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1 THE “WETTER UND FLIEGEN” 
PROJECT  

 
In Germany, a new project has started 

in 2008 under the leadership of the Institute 
of Atmospheric Physics (IPA) at the German 
Aerospace Center (DLR) in 
Oberpfaffenhofen, named “Wetter und 
Fliegen” (“Weather and Flying”). This DLR 
project aims at increasing safety and 
efficiency of air traffic and to secure the 
competitiveness of German and European 
aviation industry.  In order to reach this high 
level goal two main systems are being 
constructed: 

• Integrated airport weather systems 
for the airports Frankfurt and Munich 
comprising the components “wake 
vortices”, “thunderstorms” and 
“winter weather” 

• On board systems for steering and 
monitoring as well as ground based 
information systems in order to 
improve flying characteristics in case 
of turbulence, wake vortices and 
thunderstorms.  

In this paper, we present the central 
element of weather systems part with regard 
to thunderstorms by introducing the 
Weather Forecast User Oriented System 
Including Object Nowcasting for 
thunderstorms (WxFUSION-Cb).  

 

2 WXFUSION-CB CONCEPT  
 
Thunderstorms are complex 

phenomena in space and time which appear 
in various sizes, from small single 
convective cells to mesoscale convective 
complexes and thunderstorm lines with 
corresponding life times from a few minutes 
to several hours. Remote sensing with 
satellite, radar and lightning enables to 
detect detailed information about these 
features. Nowcasting tools enable short-
range forecasts of these features, and high 
resolution numerical models provide 
forecasts on the time range up to several 
hours. WxFUSION-Cb aims at combining 
these different data sources accordingly in 
order to detect, track, nowcast (0-1 hrs) and 
forecast (1-6 hrs) thunderstorms. The 
combination has the benefit that the 
assertions of the individual tools, e.g. with 
regard to the exact location of a particular 
weather system, its intensity and movement, 
can be processed and contrasted. Thus, the 
system provides a more reliable 
interpretation of the future state of a weather 
system than only one data source or 
forecasting tool could give [Tafferner et al., 
2008a].  

In WxFUSION-Cb, thunderstroms are 
represented as target weather objects 
(TWO) which can be selected by the user 
and are simplified pictures of a 
thunderstorm encompassing hazard areas 
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for air traffic. A TWO consists of a Cb top 
volume representing the turbulent anvil area 
and a Cb bottom volume representing areas 
of heavy rain, hail, and turbulence (Figure 
1). Note that the horizontal shape of the top 
and bottom volumes in Figure 1 is rendered 
elliptically for simplicity, but is polygon 
shaped in real applications. 

 
Figure 1: A thunderstorm rendered as an idealized target 
weather object (TWO) with top and bottom volume (redrawn 
from Tafferner et al. 2008b). 

 
The Cb top volumes are detected from 
space by using the cloud tracker Cb-TRAM, 
an algorithm for the detection and 
nowcasting of convection using Meteosat 
SEVIRI (Spinning Enhanced Visible and 
Infra-Red Imager) data [Zinner et al. 2008]. 
The broad-band high-resolution visible 
(HRV), water vapour (WV), and two different 
infra-red (IR) channels are combined to 
identify three different stages of 
thunderstorm development: convection 
initiation, rapid vertical development, and  
mature thunderstorm cells reaching or even 
overshooting the tropopause. During 
daytime the HRV is used to detect the most 
active convective updraft regions by 
exploring the gradients in reflectivity in the 
HRV satellite image. The tracking of the 
cells is based on the geographical overlap 
between current detections and first guess 
patterns of cells detected in preceding time 
steps. The first guess patterns are retrieved 
by using displacement vectors provided by a 
so-called pyramidal image-matching 
algorithm [Zinner et al., 2008] which extracts 
the general transformation vector field from 
two consecutive satellite images thereby 
describing the cloud motion and local cloud 
developments.  

