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Abstract. An ongoing numerical investigation of unsteady shock/boundary layer in-
teraction on a 2-d supercritical airfoil in transonic flow is presented. Initially, the finite-
volume URANS solver DLR-TAU is used to simulate self-sustained periodic shock oscilla-
tions well known as shock buffet. Next, emphasis is put on the fixed-point stability of the
steady flow field below the shock buffet onset. Therefore the flow is perturbed in time with
small sinusoidal deflections of the airfoil geometry and random impulses. With increasing
angle of attack the mean flow is shown to develop a damped aerodynamic resonance,
that degenerates finally towards self-amplification. The occurrence of the aerodynamic
resonance is closely related to the development of shock-induced separation, accompanied
by quasi-steady inverse shock motion.

1 INTRODUCTION

Beyond critical onflow conditions (in terms of Mach number Ma and angle of attack α)
the transonic flow field around a fixed airfoil is known to exhibit self-sustained, large-
scale shock oscillations with low frequency (typical Strouhal numbers Sr ≈ 0.1). This
phenomenon – well known as shock buffet – originates from the mutual interaction of
the recompression shock and the boundary layer [1]. The thus induced unsteady airloads
can exceed the critical limits of an aircraft’s structure or become otherwise aeroelastically
relevant when coupling with the structural eigenbehavior [2].

Shock buffet has been investigated experimentally for years in numerous works (e.g. [3,4]).
Recent numerical studies [2,5,6] demonstrated meanwhile the ability of URANS- and DES-
based CFD methods to capture the shock buffet phenomenon qualitatively. Nevertheless,
the accurate prediction of the shock buffet onset, frequency and amplitude (in ascending
order of complexity) remains an open challenge. This seems partly due to the limited
understanding of the underlying flow physics. Although several explanations for the shock
oscillations were suggested in the past (e.g. [7, 8]), the actual shock buffet mechanism is
still subject of discussion. Goal of the presented study is an improved understanding of
the shock buffet instability, potentially leading to a more robust CFD-based modeling of
the phenomenon.

An initial matter of interest is the fixed-point stability of the steady transonic flow field
below the shock buffet onset, i.e. the question: How is the stable, steady flow reacting
to small perturbations? In the abscence of a ready-made analytical method we choose
a straightforward heuristic approach to answer the latter. Therefore we simulate the
excitation of the stable, initially steady flow either by a continuing sinusoidal deflection of
the airfoil geometry or by a random impulse. A time series analysis of the field response
should provide some insight afterwards.
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Figure 1: Detail of the unstructured grid around the supercritical airfoil BAC 3-11/RES/30/21.

2 CFD METHOD

We simulate the compressible flow around the supercritical profile BAC 3-11/RES/30/21
at Ma = 0.75 and Reynolds number Re = 4.5 × 106. DLR’s finite-volume based URANS
solver TAU [9,10] is used on an unstructred grid with quadrilateral cells in the expected
boundary layer region and triangles in the outer field. The farfield boundary is located
100 chord lengths away from the profile. For the discretization of the inviscid fluxes
a central scheme with artificial scalar dissipation is applied. Since we are interested
in the time-accurate dynamics of the flow, dual time stepping is used, where second-
order backward differencing yields an implicit temporal discretization. The time step
size is chosen case dependent between 10 and 100 steps per travelled chord length to
ensure that the frequencies of interest are resolved with around 500 steps per period.
Unless mentioned otherwise, turbulence closure is obtained by the 2-equation LEA k–
ω model [11], which has already proven its suitability for unsteady transonic separated
flows [6,12]. The widespread 1-equation model of Spalart and Allmaras [13] is occasionally
used for comparison. The flow is assumed to be fully turbulent for the sake of simplicity.

3 PROCEDURES AND RESULTS

3.1 Steady behavior and shock buffet onset

For a start we compare the computed steady pressure distribution at α = 0◦ with exper-
imental data from the cryogenic Ludwieg tube at Göttingen [14], referred to in [15]. The
agreement shown in Fig. 2 is satisfactory, although the numerically predicted shock has
not yet arisen to full extent in the experiment. This discrepancy is suspected to originate
from wind tunnel sidewall effects not included here.

