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Abstract 
Within the next few years, numerical shape optimization based on high fidelity methods is likely to play a strategic role 
in future aircraft design. In this context, suitable tools have to be developed for solving aerodynamic shape optimization 
problems, and the adjoint approach - which allows fast and accurate evaluations of the gradients with respect to the 
design parameters - is seen as a promising strategy. After describing the theory of the viscous discrete adjoint method 
and its implementation within the unstructured RANS solver TAU, this paper describes application for aerodynamic 
shape optimization. First wing and fuselage designs of the DLR-F6 wing-body aircraft are presented. A step forward in 
complexity is considered by applying the adjoint for flap and slat optimal settings of the DLR-F11 model, a wing-body 
aircraft in high-lift configuration. On all cases presented, optimization were successfully performed within a limited 
number of flows evaluations. 

1 Introduction 
Numerical shape optimization is playing an increasing strategic role in aerodynamic aircraft design. It offers the 
possibility of designing or improving aircraft components with respect to a given objective, subject to geometrical and 
physical constraints. However Computational Fluid Dynamics (CFD) still suffers from high computational effort for 
flow simulations around realistic 3d configurations which limits its use in design process. Consequently, worldwide a 
large effort is being devoted to developing efficient optimization strategies for industrial aerodynamic aircraft design. 
 
At the DLR, activities focus on developing several key technologies relating to the establishment of an efficient and 
flexible numerical optimization capability based on high fidelity methods. These include suitable techniques for 
geometry parameterization, meshing and mesh movement methods, efficiency and accuracy improvements of the flow 
solvers, as well as robust and efficient optimizers. One of the most promising strategies is the use of the adjoint 
approach [1,2,3,4] of a flow solver for efficient and accurate computation of gradients in high-dimensional design 
spaces, which can then be applied within, among other, gradient-based optimizers. 
The paper will give an overview of the work performed at the German Aerospace Center's Institute of Aerodynamics 
and Flow Technology, on the application of the discrete adjoint approach for solving various aerodynamic shape 
optimization problems. The paper introduces first the strategy developed in the unstructured TAU code [5,6,7] to solve 
the adjoint problem and to compute the gradients. In the second part, the paper focuses on the application to 3d design 
in cruise and take-off conditions. 

2 Gradients via adjoint approach 

2.1 Primal approach 

Let the optimization problem be stated as 

(1) ( ) ,,, min
                            ... Dtrw

DXWI  

subject to the constraint 

(2) R(W, X, D) = 0, 

where I is a cost function such as lift or drag, D is a vector of design variables that can include the angle of incidence 
and control shape of aircraft subject to aerodynamic design, W(X,D) the vector of flow variables, X(D) the 
computational mesh and R(W,X,D) the residuals of the flow. 
For a gradient based optimization strategy, the search for the minimum requires the total derivative of the cost function 
I with respect to the design variables D. This total derivative - also called here the sensitivity - can be written as: 
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The two first terms of (3) expresses the direct effect of design parameter and of the geometry perturbation on the cost 
function I respectively and the last term contains the effect of the flow alteration caused by the geometry perturbation. 
Solving the above equation can be done by applying finite differences which requires evaluations of the flow solver on 
n perturbed geometries, with n the number of design parameter. Alternatively, the adjoint approach allows a rapid 
evaluation of dI/dD for a large number of design variables D, without computing the flow solution on the perturbed 
geometry.  
 

2.2 Dual approach 

Instead of applying the chain rule to I, apply it to the Lagrangian: 

(4) ),,(),,(),,,( DXWRDXWIDXWL TΛ+=Λ  

where Λ are known as the adjoint variables. Since (2) holds for all D, L=I for all Λ and all D. Hence, 

(5) .,       D
dD
dI

dD
dL

Λ∀=   

and so, applying the chain rule to L, the total derivative of I becomes: 
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The unknown quantity dW/dD may be eliminated by choosing Λ such that 
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This is the adjoint equation, and must be solved only once to evaluate the gradient of a single I with respect to any 
number of design variables. The resulting Λ allows rapidly computing the total derivative using: 
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2.3 Implementation of the discrete adjoint approach 