 
Figure 2: METEOSAT 9 HRV image and Cb top volumes 
detected with Cb-TRAM on 4 July 2006 at 14:45 UTC. 
Yellow contours indicate convective initiation, orange 
contours indicate rapid vertical development and red 
contours indicate mature thunderstorms. The 15 and 30 
minutes nowcasts are marked by grey contours. 
 
Similar to the first guess patterns, nowcasts 
up to 60 minutes are generated by 
extrapolation using these transformation 
vector fields. Figure 2 shows an example of 
Cb top volumes including their 15 and 30 
minutes nowcasts over middle Europe. Note  
that Cb-TRAM does not encircle the whole 
anvil area of the thunderstorms, but is able 
to find the most turbulent areas within the 
anvil. 
 

 
Figure 3: European radar composite from the DWD with Cb 
bottom volumes (black contours) detected by Rad-TRAM on 
17 August 2008 at 17:00 UTC. The grey contours indicate 
the 30 minutes nowcast. The black lines are the tracks of the 
individual cells.   



The Cb bottom volumes of TWOs are 
detected by using the Rad-TRAM algorithm 
[Kober and Tafferner, 2009] which detects 
and nowcasts heavy rain from the European 
radar composite of the German Weather 
Service (DWD). A reflectivity threshold of 37 
dBZ is used to identify cells of heavy rain. 
The tracking and nowcasting up to 60 

minutes is based on the same pyramidal 
image matcher as in Cb-TRAM [Zinner et 
al., 2008] and therefore allows to describe 
both the motion of the precipitation cells and 
changes in size. Figure 3 shows an example 
of Rad-TRAM including 30 minutes 
nowcasts. 

Figure 4: Schematic diagram of the WxFUSION concept. User specified target weather objects (TWO) are characterized by 
appropriate information through a fusion of selected nowcast information (upper half) and forecast products (lower half)  (from 
Forster and Tafferner, 2008). 
 

The basic concept of WxFUSION-Cb is 
outlined in Figure 4 (Forster and Tafferner, 
2008). The upper half in Fig. 4 represents 
data sources from observations and 
nowcasting tools which are used to nowcast 
TWOs up to one hour, while the lower half 
represents data sources from numerical 
model simulations for forecasting TWO 
beyond 1 hour. In addition to the cloud 
tracker Cb-TRAM and the radar tracker 
Rad-TRAM, lightning data from the LINET 
system [Betz et al., 2004] are used in 

WxFUSION-Cb. Surface weather 
observations together with TEMP and 
AMDAR data are intended to be used for 
winter weather TWOs primarily, whereas  
the DLR polarization diversity Doppler radar 
(POLDIRAD) [Schroth et al., 1988] serves 
both thunderstorm and winter weather 
objects with hydrometeor information. The 
numerical model simulations for both local 
high resolution and regional-scale ensemble 
forecasts are provided operationally by the 
COSMO-DE and COSMO-EU models, 
respectively, from the DWD [Steppeler et 



al., 2003; Saunders et al., 1999]. Both 
models also generate synthetic satellite 
imagery and synthetic radar reflectivity 
indicated as the tools named SYNSAT and 
SYNRAD, respectively, in Fig. 4. The ability 
of numerical models to reproduce the 
formation and interactions of hydrometeors 
can be assessed with the synthetic 
polarimetric radar forward operator 
(SYNPOLRAD) [Pfeifer et al., 2008.] which 
can be compared with POLDIRAD 
observations. 