To identify the shock buffet onset for the given Mach number – i.e. the critical incidence
α, where large-scale shock oscillations set in – the angle of attack is gradually changed in
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Figure 2: Comparison with experimental steady flow at α = 0◦.
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Figure 3: Instantaneous lift cl during sweep runs.

time from 0◦ to 6◦ and vice versa. This linear sweep is conducted in a quasi-steady way
with an angular velocity of ±0.002◦ per travelled chord length.

As seen in Fig. 3, self-excited shock buffet oscillations set in catastrophically at α = 5.5◦.
A limit cycle oscillation (LCO) is established with a reduced frequency1 of ω∗ ≈ 0.62 and
a lift amplitude of ca. 20% of the mean lift. While the flow on the lower side remains
subsonic and is excited passively from the trailing edge, the strong shock on the upper
side oscillates self-excited with an amplitude of 23% chord by now (see Fig. 4). The
boundary layer downstream of the shock separates and reattaches completely during one
shock buffet cycle. The LCO amplitude grows, as α is increased further.

When reducing α back to 0◦ the self-excited shock oscillations persist beyond the critial
α from the sweep up. Since Fig. 3 shows transient contamination (as α is not changing
infinitely slow), it can only serve as an estimate to the actual LCO-amplitude-over-α

1The reduced frequency is defined in this paper with respect to farfield velocity and full chord as
ω∗ = ω · c/V∞.
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Figure 4: Ensemble of instantaneous surface pressure and skin friction distributions during one shock
buffet cycle at α ≈ 5.7◦. Blue and red curves show two instant states of minimal and maximal
separation.
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Figure 5: Location of shock foot, separation and reattachment points on the upper side during sweep up.

relation. Not shown here, unsteady computations at constant α values reveal, that a
stable LCO can be observed only down to 4.5◦, i.e. the oscillations shown in Fig. 3
between 4.5◦ and 4◦ are not self-sustained but damped oscillations. Nevertheless, we
observe a hysteresis in the range 4.5◦ < α < 5.5◦, which is due to the apparent coexistence
of a stable shock buffet LCO alongside a stable steady flow solution (terminated by a
subcritical Hopf bifurcation). Hence, the onset question cannot be answered uniquely.
Straightforwardly, we define the least α, whereat shock buffet is found as the shock buffet
onset. It is not yet clear, how a perturbation needs to be conditioned, to provoke a
potential snap-through from the steady solution to the LCO solution.

During post-processing of the sweep response surface data we take a closer look at the
instant shock foot location and possible separation and reattachment points. This is
achieved by cubic spline interpolation of the surface pressure along the grid points. For
identification of the shock foot position two possible criteria are tested: The shock foot is
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assumed to be located, where either

1. the surface pressure intersects with the critical pressure cp,crit from isentropic flow
relations (as plotted in Fig. 2) or

2. the surface pressure gradient ∂cp/∂x exhibits a maximum2.

Separation and reattachment points are identified in a similar way based on the roots of the
splined skin friction distribution. The splining procedure allows virtually the resolution
of shock foot and separation point displacements below the chordwise grid spacing. This
will become exceedingly important in the next section, where perturbation magnitudes
are kept as small as possible to avoid nonlinear effects.

Fig. 5 shows the location of those characteristic flow features on the upper side during
the α increase, while the steady solution is still stable. Starting from α = 0◦ the shock
moves at first downstream with increasing α, but changes direction between 1◦ and 2◦

(inverse shock motion). The upstream movement of the shock is an indicator for the
increasing displacement thickness of the weakened boundary layer and is followed by the
development of a separation bubble under the shock foot above 2◦. At 3.3◦ trailing edge
separation sets in. Note, that backflow topology changes rapidly over a small α interval as
the two separated regions merge. Above 3.8◦, we observe full shock stall. Recall, that the
smallest α, where shock buffet occurs, is found at 4.5◦, i.e. fully separated flow alone is not
a sufficient condition for shock buffet. Secondary, it can be seen, that the cp,crit-criterion
for the shock location diverges considerably from the maximum-gradient-criterion and
the separation point as shock-/boundary layer interaction grows in strength. Hence, the
latter is favored as an estimate for the actual shock position in the following.