The discrete variant of the adjoint equation (7) is now considered. Its implementation requires the ability to evaluate the 
quantities ( )WRT ∂∂Λ /  - the adjoint residual – and WI ∂∂ / . 
The Jacobian ( )WR ∂∂ /  is evaluated by hand, which is a straightforward exercise as R may be written explicitly in 
terms of W, while being time-consuming as R is often extremely complex. As R is a sum of convective fluxes, viscous 
fluxes, boundary conditions etc., each of these may be handled independently, and by application of the chain rule may 
be further subdivided into manageable chunks. The derivatives are further simplified by choosing primitive variables as 
working variables. Because the equations remain in conservative form this choice has no effect on the final solution. A 
more detailed description of the implementation in the TAU code can be found in [8]. A wide range of the spatial 
discretizations available in TAU have been differentiated, including the Spalart-Allmaras-Edwards one-equation 
turbulence model. The effect of various approximations of the Jacobian was investigated and their impacts on the 
efficiency of the optimization process has been demonstrated on several 2d optimization problems [8,9]. In the present 
study, the viscous 3d adjoint computations have been performed by freezing turbulent quantities – i.e. assuming they 
are invariant with respect to the linearization. This is necessary because incorporating the linearization of the turbulence 
equations resulting in an exceptionally poorly conditioned Jacobian matrix, which is not amenable to solution with 
conventional iterative methods. 
 
Despite the guarantees regarding convergence provided by the theory of adjointed fixed-point iterations (FPIs) [10] 
there are regularly situations in which it is possible to obtain a reasonably converged solution of the non-linear 
equations, but not of the corresponding adjoint equations. This can occur for three reasons: either a) the non-linear 
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solution is not sufficiently converged, or b) there is a discrepancy between the linear and non-linear problem due to 
some approximation of the Jacobian, or c) the FPI applied to the non-linear problem does not converge asymptotically 
itself.  All three cases appear regularly in practice. An engineer may reasonably consider a computation converged 
when the integrated forces that interest her no longer vary significantly, though this may occur prior to the asymptotic 
regime. 
 
In an effort to understand and mitigate these phenomena, we consider the Recursive Projection Method (RPM), 
originally developed by Schroff and Keller in 1993 as a means of stabilizing unstable procedures [11]. The main idea 
can be described briefly as follows: let the (linear) adjoint system be written Ax=b, and regard the transient solution of 
the linear problem as a sum of eigenvectors of the relaxation operator )( 1AMI −−=Φ  where M is some iteration 
operator, e.g. LU-SGS with multigrid. The application of Φ  to an approximate solution then corresponds to a product 
of each eigenvector with its corresponding eigenvalue. Divergence of the iteration implies that there is at least one 
eigenvalue of Φ  with modulus greater than unity. Assuming that the number of such eigenvalues is small, and that the 
space spanned by their eigenvectors is known, call it P, then it must be possible to solve the projection of the problem 
onto this low dimensional subspace using some expensive but stable method, while solving the projection onto the 
complimentary subspace Q using the original FPI iteration, which is known to be stable there. 
 
Newton-Raphson is therefore used on P. The space of dominant eigenvectors is determined as the calculation 
progresses, by applying the principle that the difference between successive applications of the FPI on Q form a power 
iteration on the dominant eigenvalues of Φ  restricted to Q. 
 
This procedure has been successfully applied for the design of DLR-F6 configuration that features flow separation in 
the junction between the upper surface of the wing and the fuselage, see Section 3. 
 
Further investigations revealed that the robustness of RPM for the viscous adjoint problem was limited in the case that 
the base iteration diverges too rapidly for P to be well approximated. In this case applying the well-known Generalized 
Minimum Residual (GMRes) method in it's restarted form [12], with 10-50 iterations of LU-SGS with multigrid as a 
preconditioner has been seen to be an exceptionally robust alternative (although still not robust enough to solve systems 
including full turbulence model linearization in general). This was the stabilization using to converge the adjoint 
problem for the high-lift configuration in Section 4. 
 

2.4 The metric terms 

In order to compute the total derivatives of the cost function I as given in (8), the metric term variation is computed by 
using finite differences, which is in case of R computed like: 
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After obtaining Λ, the sensitivities can be evaluated with a single point deformation and yields for each design variable 
Dk to a variation of the cost function due to the perturbed geometry and we get a scalar difference for the direct 
variation and a matrix-vector product for the dependency of the residual, 
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3 Shape optimizations of the DLR-F6 configuration 
The adjoint method is first applied to the drag minimization of the DLR-F6 wing-body configuration at Mach 0.75, a 
Reynolds number of 3x106, and lift coefficient 0.5, at which conditions the case has a large region of separated flow in 
the junction between the upper surface of the wing and the fuselage, as well as along most of the length of the wing. 
Here, the discrete variant of adjoint formulation is used and the standard method of adjointed LU-SGS with multigrid 
alone was unconditionally unstable, and applying RPM was necessary to obtain a converged solution. 
The optimization algorithm used is conjugate-gradients (CG), as in [13], where the angle-of-attack is automatically set 
by TAU to maintain constant lift. The computational grid - shown in FIG. 1 - is coarse but sufficient to resolve the 
separation mentioned. 
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The geometry is parametrized by the coordinates of the lattice box points controlling the free-form deformation (FFD) 
[14,15,16,17]. The FFD technique allows a broad range of deformations with a low number of parameters and ensures a 
smooth deformation. The lattice boxes were generated with DLR's parametric grid generator MegaCads [18]. 

