
Standard presentation deck > Sep. 2009

Slide 1

Testing Apache Modules with Python
and ctypes

ApacheCon US 2009

Markus Litz - 06.11.2009

brought to you by
C

O
R

E
V

iew
 m

etadata, citation and sim
ilar papers at core.ac.uk

provided by Institute of T
ransport R

esearch:P
ublications

https://core.ac.uk/display/11138824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Standard presentation deck > Sep. 2009

Slide 2

Agenda for today

Why?

Introduction to ctypes

Preparing the apache

Creating tests

Demo

Standard presentation deck > Sep. 2009

Slide 3

DLR
German Aerospace Center

Research Institution
Research Areas

Aeronautics
Space
Transport
Energy

Space Agency

Standard presentation deck > Sep. 2009

Slide 4

Locations and employees

6200 employees across
29 research institutes and
facilities at

13 sites.

Offices in Brussels,
Paris and Washington. Koeln

 Oberpfaffenhofen

Braunschweig

 Goettingen

Berlin

 Bonn

 Neustrelitz

Weilheim

Bremen Trauen

 Dortmund

Lampoldshausen

Hamburg

Stuttgart

Standard presentation deck > Sep. 2009

Slide 5

Background

DataFinder – a application for scientific data management
Storing and managing huge amounts of data
Search through the resource content and metadata
Various ways to store data, for example

ftp, network share, offline stores
Metadata management with the WebDAV protocol

Two supported WebDAV Server:
Tamino XML Server & Catacomb

Standard presentation deck > Sep. 2009

Slide 6

Catacomb – A WebDAV Server Module for
Apache

Standard presentation deck > Sep. 2009

Slide 7

Catacomb – The Difference to mod_dav_fs

Saving the resources
mod_dav_fs save content and properties in files on

the filesystem
mod_dav_fs creates for every resource, and also for

every collection, their own property file

Consequence:
A single query of server side searching needs to open

many files
Implementation of complex queries is difficult
Full text search is expensive

Standard presentation deck > Sep. 2009

Slide 8

Catacomb – A WebDAV Server Module for
Apache

WebDAV repository module for mod_dav

Catacomb uses relational databases to store the metadata
Strong search performance through SQL statements

Catacomb is:
Good for Content management
Good for Collaborated web authoring

Support locks, avoid the “lost update” problem
Capable of searching (DASL) and versioning (DeltaV)

resources

Standard presentation deck > Sep. 2009

Slide 9

Catacomb – History and Current State

Initial development at the University of California under the
chair of Jim Whitehead

Open Source project since 2002

DeltaV and DASL implementation

Since 2006 contribution of the DLR
ACP support
Database abstraction using mod_dbd
License changed to ASL2.0

Standard presentation deck > Sep. 2009

Slide 10

Why testing your code?

Development is faster and easier

Code is more robust

Code is more maintainable

Code is more reliable

Standard presentation deck > Sep. 2009

Slide 11

Why testing with Python and ctypes?

Writing tests is easy

No need to start an apache instance every time

Tests could be automatically done with various
Apache versions

Standard presentation deck > Sep. 2009

Slide 12

What is ctypes

ctypes is a wrapper for C-librarys for python

ctypes allows to call functions in dlls/shared libraries
from python code

It is possible to implement C callback function

Since Python 2.5.x, ctypes is in the standard library

Standard presentation deck > Sep. 2009

Slide 13

How to use ctypes

from ctypes import *

Loading dynamic link libraries
libc = cdll.msvcr

libc = CDLL("libc.so.6")

Calling functions
print libc.time(None)

Standard presentation deck > Sep. 2009

Slide 14

Fundamental data types

Good support for many primitive C compatible data
types:

C Python
char

c_char

int

c_int

long

c_long

void*

c_void_p

Standard presentation deck > Sep. 2009

Slide 15

Fundamental data types - usage

All these types can be created by calling them with an optional initializer
of the correct type and value:

i = c_int(42)

print i.value # „42“

i.value = -1

print i.value # „-1“

num = c_double(3.14)

libc.printf("Number: %f\n“, num)

„Numner: 3.14“

Standard presentation deck > Sep. 2009

Slide 16

Using pointers

byref() passes parameters by reference
libc.sscanf("1 3.14 Hello", "%d %f

%s", byref(i), byref(f), s)

Creating a pointer
i = c_int(42)

pi = pointer(i)

Standard presentation deck > Sep. 2009

Slide 17

Return types

Default return type: int

strcat = libc.strcat

strcat("abc", "def")) # „8059983“

strcat.restype = c_char_p

strcat("abc", "def")) # „abcdef“

Standard presentation deck > Sep. 2009

Slide 18

Arrays
Create an array-type

TenIntsArrayType = c_int * 10

Create an array-instance
array1 = TenIntegers()

array2 = TenIntegers(1, 2, 3, 4, 5, 6,
7, 8, 9, 10)

Using arrays
Array1[3]

“0”

Array2[3]

“4”

Standard presentation deck > Sep. 2009

Slide 19

Structures and unions

class POINT(Structure):

fields = [("x", c_int),

("y", c_int)]

point = POINT(10, 20)

print point.x, point.y

„10 20“

Standard presentation deck > Sep. 2009

Slide 20

UnitTesting Apache Modules

The problem
(Most) functions of a module could only be tested with

a running apache
Module-functions could not be called directly

The solutions
Starting and stopping an apache on each test
Test functions from the module directly using ctypes