3.2 Frequency response

In advance of the presented study it was assumed, that shock buffet is related mainly
to the interplay between shock motion and the boundary layer displacement downstream
of the shock. Especially, the question was raised: How is the shock reacting to small
changes of the flow near the trailing edge? A mechanism, which resembles the boundary
layer displacement during a shock buffet cycle is an oscillating trailing edge flap.

As the shock buffet onset is identified by now, we select four fixed-point stable flow
fields at α = 0◦, 2◦, 3◦, 4◦ whose characteristic steady or quasi-steady behaviors differ
notably from each other (recall Fig. 5). These are perturbed by small deflections of
a seamless 25% chord trailing edge flap. To study the sensitivity of the flow to the
perturbation wave number we decide for harmonic excitation over a broad frequency
range of 0.01 ≤ ω∗ ≤ 1. The flap amplitude is chosen ∆β = 0.01◦. Since we change the
airfoil geometry dynamically, the has to be deformed in every time step.

The imposed small deflection amplitudes cause the inherently highly nonlinear transonic
flow field to behave virtually as a linear, time-invariant system. This assumption is
confirmed by the observation, that following a considerable transient period after the
start of an unsteady simulation all flow field variables (even in the shock region and the

2It has to be noted, that the pressure gradient maximum on the surface is always attached to the
point where the oblique leg – not the normal leg — of a possible lambda shock structure impinges the
surface.
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Figure 6: Frequency response of lift due to flap deflection ∂cl/∂β at four different incidences.

shock displacement itself) respond almost exclusively with the excitation frequency, i.e.
higher harmonics are 2-3 orders smaller than the fundamental.

Fig. 6 shows the frequency response of the complex lift derivative ∂cl/∂β by means of
magnitude and phase angle. Comparing the four magnitude curves, the striking difference
is the complete loss of monotonicity along with the development of a pronounced resonance
peak as α is increased. The resonance maximum is clearly visible for both flow fields, that
feature shock-induced separation. Additionally, the 2◦ magnitude response has already
a weak tendency towards a local maximum and one can foresee the smooth transition
from the 2◦ curve to the 3◦ curve. Nevertheless, only those flow fields with separation
produce an entirely unusual lift phase response: Instead of a phase lag, a phase lead can
be observed starting from ω = 0. This effect might serve as an indicator for the existence
of shock-induced separation, if only a lift signal from a balance is available during a wind
tunnel test. Passing through the resonance, phase experiences a sudden reversal, whose
steepness increases along with the height of the amplitude peak. Above the phase reversal,
phase drops way below the level of the fully attached flow field. Note, that not only the
height of the resonance peak and the phase slope change, but also the resonance frequency
itself increases slightly: At 3◦ the resonance is centered at ω∗ ≈ 0.53, while at 4◦ it has
changed to ω∗ ≈ 0.59. It can most probably be concluded, that this resonance frequency
is the very frequency of the subsequent shock buffet LCO, when α is increased further
and the resonance peak is expected to approach infinity.

As the observed behaviour is very similar to a simple harmonic oscillator with one degree of
freedom, we interpret the height and frequency of the resonance peak as the footprint of a
conjugate complex pair of eigenvalues of an essentially linear system with the parameter
α. Hence, the question for the buffet onset is most likely to be reducible to a linear
stability problem, in which the critical α is found, where a complex eigenvalue crosses the
imaginary axis. Recently published work from Crouch et al. [16] seems to strengthen this
idea.

Since such an eigenvalue is expected to be an inherent property of the flow field alone,
it should be independent of the way of excitation. To confirm the latter, we investigate
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Figure 7: Frequency response of the lift derivative for different excitation kinematics at α = 4◦.

another two sinusoidal excitation kinematics besides the flap excitation, namely, pitching
the whole profile around quarter-chord point with ∆α = 0.01◦ and translating the whole
profile parallel to the onflow velocity vector3 with ∆ξ = 10−4c. Fig. 7 shows the resulting
lift derivatives compared to those obtained by flap excitation. The resonance frequencies
coincide for all of the three kinematics. Not surprisingly, pitching the whole profile has an
impact on lift roughly three and a half times larger than just deflecting a flap, although
in the steady limit ω∗ → 0 increasing camber by flap deflection has a slightly stronger
effect on lift than increasing global incidence. For the pitch excitation response we denote
a resonant amplification of the unsteady airloads by a factor of ca. 40 compared to the
quasi-steady lift slope at α = 4◦. For reference, Fig. 7 includes the frequency response
for a flat plate pitching around quarter-chord in incompressible flow computed on the
basis of classical Theodorsen theory (scaled by 1/

√
1 − Ma2). The lift derivative due

to translation drops to zero in the steady limit ω∗ → 0, since the translational velocity
ξ̇ vanishes. Nevertheless, its phase approaches +90◦, which indicates that in the steady
case ∂cl/∂ξ̇ > 0 or ∂cl/∂Ma < 0 respectively.