The use of these numerical model 
forecasts for the time range one to several 
hours will be controlled by a method called 
“forecast validation” (Fig. 4), where 
forecasted TWOs derived by SYNSAT are 
compared against observations of TWOs 
detected from METEOSAT (described in 
more detail in section 4). Another possibility 
to assess the forecast quality is to apply the 
forecast quality measure (FQM) developed 
at DLR [Keil and Craig, 2007]. Thereby the 
pyramidal image matching algorithm applied 
to observed and synthetic images is used in 
combination with the local squared 
difference field to calculate the FQM 
measure. Both methods, the forecast 
validation by object comparison and the 
FQM can be used to select the best forecast 
available, e.g. out of an ensemble, which 
can then be used for extending the forecast 
horizon beyond one hour. In this case the 
future state of a TWO will be described 
probabilistically  and not deterministically,  

The WxFUSION-Cb core element 
“FUSION” on the one hand applies 
graphical methods to overlay data from the 
different sources and extract relevant 
information about the TWO in place, and on 
the other hand uses fuzzy logic to 
characterize the intensity of a TWO 
(described in more detail in section 3). 
Future extensions will also estimate the 
probability of occurrence of a particular 
weather hazard of pre-defined intensity, 
related to user requirements within a 
specified region. In summary, the core 
element “FUSION” returns the nowcast (0-1 
hour) and the probabilistic forecast (up to 
several hours) of a TWO and extracts 

specific attributes and weather elements of 
the TWO describing its history, current state 
and future. Attributes for nowcast objects 
are e.g. moving speed, moving direction, 
developing stage (growing/decaying), and 
severity level (moderate/severe). Weather 
elements are e.g. heavy rain, hail, lightning. 
For the probabilistic time range, risk areas 
of heavy precipitation, hail, turbulence, and 
wind will be output from the system. The 
final information for the user is then tailored 
in a short, clear, and precise manner in 
order to enable quick decision making. 

 
3 USING FUZZY LOGIC TO DETERMINE 
CB INTENSITY 
 

Fuzzy logic is generally used in the 
fields of systems control, electronics, and 
traffic engineering. It generates solutions to 
problems based on vague, ambiguos, 
qualitative, and incomplete or imprecise 
information (Murtha, 1995; Viot, 1993). 
Meanwhile, fuzzy logic  has been used for a 
variety of applications in meteorology (e.g. 
Müller et al., 2003; Kessinger et al., 2001; 
Sharman et al., 2000). It allows to account 
for imprecise observations and forecasts and 
also to deal with parameter ranges instead of 
fixed thresholds. The binary true-false 
decision is eliminated, instead a gradual 
transition from true to false is possible. For 
instance, a temperature of 18°C can partly 
be classified as a warm temperature and 
partly be classified as a cool temperature. 

In WxFUSION-Cb we developed and 
implemented a fuzzy logic algorithm that 
uses mathematical functions based on 
conceptual models and expert knowledge in 
combination in order to characterize a TWO 
with regard to its intensity. TWO attributes 
derived from three different data sources are 
used for this purpose: the minimum cloud top 
temperature within the TWO (from Cb-
TRAM), the maximum reflectivity within the 
TWO (from Rad-TRAM), and the lightning 
density within the TWO (from LINET data). In 
a first step, input fuzzy sets composed of 
membership functions for different 
categories are created for each of the three 
attributes (Figure 5). Please note that these 



fuzzy sets are derived solely from 
experience and can be adjusted by 
experimenting with multiple data sets. The 
membership functions are simple triangles or 
trapezoids overlapping each other. In the 
example in Fig. 5, the TWO had a minimum 
cloud top temperature of 223.4 K, a 
maximum reflectivity of 46 dBZ, and a very 
low lightning density of near 0 km-2(5 min)-1. 
The cloud top temperature in this example is 
classified partly as cold (65%) and partly as 
middle cold (35%), the reflectivity is 
classified as 85% middle and 15% high, the 
lightning density is classified 100% as low.  

 

 
Figure 5: Fuzzy input sets with membership functions for the 
three attributes minimum cloud top temperature (a), maximum 
reflectivity (b) and lightning density (c). 
 