3.1 Wing shape optimization 

For the wing optimization, the vertical positions of 84 paired nodes of the free-form deformation bounding box as well 
as 12 additional wing twist variables are used as design parameters, see FIG. 2. In total the wing is parametrized with 96 
variables and the pairing of nodes ensures that the wing thickness remains unchanged during the optimization. With 
such a large number of design variables only gradient-based optimization is viable, and only the adjoint method can 
deliver the gradient efficiently. Note that since the bounding box passes inside the fuselage, the wing-body junction also 
varies, and this is accounted for by the geometry and grid generation process. The metric sensitivities needed in the 
gradient calculation are evaluated by finite-differences using mesh deformation. 
The convergence of the optimization is shown in FIG. 3, the horizontal axis shows the number of calls to the flow 
solver (both linear and non-linear), thereby approximately representing computational effort. Symbols indicate gradient 
evaluations. After 32 solver calls CG was unable to reduce the drag further, giving a final reduction of about 10 drag 
counts (1 drag count equal to 0.0001). In contrast a similar optimization with 42 parameters produced a reduction of 
only 8 counts on this mesh (in a similar CPU time) [13], emphasizing the need for a comprehensive parameterization. 
The optimization reduced the region of corner separation considerably, FIG. 4, while not completely eliminating it, 
which is unlikely to be possible within the design space considered, as it does not allow deformation of the fuselage. 
 
 

 
FIG. 1. Mixed structured/unstructured Navier-Stokes 
meshes of the DLR-F6 configuration. 

 
FIG. 2. Parameterization of the wing with a free-form 
deformation box with 84 paired nodes. Twist is parameterized 
separately with 12 variables. 

 
 

 
 

FIG. 3. Convergence of the DLR-F6 wing shape 
drag-minimization optimization. 

 

 
FIG. 4. Comparison of the region of corner separation before 
(presented with the dashed line) and after wing shape 
optimization. 

 
 



Paper No. 36 - 5 

3.2 Fuselage shape optimization 

As second demonstration, the fuselage shape is now optimized by considering the wing shape constant. This exercise 
intends to demonstrate the possibility of removing the flow separation by shaping the fuselage. Here also, the free-form 
deformation is employed and a representation of the bounding box around the fuselage is given in FIG. 5. The 
horizontal displacements of 25 nodes, concentrated around the intersection line, are selected as design variables. The 
node displacement is not restricted to any direction and can lead to an increase or a decrease of the volume of the 
fuselage. After deformation, the intersection line is recomputed with the in-house tool MegaCads. 
After 46 flow evaluations and 7 gradient evaluations, the optimization process converges to a final configuration by 
keeping constant the lift coefficient, see FIG. 6. The new optimized configuration has almost 20 drag counts less than 
the baseline configuration. This drag improvement is 2 times higher than observed on the previous optimization. 
FIG. 7 shows a comparison of the region of corner separation before and after optimization of fuselage shape. In fact 
the optimization procedure was able to completely remove the flow separation. Close to the trailing edge of the wing, 
the new fuselage presents a shape similar to a fairing as observed on modern aircraft. A side view of the optimised 
wing-body intersection shows a more complex 3d shape, with parts going into the fuselage, FIG. 8. The optimization 
process perfectly adapts the shape to the flow in order to avoid separation. This result demonstrates the accuracy of the 
adjoint approach for computing gradients and the flexibility of the optimization process to handle complex 3d 
aerodynamic flows. 
 
 

 
 

 
FIG. 5. Parameterization of the fuselage with a free-
form deformation box with 25 active nodes (red 
spheres). 

 
FIG. 6. Convergence of the DLR-F6 fuselage drag-
minimization optimization. 

 
 
 

 
 

FIG. 7. Comparison of the region of corner separation 
before and after fuselage shape optimization (dashed 
line represents the limit of flow separation on baseline 
configuration). 