An interesting aspect of the shock buffet resonance emerges, when we compare the complex
surface pressure distributions at α = 4◦ obtained from the three different excitation
kinematics outside and exactly inside the resonance. Fig. 8 shows the phase response
of the surface pressure derivatives due to the three different excitations. Far below the
resonance at ω∗ = 0.2 they differ considerably, as expected. In the resonance ω∗ = 0.59
they become almost congruent. The same holds of course for the magnitude not plotted
here. Obviously, all of the three kinematics do now optimally excite the shock buffet mode,
which in return dominates the overall flow field dynamics. As is known from modal testing
in structural dynamics, each of the three responses in the resonance can be interpreted
as a good approximation for the aerodynamic eigenvector (or “mode shape”).

To stress the strangeness of the separated flow field at α = 4◦ a little more from an
aeroelastic point of view, we take a closer look at certain integrals of the unsteady airloads
in the sense of generalized aerodynamic forces, i.e.

3The translatory degree of freedom ξ is defined here positive downstream.
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1. the flap hinge moment cm,flap due to the flap excitation
2. the moment at quarter-chord point cm,0.25 due to the pitch excitation and
3. the drag cd due to the translatory excitation.

Fig. 9 shows magnitude and phase of these derivatives. Note, that when the phase of
the generalized aerodynamic force becomes positive, in principle one-degree-of-freedom
flutter is possible (marked as “unstable”). This effect is striking for the oscillatory flap
motion, which is almost undamped for a broad frequency range starting from ω∗ → 0
and for ω∗ & 0.43 finally gets amplified aerodynamically by enormous airloads due to
the shock buffet resonance. The latter is supposed to play an essential role in the feared
“aileron buzz” phenomenon. Pure pitch motion is getting aerodynamically unstable as
well for ω∗ & 0.63. The translatory motion investigated here, is always stable.

To gain more insight into the observed resonance behavior, we analyze the frequency
response of shock foot and separation point displacement, applying the splining method
described in the previous section. Once more we select the α = 4◦ flow field and compare
different excitations. Fig. 10 shows the results. Expectedly, the shock displacement
amplitude exhibits a maximum in the shock buffet resonance as well. This time magnitude
is not plotted as a derivative but as an absolute value in chord lengths, i.e. for the pitch
excitation with ∆α = 0.01◦ the shock foot oscillates on the surface around its mean value
with a maximum amplitude of 0.4% chord and with 0.1% chord for the ∆β = 0.01◦ flap
excitation. Except small deviations the separation point stays globally in phase with the
shock. The phase graphs for both the flap and pitch excitation start with a phase lead
of +180◦, which indicates, that in the quasi-steady limit inverse shock motion occurs (cf.
Fig. 5). The phase of the shock motion due to translation is supposed to meet ω∗ = 0 at
+90◦, as the shock is expected to move downstream when the onflow velocity is reduced.
Nevertheless, the results in this region seem a little dubious, particularly with regard to
the diverging separation point phase response. This might be due to an artefact, since
during the numerical experiments the translatatory displacement amplitude ∆ξ was kept
fixed instead of ∆ξ̇, i.e. for ω∗ → 0 all unsteady signals vanish or might have become
spoiled numerically.
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Figure 11: Frequency response of lift and moment derivatives obtained experimentally by Davis and
Malcolm for a pitching NACA64A010; taken from [17]. (ω∗ = 2k)

In the vicinity of the resonance all of the three shock phase responses look congruent, i.e.
a phase reversal of −180◦ occurs with a characteristic slope. This refers once more to
the independence of the shock buffet mode from the way of excitation. The origin of the
additional −90◦ offset in the flap and translatory excitation shock phase introduced below
the resonance is not yet understood. Note, that the flap excites the flow only downstream
of the shock, while the pitching and the translation excite both upstream and downstream
of the shock. No explanation can be offered for the pitch shock phase behavior above
ω∗ > 0.8, whose evolution might indicate the dominance of higher aerodynamic modes in
that regime.

