
New Inverse Kinematics Algorithms Combining Closed Form Solutions
With Nonlinear Optimization for Highly Redundant Robotic Systems

Rainer Konietschke and Gerd Hirzinger
Institute of Robotics and Mechatronics

German Aerospace Center (DLR)
82234 Wessling, Germany

rainer.konietschke@dlr.de

Abstract— This paper presents inverse position kinematics
algorithms with real time capability for Justin, a robotic system
with high redundancy and many degrees of freedom. The
combination of closed form solutions for parts of the kinematic
chain embedded in a nonlinear equation solver is shown to
be advantageous. The algorithms are evaluated with the DLR
service robot Justin both in simulation and reality. Calculation
times of 1 ms are achieved, including various optimization cri-
teria for redundancy resolution. In case only a single arm with
7 DoF is considered, fast calculation time of 250µs is reached.
With inclusion of an iterative step, reachability can be shown
in more than 99% of the calculations regardless of the initial
guess. The problem of weighting in multi-criteria optimization
problems remains, though in the chosen approach the tool tip
position is never compromised by other criteria due to the
partially closed form solution. The presented algorithm can be
applied to inverse position kinematics for all manipulators with
serial or tree structure and redundant joints in case closed form
solutions are available for parts of the kinematic chain.

I. INTRODUCTION

Inverse position kinematics for robotic systems with many
degrees of freedom (DoF) and high redundancy that provide
the joint angles to position one or more end effectors in free
space are still an open issue. Namely, computation time in
control applications is often too high to reach reasonable
rates, and convergence in case initial guesses are not avail-
able is often weak [3], [8], [9]. This paper presents a new
method that combines a nonlinear optimization algorithm
with closed form solutions for parts of the kinematic chain.
This way, the joints to reach given TCP positions and
orientations are solved exactly while additional criteria are
combined by weighting factors and optimized using the robot
redundancy. Test bed of the derived algorithms is the upper
body of the DLR Justin robot, an experimental system for
two-handed manipulation shown in Fig. 1 and Fig. 2.

The algorithms are compared with a standard method for
inverse position kinematics that uses a nonlinear optimization
algorithm and weighted optimization criteria. Comparison
criteria are the computation time, the inclusion of criteria
for redundancy resolution and the ability to provide valid
solutions in absence of initial guesses.

The paper is organized as follows: Sect. II presents the
developed methods, and performance experiments are shown
in Sect. III. Section IV concludes the paper and points out
further research directions.

Fig. 1. The table-mounted Justin. The joints q1..18 relevant to the described
inverse kinematics algorithm are shown.

Fig. 2. The mobile Justin is mounted to a mobile platform. The upper
body is kinematically similar to the table mounted Justin. In the Figure, the
base and tool tip frames of left and right arm are depicted.
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II. COMBINED CLOSED FORM SOLUTION WITH
NULLSPACE OPTIMIZATION

This Section describes the developed inverse kinematics
algorithm. The relevant kinematics of the Justin robot are
described, and the closed form solutions are explained in
detail. The general structure of the inverse kinematics al-
gorithm is then presented, and the considered optimization
criteria are depicted.

A. Relevant kinematics of the Justin experimental system

The experimental system Justin is shown in Fig. 1 (table-
mounted Justin) [1] and in Fig. 2 (mobile Justin). The upper
body consists of the torso with 3 DoF qTorso = q1...3, two
DLR light weight arms in right and left configuration with
7 DoF each (Joints qRightArm = q5...11 and qLeftArm =
q12...18), two DLR hands, and a 3D-Modeller as head. See
Fig. 1 for the joint notation and Fig. 2 for the tool center
points (TCP) relevant for the presented inverse kinematics
algorithm. The joint

q4 = g(q) (1)

is a passive joint, depending primarily on joints q2 and
q3, but also on the tendon tensions that vary with Justin’s
pose and thus with all joints. Goal of the inverse position
kinematics algorithm in scope of this paper is to find the
joint configuration

q =
[
qTorso, qRightArm, qLeftArm

]
∈ R17

with a given initial configuration qinit such that the left and
right TCPs are reached in the task space:

f(q) =
[
rT, lT

]
,

and the passive joint condition (1) is fulfilled. The task
nullspace is used for optimization of further criteria such as
the distance from joint limits, singularities, and collisions.
The taskspace is 12-dimensional (positions and orientations
of the two TCPs), and the joint space is 17-dimensional,
leaving thus 5 dimensions for the task nullspace.

