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Agenda for today

Why? 

Introduction to ctypes

Preparing the apache

Creating tests

Demo
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DLR
German Aerospace Center

Research Institution
Research Areas 

Aeronautics 
Space 
Transport 
Energy

Space Agency
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Locations and employees

6200 employees across 
29 research institutes and 
facilities at



 
13 sites.

Offices in Brussels, 
Paris and Washington.  Koeln

 Oberpfaffenhofen

Braunschweig 

 Goettingen

Berlin 

 Bonn

 Neustrelitz

Weilheim 

Bremen   Trauen

 Dortmund

Lampoldshausen 

Hamburg 

Stuttgart 
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Background

DataFinder – a application for scientific data management
Storing and managing huge amounts of data
Search through the resource content and metadata
Various ways to store data, for example

ftp, network share, offline stores
Metadata management with the WebDAV protocol

Two supported WebDAV Server: 
Tamino XML Server & Catacomb
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Catacomb – A WebDAV Server Module for 
Apache
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Catacomb – The Difference to mod_dav_fs

Saving the resources
mod_dav_fs save content and properties in files on 

the filesystem
mod_dav_fs creates for every resource, and also for 

every collection, their own property file

Consequence:
A single query of server side searching needs to open 

many files
Implementation of complex queries is difficult
Full text search is expensive
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Catacomb – A WebDAV Server Module for 
Apache

WebDAV repository module for mod_dav

Catacomb uses relational databases to store the metadata
Strong search performance through SQL statements 

Catacomb is:
Good for Content management
Good for Collaborated web authoring

Support locks, avoid the “lost update” problem
Capable of searching (DASL) and versioning (DeltaV) 

resources
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Catacomb – History and Current State

Initial development at the University of California under the 
chair of Jim Whitehead

Open Source project since 2002

DeltaV and DASL implementation

Since 2006 contribution of the DLR
ACP support
Database abstraction using mod_dbd
License changed to ASL2.0
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Why testing your code?

Development is faster and easier

Code is more robust

Code is more maintainable

Code is more reliable 
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Why testing with Python and ctypes?

Writing tests is easy

No need to start an apache instance every time

Tests could be automatically done with various 
Apache versions



Standard presentation deck > Sep. 2009

Slide 12

What is ctypes

ctypes is a wrapper for C-librarys for python

ctypes allows to call functions in dlls/shared libraries  
from python code

It is possible to implement C callback function 

Since Python 2.5.x, ctypes is in the standard library
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How to use ctypes

from ctypes import *

Loading dynamic link libraries
libc = cdll.msvcr

libc = CDLL("libc.so.6") 

Calling functions
print libc.time(None)
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Fundamental data types 

Good support for many primitive C compatible data          
types:

C Python
char 

 
c_char

int 
 

c_int

long 
 

c_long

void* 
 

c_void_p
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Fundamental data types - usage

All these types can be created by calling them with an optional initializer 
of the correct type and value: 

i = c_int(42) 

print i.value # „42“

i.value = -1 

print i.value # „-1“

num = c_double(3.14)

libc.printf("Number: %f\n“, num)  

# „Numner: 3.14“
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Using pointers

byref() passes parameters by reference
libc.sscanf("1 3.14 Hello", "%d %f 

%s", byref(i), byref(f), s)

Creating a pointer
i = c_int(42) 

pi = pointer(i) 
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Return types

Default return type: int

strcat = libc.strcat

strcat("abc", "def")) # „8059983“

strcat.restype = c_char_p

strcat("abc", "def")) # „abcdef“
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Arrays
Create an array-type

TenIntsArrayType = c_int * 10

Create an array-instance
array1 = TenIntegers() 

array2 = TenIntegers(1, 2, 3, 4, 5, 6, 
7, 8, 9, 10) 

Using arrays
Array1[3] 

 
“0”

Array2[3] 
 
“4”
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Structures and unions

class POINT(Structure): 