Employing an if-then rule base combines the 
membership grades with five thunderstorm 
intensity classes: very weak, weak, average, 
strong and very strong. Using the centre of 
gravity method the grades are then de-
fuzzyfied into a Cb intensity value (Figure 6). 
For instance, if the cloud top temperature 
falls within cold, the maximum reflectivity and 
the lightning density are classified as high, 
then the Cb intensity would be very strong 
and would get a high intensity value. The 

example values from Fig. 5   in combination 
achieve a Cb intensity value of 6.2, resulting 
from input membership grades grades 65% 
for the category strong and to 35% for the 
category average. 
 

 
Figure 6: Fuzzy output sets for Cb intensity. 

 
Currently, the fuzzy logic algorithm to 

determine Cb intensity is checked and tuned 
by applying it in several case studies. For 
combining nowcasts of TWOs with forecast 
data from the best model available fuzzy 
logic will be employed as well. Necessarily, 
additional input fuzzy sets will have to be set 
up for parameters provided by the forecast 
models, as e.g. humidy, convective potential, 
lift, and others. 
 
4 FORECAST VALIDATION BY OBJECT 
COMPARISON 
 

Traditional approaches for the 
verification of convective forecasts are based 
on simple grid overlays in which the forecast 
field is matched to an observation field or a 
set of observation points (Brown et al., 
2004). Contingency tables are compiled 
which can then be used to compute 
verification measures and skill scores, such 
as the Probability of Detection (POD), False 
Alarm Ratio (FAR), and Critical Success 
Index (CSI). For details on the scores see 
e.g. Wilks 1995 and Doswell et al. 1990. 

The skill scores, however, pose a 
variety of problems which are illustrated in 
Figure 7. Five examples of 
forecast/observation pairs are shown, with 
the forecasts and observations represented 
as objects, which could be e.g. TWOs from 
WxFUSION. From a visual inspection, case 
(a) appears to be a fairly good forecast, just 
offset somewhat to the right. (b) is a poorer 
forecast since the location error is much 



larger than for (a). In (c) forecast area is 
much too large and is offset to the right. (d) 
shows a situation where the forecast is both 
offset and has the wrong shape. (e) shows 
some overlap of forecast and observation, 
but the forecast is much too large and has 
the wrong shape. Of the given examples, it 
appears that case (a) renders the "best” 
forecast. However, from an assesment with 
traditional skill scores all of the first four 
examples (a-d) have identical verification 
statistics with POD=0, FAR=1, and CSI=0, 
indicating no skill. Thus, the verification 
approach is insensitive to differences in 
location and shape errors. Similar 
insensitivity could be shown to be associated 
with timing errors. Moreover, example (e), 
which seems to be the worst forecast of all 
examples, actually has some skill (POD, CSI 
>0), suggesting it is a better forecast than 
the one in example (a). 

 
Figure 7: Schematic example of various forecast (F) and 
observation (O) combinations (from Brown et al., 2004). 

 
From the examples in Fig.7 we learn 

that traditional skill scores are not useful to 
asses the quality of a forecast of a TWO. 
Therefore, we develop a verfication method 
based on an object-oriented approach. 
Several object-oriented approaches have 
been designed by e.g. Ebert and McBride 
(2000), Davis et al., (2006a,b), Nachamkin 
(2004) or Marzban and Sandgathe (2006). 
Here, we propose a method that compares 
TWOs from a numerical forecast to observed 
TWOs by comparing their specific attributes 

and weather elements. If there is reasonable 
agreement between the attributes and 
weather elements of the observed and 
forecasted TWOs, the forecasted TWO as 
well as forecast fields like CAPE and 
triggering temperatures will be used in the 
“FUSION” module of WxFUSION-Cb to 
predict the observed TWOs beyond the 
nowcasting horizon. The object comparison 
is illustrated for Cb top volumes with a case 
study in the following. 