B. Closed form solution for the Justin arms

For the Justin arms, three axes intersect both in the shoul-
der and in the wrist. With Pieper’s method [10] it is possible
to calculate six of the seven joint angles in closed form,
while the remaining joint is held fixed, denoted qfix hereafter.
Different algorithms si are possible according to which joint
i is held fix. If a joint is held fixed during calculation of the
closed form solution, additional algorithmic singularities are
encountered: using the formula of Cauchy-Binet, a singular
configuration of a 7-DoF robot occurs if∣∣∣JJT

∣∣∣ = 7∑
i=1

∣∣Ji
∣∣2 = 0,

with J the robot Jacobian and Ji the i-th minor of the
Jacobian, obtained by omitting column i of the matrix J.
Hence the singular configurations of a 7-DoF robot are

similar to the conjunction of all singular configurations
obtained with one of the joints i fixed. Therefore the number
of singular configurations is obviously lower for the 7-DoF
robot than for any of the 6-DoF robots corresponding to
the Jacobians Ji. Thus the closed form solution that is not
singular has to be chosen according to the initial joint angles
qinit. Furthermore, a solution does not exist for all values of
qfix. This is shown in Fig. 3 (top): for a complete nullspace
motion disregarding the joint limits, the joint qfix = q3

remains in the intervals

qfix ∈ [68.76◦, 111.24◦] ∪ [−111.24◦, −68.76◦] .

This is reflected in the closed form calculation for joint q2:

q2 = − s3s4d5 ±
√
k

z + c4d5 + d3
, (2)

with si = sin (qi), ci = cos (qi), di segment lengths, z the
z-direction of the right TCP rT in coordinates of the right
base brT, and

k = s2
4s

2
3d5

2 − z2 + 2 d5 c4d3 + d5
2c24 + d3

2. (3)

The term k is plotted in Fig. 3 (bottom) as a function of
q3 during a nullspace motion. Since from (2) the condition
k > 0 needs to be fulfilled, not all values for qfix are
possible. This is also shown in Fig. 3. Similar conditions exist
for all algorithms si. These conditions and the individual
singularities of each algorithm si lead to criteria for the
choice of the algorithm si such that (a) no algorithmic
singularities occur and (b) the joint angle qfix is within the
range of the nullspace.

The calculation speed for the closed form solution without
nullspace optimization is very fast with less than 80µs.
In the next Subsection, the complete inverse kinematics
algorithm is described. For the Justin system, the arm angles
qRightArm\qfix

and qLeftArm\qfix
are solved in closed

form.

C. Algorithm overview

The developed inverse kinematics algorithm is depicted
in Fig. 4. In the initialization step, the closed form solution
algorithms si are chosen according to the initial joint an-
gles qinit. This way, the parameters available for nullspace
optimization qopt are determined.1 For the Justin system,

qopt =
[
q1, q2, q3, qfixRight, qfixLeft

]
.

A Levenberg-Marquardt optimization [6] with included
closed form solutions is then performed: unless the termi-
nating condition is reached, the following loop is executed:

1) Update optimization parameters: The Levenberg-
Marquardt algorithm selects new values for the op-
timization parameters qopt.2

1The notation qopt is chosen since all optimization parameters are joint
angles.

2In the first step, qopt is extracted from qinit.
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Fig. 3. Joint angles qRightArm of the right Justin arm during a nullspace
motion with torso joints qTorso held constant as a function of q3, q3 > 0
shown at the top. Values for the term k are shown at the bottom. The root√

k needs to be calculated for the inverse kinematics algorithm s4 with
qfix = q4.