Emphasizing on the pitch phase response in Fig. 10, a fundamental relation can be drawn:
The shock buffet eigenfrequency is located, where the shock motion of a harmonically
pitching profile changes from inverse to regular shock motion. Hence, the question “Why
is the shock naturally oscillating with a distinct frequency?” is augmented by another
question: “Why is the shock phase reversal occuring at a distinct frequency?”.

Searching through literature for experimental evidence for the undercritical resonance
behavior observed in the presented CFD simulations lead finally to success in the early
1980s. Davis and Malcolm [17] noticed an unnatural (i.e. inverse) shock wave movement
during shock stall on a pitching NACA64A010 at Ma = 0.8 and that beyond a certain
frequency (ω∗ ≈ 0.3) the real part of cp on the upper side suddenly changes shape and
resembles inviscid flow again. No adequate numerical method was available during that
time to reproduce the experimental data. The most prominent result of their work is
shown in Fig. 11. Note the resonance peak in both lift and moment derivative and
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especially the phase lead of lift with respect to pitch angle below the resonance (recall
Fig. 6). The positive phase of ∂cm,0.25/∂α (recall Fig. 9) leading to a possible one-degree-
of-freedom instability was measured in the experiment as well. Houwink [18] found the
same resonance behavior in forced motion experiments at Ma = 0.75 on a NLR7301
equipped with an oscillating trailing edge flap. The resonance frequency was measured
at ω∗ ≈ 0.45. Later indications for the shock buffet resonance can be found in [19, 20].
None of these works draws explicitely the connection from the subcritical aerodynamic
resonance to self-amplified shock buffet.

3.3 Impulse response

In the preceding section it was suggested to approach the shock buffet problem in a
linearized manner, i.e. we have to understand the correlation between the steady flow
field and the real and imaginary part of the complex eigenvalue, that is dominating the
field’s global stability and unsteady behavior. Since Mach number is fixed at Ma = 0.75
throughout this study, the primary flow field parameter is the angle of attack α. A plain
way to investigate the relation between α and the shock buffet eigenvalue is analyzing the
impulse response of the flow field in time. Hence, we perturb various stable flow fields
below the shock buffet onset with an impulse, whereas the numerical residual of a not so
well converged steady solution serves as a random perturbation on the initial conditions
of the unsteady computation. Afterwards, the transient lift response back to steady state
is inspected regarding a possible oscillatory nature. If that is the case, a simple model of
the form

cl(t) = p(t) + c̃le
λt

is fitted window-averaged to the lift response (cf. Fig. 12). Therein the imaginary and real
part of λ = δ + iω∗ contain a frequency information and an amplification rate, while the
polynomial p(t) captures the mean lift offset and low-frequency drifts possibly originating
from unsuppressed farfield reflections. To avoid nonlinear amplitude effects only those
parts of the lift response are considered, whose oscillation amplitudes fall below 0.1% of
the mean value.
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Fig. 13 shows the impulse response results for various angles of attack in the range
3◦ ≤ α ≤ 4.3◦. Below 3◦ oscillations can be hardly noticed in the lift response and the
identification of reasonable frequency and amplification values by time series curve fit-
ting becomes increasingly difficult. As expected from the LCO and frequency response
simulations in the preceding sections, frequency and amplification globally rise as α is
increased. The frequency values at 3◦ and 4◦ are consistent with the peak locations in
Fig. 6, while the ratio of the identified amplification rates reproduces the inverse ratio
of the peak heights. Surprising is the broad local scattering of the identified shock buffet
eigenvalue as α is changed by small amounts. Note the dramatic change of circa 10% in
eigenfrequency as α is changed from 3.86◦ to 3.87◦. In the light of such a local hypersen-
sitivity to α the pitch excitation amplitude of ∆α = 0.01◦ in the previous section might
be questioned. The nonmonotonic evolution of the amplification rates has a remarkable
consequence: Although not occuring here explicitely, in the vicinity of the stability bound-
ary δ = 0 amplification might become locally positive in a small α range – a tendency
observed at 4.13◦, where amplification suddenly jumps to −0.2% and later drops back to
−1.8%.