 
FIG. 8. Close view of the wing-body intersection 
after optimization of the fuselage shape. 
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4 Flap and slat settings optimization of the DLR-F11 aircraft 
The last configuration optimized is the so called DLR-F11 model with full span flap and slat in take-off configuration, 
see FIG. 9. This model is a wide-body Airbus-type research configuration with a half span of 1.4 meter that can feature 
different degrees of complexity [19]. Here six design variables are selected to modify the deflections, the horizontal and 
the vertical positions of the flap and the slat. The geometric changes are propagated homogeneously along the span. The 
goal is to maximize at a single take-off condition (Mach=0.3; Re=20x106; AoA=8o) a derived expression of the lift to 
drag ratio:  

(11) .Obj 2
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This performance indicator, based on the climb index, has already been successfully employed for flap design based on 
2d computations and turned to be better suited than the lift to drag ratio [20]. Additionally, the lift is not allowed to 
decrease and the angle of attack is kept fixed. In order to make a more realistic optimization the weight of the high-lift 
system kinematics, which depends on the horizontal deployment capability, is taken into account by penalizing the 
objective function to avoid too heavy a mechanism. The relation between the horizontal displacement and the penalty is 
set according to industrial specifications [20]. 
 
An ICEM-CFD macro has been developed to handle both the parameterization and the mesh procedure. This macro first 
sets the position of the elements according to the design variables and computes automatically the flap and slat 
intersection lines with the body. Once the CAD geometry is ready, the meshing part starts and automatically projects 
the mesh on the moving part and on the updated intersections lines, sets the position and size of the O blocks 
surrounding the elements. The resulting mesh has in total 2.5 millions points, see FIG. 9. The complete process, from 
reading the design variables to writing the mesh in unstructured formats takes about 1 minute on a single AMD Opteron 
2.5 GHz processor. 
 
The numerical simulations are based on the RANS equations and the Spalart-Allmaras-Edwards turbulence model. For 
fast convergence, the low Mach number preconditioning approach is adopted and the steady state is reached by a 
Runge-Kutta scheme using multigrid W-cycles on 3 levels. A fully converged solution with almost 5 orders of density 
residual decrease is obtained after 5,000 TAU cycles.  
In order to exploit the parallel capability of the TAU code, the aerodynamic flow is computed on a cluster of 32 AMD 
Opteron 2.4 GHz processors and the drag and lift adjoints are computed simultaneously on 2 clusters of 16 processors 
each. Each solution is fully converged after 3 hours wall clock time.  
 
FIG. 10 presents the evolution of the optimization process obtained with the NLPQLP optimization strategy [21] 
available in modeFRONTIER [22] coupled to the adjoint approach for the computations of the gradients. After 13 
evaluations and 78 hours of simulations the optimization converged to a maximum with a limited deviation on the lift 
coefficient. The performance improvement is made evident by plotting the drag distribution in span-wise direction for 
each element, see FIG. 11 and FIG. 12: the optimization has almost no influence on the lift and drag of the body and the 
flap but permits to made further negative the drag on the slat by increasing the lift. This improvement has to be paid by 
a drag increase and lift loss on the main wing. Finally, the optimized configuration has in total 17.8 counts less drag 
than on the baseline configuration by same lift coefficient. 
 
Thanks to the adjoint approach, the process is almost independent of the number of design variables and a more 
complex optimization problem involving more design parameters should require almost the same turn around time. 
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FIG. 9. Mesh around the DLR-F11 model in full span 
flap and slat configuration. 

 
FIG. 10. Evolution of the objective and lift 
coefficient according to the wall-clock time. 

 
 

FIG. 11. Drag distribution along the spanwise 
direction on the baseline and optimised configurations. 

FIG. 12. Lift distribution along the spanwise direction 
on the baseline and optimised configurations. 

 

Conclusion 
This article presented activities carried out at the DLR for the development of the discrete adjoint approaches in the 
unstructured RANS solver TAU code and its application to solving wide range of aerodynamic shape designs. 
The capability of the adjoint approach to handle problems with large number of design parameters has been first 
demonstrated for the optimization of the DLR-F6 configuration in viscous flow. It has been observed that the region of 
separation was considerably reduced thanks to the fine parameterization of the wing. When the fuselage is 
parametrized, the optimization process is able to remove the flow separation within a limited number of flow 
computations. It can be pointed out that the free form deformation is here a key technology for the parametrization of 
critical area. 
These successful optimizations confirm the accuracy of the developed adjoint based procedure for computing the 
gradients.  
The method has been then applied to perform the settings optimizations of 3d high-lift configurations. Thanks to the 
adjoint approach, only a few flow computations were required to converge the optimization problem. The inclusion of 
the adjoint approach gives new opportunities to treat more complex optimization problems in limited turn around time. 
Near future activities will focus on improvement of the evaluation of the metric terms in order to compute more 
efficiently the gradients. From the applications point of view, future work will deal with multi-points problems for 
robust design and on other complex configurations, such as engine integration problems. 
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