2) Update passive joints: All passive joints (in case of the
experimental system Justin, only q4 is a passive joint)
are updated according to the initial joints qinitand the
new optimization parameters qopt.

3) Update forward kinematics: Starting from the robot
base, the kinematic chain is updated using the forward
kinematics. This way, the bases brT and blT are
determined

4) Update closed form solutions: The closed form so-
lutions are calculated. This way all sought joint are
found.

5) Update variable joint limits: In case of the Justin
systems, the joint limits of q2 are a function of q1

and need to be updated in every step.
6) Evaluate optimization criteria: The optimization crit-

era are evaluated, and the Levenberg-Marquardt algo-
rithm continues with step 1 in the next iteration step.

The optimization is stopped if either all criteria are min-
imized to zero, or the maximum number of iterations is
reached, or the decrease in the values of the optimization
criteria functions is below a certain threshold from one
step to another. The next Subsection describes the included
optimization criteria.

D. Optimization criteria

The following optimization criteria are considered:

• c1 Preference position of the arms’ elbows: the distance
between each elbow and a fixed point in space is
minimized.

Fig. 4. Inverse kinematics algorithm for combined closed form solution
with nullspace optimization.

• c2 Variable joint limits (position dependant): the joint
limits are updated in every cycle. In case a minimum
distance of 15

◦
from the joint limits is reached, a

penalty function is assigned.
• c3 Low joint speeds: The joint speeds are minimized.
• c4 Low joint speeds, scaled with TCP motion: the joint

speeds are variably minimized. If the TCP is moving
fast, also fast Nullspace motions are allowed, whereas
the robot does not move in Nullspace if it does not move
in Cartesian space.

• c5 Singularity avoidance: All arm singularities can be
calculated in closed form according to [5]. Similar to the
joint limits, a penalty function is assigned if a minimum
distance of 15

◦
from the singularities is reached.

III. EXPERIMENT

The inverse kinematics algorithms are currently tested for
the Justin system. First results are shown in the following.
The Levenberg-Marquardt algorithm of [7] is chosen for the
implementation. The next Subsection presents experiments
on reachability and calculation times, then realtime experi-
ments are depicted.

A. Reachability and Calculation time

Reachibility is an important issue e.g. if a goal joint
configuration qd for path planning needs to be generated
from a given goal in task space. In this case, the initial
joint angles correspond to a configuration that is usually far
away from the goal configuration, thus a good initial guess
for the inverse kinematics algorithm is not available. Many
algorithms do not converge in this case and hence fail. Goal
of this work is to propose an algorithm that practically always
finds a solution.

Figure 5 and Fig. 6 show the performance of an imple-
mentation of the Closed solution subchains algorithm as
described in Section II with varying maximum number of
iterations n. As optimization criteria, c1, c2, c4 and c5 are
considered. Analytic derivatives can not be calculated in this
case, since calculation of the nullspace projection is too
time consuming and would be necessary due to the closed
form solutions. To calculate the error rate and the calculation
speed, a set of 5000 reachable tool tip frames was generated



and the solution of the inverse kinematics was calculated. To
evaluate the influence of the deviation of the initial solution
from the sought solution, the feasible angles deviation ε
of the initial angles qinit is plotted on the horizontal axis,
defined as follows:

qinit = qvalid + rand · ε, (4)

with qvalid a joint angles vector leading to the sought
tool tip frame, and rand ∈ [−1, ..., 1] a random number.
An error is stated if either the calculated joint angles do not
correspond to the sought TCPs or if joint limits are violated.
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Fig. 5. Influence of the feasible angles deviation and the maximum number
of iterations on the error rate for the closed form subchains algorithm.

From Fig. 5, it can be seen that the error rate is decreasing
with increasing maximum number of iterations n, however
a value below 30% can not be reached even with very high
values for n. For feasible angles deviations below 10◦, a
maximum number of iterations of n = 10 is sufficient. The
calculation time as shown in Fig. 6 is basically proportional
to n.
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closed form subchains

Fig. 6. Calculation time for the closed form subchains algorithm.