_fields_ = [("x", c_int), 

("y", c_int)] 

point = POINT(10, 20)

print point.x, point.y 
 
„10 20“
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UnitTesting Apache Modules

The problem
(Most) functions of a module could only be tested with 

a running apache
Module-functions could not be called directly

The solutions
Starting and stopping an apache on each test
Test functions from the module directly using ctypes
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Calling module functions directly

Causes a exception stops execution
On runtime, ctypes tries to resolve all dynamic 

symbols
All apache specific methods and data structures 

are not available

Solution: 
Building Apache as a shared core
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Building-kernel apache as a share core

Building the apache kernel as shared module
On apache 1.x

--enable-rule=SHARED_CORE

On apache 2.x build infrastructure doesn't seem to 
know this anymore 



Standard presentation deck > Sep. 2009

Slide 23

Compiling Apache

Compiling apache

make clean

CFLAGS='-D SHARED_CORE -fPIC ' 
./configure

make
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Linking the Shared Core

After compiling, the make command links apache 
libtool ... -mode=link gcc ... -o httpd 

..

Linking command for a shared core
libtool ... -mode=link gcc ...          

-shared -o libhttpd.so ..server/exports.o
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Modifications of the Module

Module must be linked against the shared core

LDFLAGS = -lhttpd -L </…/libhttpd.so>

Could be an extra make-target
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Apache Data Structures in Python

class apr_allocator_t(Structure):  

class apr_memnode_t(Structure):   

class apr_pool_t(Structure):   

class cleanup_t(Structure):
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Setting Up Data Structures – apt_pool_t
class apr_pool_t(Structure):   

_fields_ = [("cleanups",POINTER(cleanup_t)),

("free_cleanups",POINTER(cleanup_t)),

("allocator",POINTER(apr_allocator_t)),

("subprocesses",POINTER(process_chain)),

("abort_fn",c_void_p),

("user_data",c_void_p),

("tag",c_char_p),

("active",POINTER(apr_memnode_t)),

("self",POINTER(apr_memnode_t)),

("self_first_avail",c_char_p),

("parent",POINTER(apr_pool_t)),

("child",POINTER(apr_pool_t)),

("sibling",POINTER(apr_pool_t)),

("ref",POINTER(POINTER(apr_pool_t)))]
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Setting Up Data Structures – GCC

Ctypes code generator – modified version of GCC

Looks for declarations in C header files. Generates python 
codes for:

enums, structs, unions, function declarations, com 
interfaces, and preprocessor definitions 

Very early stage
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Unit Test Framwork (nose)

Simple structure, one class for each testing object

Setup_class()

Test1()

…

TestX()

TearDown_class()
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Setting up the Test Environment 
def setup (self) :

self.catacomb = CDLL("/apachecon/libmod_dav_repos.so")

self.httpd = CDLL("/apachecon/libhttpd.so")

self.apr = CDLL("/apachecon/lib/libapr-1.so")

self.pool = c_void_p()

self.allocator = c_void_p()

self.apr.apr_initialize()

self.apr.apr_allocator_create(byref(self.allocator))

self.apr.apr_pool_create_ex(byref(self.pool), None, 
None, self.allocator)
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Writing the Test

def testSomething(self):

assert self.catacomb.function_to_test(arg1, 
byref(arg2)) == “true”
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Shutting down the Test Environment

def teardown(self):

self.apr.apr_pool_destroy(self.pool)

self.apr.apr_allocator_destroy(self.allocator)

self.apr.apr_terminate()
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Summary of Steps

Compile Apache as a shared core

Link own module against shared core

Define the data structures you need

Write the tests

Run the test
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Conclusion

Powerful possibility to create tests with no need of a 
running Apache.
Tests could be made in an easy language with 

possibility to easily make moc-objects.
Writing a test is in most cases less than writing 10 

lines of code. 
Tests are easily portable to other systems/apache- 

versions.
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Demonstration

Before the demo:

Thanks to Steven Mohr
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