In order to obtain Cb top volumes from 
a numerical model forecast, Cb-TRAM has 
been adapted to detect Cb top volumes in 
synthetic satellite images, e.g. as forecasted 
by the COSMO-DE model [Steppeler et al., 
2003]. This version of CB-TRAM is called 
Cb-TRAMCOSMO in the following. The 
COSMO-DE model provides WV and IR 
brightness temperatures derived with the aid 
of the radiative transfer model RTTOV-7 
[Saunders et al., 1999]. Unfortunately, HRV 
information is not available from this 
algorithm.  Therefore, updraft regions cannot 
be isolated with Cb-TRAMCOSMO, and the  
diagnosed Cb top volumes might be 
somewhat larger than with the usual 
detection procedure which uses also the 
visible channel. In order to enable a fair 
comparison of the synthetic top volumes 
detected by Cb-TRAMCOSMO with the 
observed Cb top volumes, the observed Cb 
top volumes are detected by Cb-TRAM 
without using the HRV in the following. 

Fig. 8 shows a comparison of 
forecasted synthetic top volumes with 
observed top volumes for thunderstorms 
over Switzerland on 21 July 2007. The Cb 
top contours are superimposed on the IR 
brightness temperatures forecasted by the 
00 UTC COSMO-DE model run. Cb-
TRAMCOSMO could successfully be applied to 
the synthetic data. The comparison of the 
synthetic with the observed objects is quite 
good keeping in mind the long forecast 
times. At all times in Fig. 8, the shapes of the 
synthetic and the observed objects are 
different and the size of the synthetic object 
is about half of the size of the observed one, 
but the positions of the object pairs are 
similar. Between 39% (Fig. 8a) and 85% 



(Fig. 8d) of the area of the synthetic top 
volume overlaps with the observed one. The 
forecast indicates a growing top volume 
moving in a north-eastern direction in good 
agreement with the observation. From the 
comparison of all these attributes, it is 
concluded in this case that the forecast is 
good enough to be used in the FUSION 
module for further predictions of the 
evolution of the thunderstorm. 

In a next step, it is planned to include 
further object attributes and weather 

elements into the comparison, and to find an 
appropriate criterion to classify a forecast as 
“good”. Then the method will be applied to 
ensemble forecasts in order to select the 
best forecast available. If the algorithm does 
not identify any of the forecasts as a “good” 
one, the numerical model results are not 
used to further predict the TWOs evolution. 
In this case, only nowcasting results and 
observations will be applied. 

Figure 8: Comparison of forecasted synthetic top volumes (red contours) with observed top volumes (blue contours) of mature 
thunderstorms detected by Cb-TRAMCOSMO and Cb-TRAM, respectively, over Switzerland at (a) 14:15 UTC and (b) 14:45 UTC, (c) 
15:15 UTC and (d) 15:30 UTC on 21 July 2007. The background is the IR 10.8 μm synthetic satellite image forecasted by the 00 
UTC COSMO-DE model run. 



 
5 SUMMARY AND PERSPECTIVE  

 
This paper presented on-going work 

with regard to the integrated thunderstorm 
forecast system for air traffic, WxFUSION-
Cb, which is currently under development 
within the project “Wetter und Fliegen” 
(“Weather and Flying”) at the Institute of 
Atmospheric Physics at the German 
Aerospace Center (DLR). The system 
combines different data sources from 
observations, nowcasting tools and 
numerical forecasts in order to detect, 
nowcast (0-1 hour) and forecast (up to 
several hours) thunderstorms. The latter are 
represented as target weather objects 
encompassing hazard areas for air traffic. 
The combination of the data sources is done 
by different techniques like fuzzy logic, 
object-based forecast verification, and 
probabilistic nowcasting. On-going work 
regarding the fuzzy logic algorithm and the 
object based comparison of forecasted and 
observed TWOs has been presented. 

In 2010, WxFUSION-Cb will be 
operated in real-time at the airports in 
Munich and Frankfurt, Germany, in order to 
test its nowcasting and forecasting skills and 
demonstrate the benefits for the user (e.g. 
weather providers for air traffic management 
and pilots). After the testing phase, it is 
envisaged to install it operationally for use at 
these airports in close collaboration with the 
German Weather Service (DWD). 
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