Standard presentation deck > Sep. 2009

Slide 21

Calling module functions directly

Causes a exception stops execution
On runtime, ctypes tries to resolve all dynamic

symbols
All apache specific methods and data structures

are not available

Solution:
Building Apache as a shared core

Standard presentation deck > Sep. 2009

Slide 22

Building-kernel apache as a share core

Building the apache kernel as shared module
On apache 1.x

--enable-rule=SHARED_CORE

On apache 2.x build infrastructure doesn't seem to
know this anymore

Standard presentation deck > Sep. 2009

Slide 23

Compiling Apache

Compiling apache

make clean

CFLAGS='-D SHARED_CORE -fPIC '
./configure

make

Standard presentation deck > Sep. 2009

Slide 24

Linking the Shared Core

After compiling, the make command links apache
libtool ... -mode=link gcc ... -o httpd

..

Linking command for a shared core
libtool ... -mode=link gcc ...

-shared -o libhttpd.so ..server/exports.o

Standard presentation deck > Sep. 2009

Slide 25

Modifications of the Module

Module must be linked against the shared core

LDFLAGS = -lhttpd -L </…/libhttpd.so>

Could be an extra make-target

Standard presentation deck > Sep. 2009

Slide 26

Apache Data Structures in Python

class apr_allocator_t(Structure):

class apr_memnode_t(Structure):

class apr_pool_t(Structure):

class cleanup_t(Structure):

Standard presentation deck > Sep. 2009

Slide 27

Setting Up Data Structures – apt_pool_t
class apr_pool_t(Structure):

fields = [("cleanups",POINTER(cleanup_t)),

("free_cleanups",POINTER(cleanup_t)),

("allocator",POINTER(apr_allocator_t)),

("subprocesses",POINTER(process_chain)),

("abort_fn",c_void_p),

("user_data",c_void_p),

("tag",c_char_p),

("active",POINTER(apr_memnode_t)),

("self",POINTER(apr_memnode_t)),

("self_first_avail",c_char_p),

("parent",POINTER(apr_pool_t)),

("child",POINTER(apr_pool_t)),

("sibling",POINTER(apr_pool_t)),

("ref",POINTER(POINTER(apr_pool_t)))]

Standard presentation deck > Sep. 2009

Slide 28

Setting Up Data Structures – GCC

Ctypes code generator – modified version of GCC

Looks for declarations in C header files. Generates python
codes for:

enums, structs, unions, function declarations, com
interfaces, and preprocessor definitions

Very early stage

Standard presentation deck > Sep. 2009

Slide 29

Unit Test Framwork (nose)

Simple structure, one class for each testing object

Setup_class()

Test1()

…

TestX()

TearDown_class()

Standard presentation deck > Sep. 2009

Slide 30

Setting up the Test Environment
def setup (self) :

self.catacomb = CDLL("/apachecon/libmod_dav_repos.so")

self.httpd = CDLL("/apachecon/libhttpd.so")

self.apr = CDLL("/apachecon/lib/libapr-1.so")

self.pool = c_void_p()

self.allocator = c_void_p()

self.apr.apr_initialize()

self.apr.apr_allocator_create(byref(self.allocator))

self.apr.apr_pool_create_ex(byref(self.pool), None,
None, self.allocator)

Standard presentation deck > Sep. 2009

Slide 31

Writing the Test

def testSomething(self):

assert self.catacomb.function_to_test(arg1,
byref(arg2)) == “true”

Standard presentation deck > Sep. 2009

Slide 32

Shutting down the Test Environment

def teardown(self):

self.apr.apr_pool_destroy(self.pool)

self.apr.apr_allocator_destroy(self.allocator)

self.apr.apr_terminate()

Standard presentation deck > Sep. 2009

Slide 33

Summary of Steps

Compile Apache as a shared core

Link own module against shared core

Define the data structures you need

Write the tests

Run the test

Standard presentation deck > Sep. 2009

Slide 34

Conclusion

Powerful possibility to create tests with no need of a
running Apache.
Tests could be made in an easy language with

possibility to easily make moc-objects.
Writing a test is in most cases less than writing 10

lines of code.
Tests are easily portable to other systems/apache-

versions.

Standard presentation deck > Sep. 2009

Slide 35

Demonstration

Before the demo:

Thanks to Steven Mohr

	Testing Apache Modules with Python and ctypes��ApacheCon US 2009��Markus Litz - 06.11.2009�	
	Agenda for today
	Foliennummer 3
	Locations and employees
	Background
	Catacomb – A WebDAV Server Module for Apache	
	Catacomb – The Difference to mod_dav_fs
	Catacomb – A WebDAV Server Module for Apache
	Catacomb – History and Current State
	Why testing your code?
	Why testing with Python and ctypes?
	What is ctypes
	How to use ctypes
	Fundamental data types
	Fundamental data types - usage
	Using pointers
	Return types
	Arrays
	Structures and unions
	UnitTesting Apache Modules
	Calling module functions directly
	Building-kernel apache as a share core
	Compiling Apache
	Linking the Shared Core
	Modifications of the Module
	Apache Data Structures in Python
	Setting Up Data Structures – apt_pool_t
	Setting Up Data Structures – GCC
	Unit Test Framwork (nose)
	Setting up the Test Environment
	Writing the Test
	Shutting down the Test Environment
	Summary of Steps
	Conclusion
	Demonstration