Since special care is taken on accuracy and reproducibility of the eigenvalue identification
from the lift signal, it can be excluded, that the observed eigenvalue scattering is an arte-
fact of the curve fitting procedure or can be attributed to the randomized initial values.
Recall from Fig. 5, that between α = 3◦ and 4◦ the shock-induced separation bubble
merges with the trailing edge separation and thus the backflow topology and backflow
dynamics is expected to change significantly over a small α interval. Nevertheless, model-
inherent numerical uncertainties due to grid deficiencies or turbulence model issues are
supposed to be the primary reason for the unexpected eigenvalue scattering. The sensi-
tivity of the shock buffet eigenvalue to turbulence modeling is demonstrated exemplarily
at α = 4◦, where the turbulence model is switched from LEA to Spalart-Allmaras for one
simulation. Since the computed amplification values differ here by a factor of 3, a serious
impact of turbulence modeling on the shock buffet onset estimation can be expected. This
is already a consequence of the disparity of the mean flow fields (shock location, boundary
layer structure, backflow topology etc.) predicted by different turbulence models.
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From the results of the α-sweep simulation in section 3.1 a stable fixed-point solution (i.e.
δ < 0) up to α = 5.5◦ is expected. In contrast, the observed global damping trend in Fig.
13 seems to point to a stability limit near α ≈ 4.5◦, which interestingly lies in the region
of the least stable shock buffet LCO. An explanation for this apparent inconsistency can
not yet be given.

4 CONCLUSIONS AND FURTHER WORK

After having identified the shock buffet onset of a supercritical airfoil at Ma = 0.75 by
nonlinear time-accurate URANS simulations, various fixed-point stable flow fields below
the shock buffet onset were excited by small perturbations within the same nonlinear
solver. The small scale of the pertubation magnitudes caused the flow field to behave
virtually like a linear system. Based on the frequency and impulse response of the flow to
these small pertubations it was demonstrated, that the shock buffet phenomenon can be
attributed to a natural resonance frequency of the steady transonic flow field in a linear
sense.

The shock buffet resonance manifests itself in a −180◦ phase reversal of the shock motion
when the flow field is excited harmonically: Driving an airfoil in sinusoidal pitch motion
yields inverse shock motion below the resonance frequency and regular shock motion
above. A necessary condition for the low-frequency inverse shock motion, and thus for
the shock buffet resonance, is shock-induced separation.

The flow field oscillates with the same frequency (and damping) for arbitrary small ampli-
tudes. Hence, its oscillatory nature is seen to be an inherent property of the stable mean
flow field around which the oscillation occurs. Nevertheless, the exact reason for the os-
cillatory disposition of the transonic flow field with separation remains to be explained,
i.e. the feedback or “standing wave” mechanism in the shock buffet eigenmode is not yet
understood. A consistent description of the feedback mechanism should not rely on the
large scale effects observed after the degeneration of the damped linear resonance towards
a nonlinear LCO, like cyclic vanishing and recurring of the shock or cyclic separation and
reattachment of the boundary layer. An upcoming detailed study of the boundary layer
dynamics, particularly of local integrated quantities like displacement and momentum
thickness, is supposed to shed some light on this problem.

Since we expect the shock buffet onset problem to be treatable as a linearized stability
problem, it would be of high interest to investigate the exact eigenvalues and eigenmodes
of the flux Jacobian of recent linearized RANS solvers (e.g. [21]) in that context. Alter-
natively, a modal decomposition could be obtained by a principal component analysis in
the time or frequency domain [22].
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Forschungsheft 580, VDI.

[8] Lee, B. H. K., Murty, H., and Jiang, H. (1994). Role of Kutta waves on oscillatory
shock motion on an airfoil. AIAA journal, 32(4), 789–796.

[9] Gerhold, T., Friedrich, O., Evans, J., et al. (1997). Calculation of Complex Three-
Dimensional Configurations Employing the DLR-TAU-Code. AIAA-Paper 97-0167.

[10] Schwamborn, D., Gerhold, T., and Heinrich, R. (2006). The DLR TAU-Code: Recent
Applications in Research and Industry. In Proc. of Europ. Conf. on Computational
Fluid Dynamics ECCOMAS CFD.
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