In order to achieve better reachability, the Closed form
subchains iterative algorithm is implemented, similar to the
Closed solution subchains algorithm, but with n = 150
and additional 100 iterations over the initial values for the
optimization parameters.

Furthermore, for comparison purpose, a Nonlinear opti-
mization algorithm is considered that implements a pure non-
linear optimization using Levenberg-Marquardt. For this al-
gorithm, the joints q = [qTorso q4, qRightArm qLeftArm] ∈
R18 are subject to optimization, while the passive joint condi-
tion 1 is included as optimization criteria. Also the condition
to reach the TCPs is formulated as an optimization criterion,
and thus it will be influenced by the other optimization
criteria3. Furthermore, criteria c2, c3, and c5 are considered.
Analytic derivatives are given for the optimization criteria to
speed up the Levenberg-Marquardt optimization.

Other standard algorithms for inverse kinematics calcula-
tion based e.g. on the Jacobian inverse were shown to have
low performance with respect to reachability [4].

Results of the algorithm performance are given in Fig. 7
and Fig. 8. The Nonlinear optimization algorithm has a
higher error rate than the Closed form subchains algorithm,
while its calculation time is faster. The Closed form sub-
chains iterative algorithm has a very low error rate regardless
of the feasible angles deviation and thus achieves the goal of
independance for initial joint angles. However the calculation
time is very high as can be seen in Fig. 8.
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Fig. 7. Error rates as a function of the feasible angles deviation .

With variation of n, the calculation time and error rate of
the closed form subchains iterative algorithm can be tuned.
As shown in Fig. 9 and Fig. 10, reasonable values for path
planning and reachability checks are n ∈ [60, ..., 150].

3Note that this algorithm requires that all optimization criteria may be
minimized to zero, otherwise the TCP position is never reached exactly
by the algorithm. This is a drawback of the used optimization method.
However it is considerably faster than other standard methods like e.g.
SQP methods [11] which would allow for constrained optimization and
was therefore chosen in this paper.
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Fig. 8. Calculation time for different inverse kinematics algorithms.
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Fig. 9. Influence of the maximum number of iterations on the error rate
for the closed form subchains iterative algorithm.
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Fig. 10. Calculation time for the closed form subchains iterative algorithm
with variation of the maximum number of iterations.

B. Real time performance

Real time performance is shown in the attached video.
The inverse kinematics algorithm is implemented in C++
and uses an s-function as interface to simulink. It runs in
a multirate model with a sampling rate of 100 Hz, while the
whole model runs at 1 kHz. In the video, the mobile Justin
is shown. The task is to hold a tray in a fixed position while
the platform is moving along a circle.

IV. CONCLUSION

This paper presents two new inverse kinematics algorithms
that combine closed form solutions with nonlinear optimiza-
tion for highly redundant robotic systems. The right choice
of the closed form solution such that algorithmic singular-
ities are avoided is detailed, and the complete algorithm is
depicted. From this, two new algorithms are presented in the
experiment: the closed form subchains algorithm is suitable
for realtime use with calculation times of 1 ms, while the
closed form subchains iterative algorithm achieves a very
high reachability above 99% throughout the workspace with
calculation times of 1 s. Realtime capabilities are presented
for the closed form subchains algorithm as it is applied to
the mobile Justin shown in the attached video.

The presented methods are also valid for other serial
kinematic chains. Note however that in each branch of a
kinematic tree structure only one closed form solution may
be present. The algorithms will be also tested with DLR’s
minimally invasive robotic surgery system [2]: here, three
robots with altogether 25 active joints are considered. Two
robots are manipulating forceps, while the third robot guides
an endoscope. Currently the inverse kinematics are solved
for each robot independantly. A common inverse kinematics
to all robots could allow for better performance of global
optimization criteria such as collision avoidance between the
robots.
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