeled just as a passive structure with two angular
deflections, denoted as “roll” and “pitch”, which contribute
to torso base rotation within the frontal and the sagittal plane,
respectively (cf. Fig. 2). Altogether, our model has 17 joint-
DOF and 2 flexible coordinates.

We have integrated the augmented PD motion controller
from the previous section into Justin’s control structure.
As already noted, Justin can be treated as a rigid-joint
manipulator under the singular perturbation assumption and
the fast inner-loop joint torque feedback controller [13].
Hence, the augmented PD controller (11) is applicable. The
PD feedback gains are set according to the requirements of
Justin’s original controller, such that the damping feedback
gain matrix Kd is configuration dependent, calculated via
the system inertia matrix [13], while the P feedback gain
matrix Kp is a constant diagonal matrix. All configuration-
dependent quantities in the control law (the inertia sub-
matrices and the gravity vectors) are calculated using the
measured values of the joint coordinates. The nonlinear terms
are represented as vectorsc(◦) and calculated via measured
joint angles and desired joint angular velocities, therefore.

We performed three sets of experiments, as follows:

1) compensating subsystem: left arm and torso, with
system P feedback gains as shown in Table I;

2) compensating subsystem: left arm only, with system P
feedback gains as shown in Table I;



Fig. 3. The initial configuration of Justin during the experiments.

TABLE I

CONSTANT P FEEDBACK GAINS [Nm/rad]×100

right arm torso left arm

7, 7, 5, 5, 2, 3, 3 15, 15, 15 0.3, 0.3, 0.3, 0.3, 0.12, 0.12, 0.12

3) same as 2) above, only the P feedback gains of the left
arm were decreased by a factor of 10.

Two experiments were performed for each set, to obtain
data for comparing results with and without compensation.
The initial configuration of Justin is symmetrical, with both
arms almost fully extended along the horizontal (cf. Fig. 3).
The desired motion is a rotation in the second joint of
the right arm (the driven arm), of 30 deg for about 0.55
s, with third-order spline interpolation. The peak speed
achieved thereby is 1.5 rad/s. The resulting, mainly vertical
acceleration of the arm CoM and the angular accelerations
of the links generate then a disturbance wrench with pre-
vailing torque component around base roll. This wrench
is evaluated with the force sensors of the base, integrated
into the spring/damper assemblies of the four wheel exten-
sion/retraction legs. The desired state of the compensating
subsystem equals the initial one.

In all three sets of experiments we obtained almost
identical results. Figure 4 shows data from the first set of
experiments, as a representative example. The desired joint
torque data plots of the right arm are displayed in Fig. 4a.
The largest contribution is that of joint 2, which is the driven
joint. The initial and final jumps due to the acceleration
feedforward component are clearly seen. After the jumps,
the curves are rounded, which is due to the contribution of
the relatively high-gain P feedback components. The desired
motion is tracked faithfully, as seen also from the joint error
norm plots in Fig. 4c.

Next, Fig. 4b shows the desired joint torque plots from the
left arm, which has dominant contribution for the compen-
satory motion. This is especially true for the motion in joint
2, which should be expected, since the initial configurationis
symmetric. The triangular shape of the feedforward compo-
nent, corresponding to the cubic interpolation, can be clearly
recognized. It looks undistorted, because of the relatively low
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Fig. 4. Compensation with left arm and torso (a), (b): desiredjoint torque;
(c), (d): joint error norm; (e): base roll disturbance torque; red (dashed) —
without compensation, blue (solid) — with compensation.

P feedback gains. It can be also seen that the rest of the joints
contribute to the feedforward compensating motion as well.
This is in contrast with the right arm motion, where the rest
of the joints contribute to feedback components only. From
the respective error plot — the solid blue graph in Fig. 4d
— it is seen that the arm configuration changes thereby only
slightly.

Figure 4e shows the plots of the disturbance moments
τb, measured at the flexible base. First, we focus on the
acceleration phase (the first 0.35 s). Without compensation
(red dashed graph), a large variation ofτb is observed, which
is due to the induced reaction. The variation is significantly
smaller, in the case when compensation is applied (the solid
blue graph). This is actually themain resultof this study.
Next, we consider the deceleration phase (between 0.35–
0.7 s). It is seen that the disturbance is not canceled that
efficiently, which can be attributed to the contribution of
the feedback components. Finally, focusing on the stabilizing
phase (after 0.7 s), it becomes apparent that the compensating
arm introduces some additional disturbance because of larger
settling time due to the low P gains.

With the help of Fig. 5, we can go into further detail
about the role of the P gains of the compensating subsystem.
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Fig. 5. Performance comparison with low/high P feedback gains. (a): base
roll disturbance torque; (b): desired joint torque for leftarm joint 2; red
(dashed) — low gain , blue (solid) — high gain.

The data shown compares the performance of left arm
compensation with high gains (experiment set 2)), with that
of low gain compensation (experiment set 3)). From the
base disturbance plots in Fig. 5a it is seen that high gain
response leads to a larger disturbance during the settling
phase, while that of low gain — to larger disturbance during
the deceleration phase. From the desired joint torque plots
for left arm joint 2 in Fig. 5b, it can be seen that the high
gain case leads to underdamped response while that of low
gain — to overdamped. This demonstrates that careful gain
selection plays a crucial role for best performance, indeed.

VI. CONCLUSIONS

We developed a model-based control method for dynamic
reaction minimization with a multi-DOF humanoid-type
robot mounted on a flexible base. Our approach designates
a particular subsystem of the robot, e.g. one of the arms,
as the driven subsystem, performing a given task in the
conventional way, while the rest of the links, constitutingthe
compensating subsystem, are minimizing the reaction via a
feedforward term. In the same time, a PD feedback regulator
ensures that the configuration of the compensating subsystem
changes only slightly, and returns to the initial state after task
completion.

The control law was implemented with the experimental
two-arm robot Justin, developed at DLR. Although there
are numerous past studies on reaction minimization control
for flexible base robots, and for other types of mobile base
robots as well, this is the first time reaction minimization
has been practically achieved with such a complex system,
and in addition to that, using a torque control interface.
Preliminary experiments have shown that the base reaction
wrench can be significantly reduced during the acceleration
phase of the motion. With this reaction minimization feature,
not only the orientation accuracy of the system is increased,
but the motion looks also more natural. Indeed, humans use
also similar counterbalancing techniques for fast motions.
These effects can be clearly observed, also in the video clip
accompanying this paper.

Improvements can be made in the following directions.
First, because of the model-based approach, parameter accu-
racy is quite important. In the experiments, the parameters
of Justin’s arms were fairly well known, for the base,
however, only approximate parameters were used. Also, the

experiments were conducted with hands and head attached,
but their configuration was not accounted for in the model.
Second, it was shown that the P feedback error terms
contributed some uncompensated reactions, especially during
the deceleration and the settling phase.

Further improvements should be possible by careful P
feedback gain selection for the compensating subsystem. In
addition, the error terms can be decomposed via the Reaction
Null Space to extract a reactionless component and a mini-
mum norm component, which will help to minimize further
the disturbance. Third, the contribution of other unmodeled
dynamic effects, mainly nonlinear and velocity-dependent,
has to be evaluated as well. Finally, the contribution of
residual joint friction, not fully compensated by the joint
torque controller, should be examined as well.
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