
Data integration in preliminary
Airplane Design

diploma thesis
cand. aer. Daniel Böhnke

Distributed Systems and Component Software Department

Institution for Simulation and Software Technology

at the German Aerospace Center (DLR)

Similarity Mechanics Group

Institute for Statics and Dynamics of Aerospace Structures

at Stuttgart University

Cologne, July 2009

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig und ohne fremde
Hilfe bzw. unerlaubte Hilfsmittel angefertigt, andere als die angegebenen Quellen
und Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich oder inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe.

Köln, 31.Juli 2009

Task

At the German Aerospace Center (DLR) development is carried out concerning in-
terfaces, program libraries and tools for the integration of numerical applications in
the areas of preliminary airplane design and air transport missions (e.g. for the do-
mains of aeronautics, structure, propulsion, combustion chamber, atmosphere, cosmic
radiation, and mission analysis).

Designed for this task a new DLR data format (Cpacs) was specified for the combined
storage of data from all involved tools in Xml. Other formats known in preliminary
airplane design are Iso 10303, wide spread in industry, and the Uml, originating from
software development. The goal of this work is to analyze the named models. Addi-
tionally, the possibilities to store Cpacs information in Iso 10303 are to be elaborated.

For Cpacs a software interface for tools exists that allows the export and import of
data. As an additional (optional) part of the diploma thesis the interface is to be
extended to interface relating Iso 10303 data. This can be accomplished be developing
import/export filters or by the direct integration of Iso 10303 data interfaces. The
development of the interface needs to carried out either in Java or Python.

Abstract

A multidisciplinary approach to preliminary airplane design is seen as one of the
major improvements for future design tasks. Several approaches can be found in the
literature. The key to a multidisciplinary approach is a central model that contains
all data and is accessible for all domains. The goal of this work is to analyze three
different models in respect to their benefits for data integration in preliminary airplane
design. The models are Cpacs, developed at the Dlr, Step, published by the Iso, and
the Uml, released by the Omg. For this purpose a lexical overview of the important
terms is given. Additionally several methods for the classification of information are
introduced and requirements for information models are set up. The main part of the
work is contributed to the analysis of the different models. A conclusion is drawn that
suggests a solution for a future information model using a combination of the Uml /
SysML and Xml. Subsequently a prototype for a converter tool, that processes Cpacs

data to Step is developed. The converted geometry data of the Attas Vfw 614 is used
for validation and shows the quality of the tool.

Contents

1. Introduction 1

1.1. Research Motivation . 1

1.2. Introduction to Information Models . 2

1.3. Research Outline . 4

2. Information in Airplane Design 5

2.1. Information Classification . 5

2.2. Information Objects . 6

3. Requirements for Information Models 11

3.1. Important Aspects . 11

3.2. Abstraction Methods . 16

4. Information Models 20

4.1. ISO 10303 . 21

4.2. CPACS . 36

4.3. UML . 48

4.4. Analysis/Comparison . 52

5. Converter for Information Models 55

5.1. Development Tools . 56

5.2. Converter Structure . 60

5.3. Validation . 62

6. Summary 63

6.1. Results . 63

6.2. Discussion . 64

6.3. Outlook . 65

Biblography 66

A. Section Volumes ATTAS VFW 614 71

B. Setup for Development Framework 73

C. Java Code for Point Entities 74

Nomenclature

API Application Programming Interface

CAD Computer Aided Design

CAM Computer Aided Manufacturing

CPACS Common Parametric Aircraft Configuration Scheme

DLR German Aerospace Center

EDM Engineering Data Management

EXPRESS Modeling Language

IGES Initial Graphics Exchange Specification

ISO International Organization for Standardization

KBE Knowledge Based Engineering

OMG Object Management Group

PDE Product Data Exchange

PDM Product Data Management

PLM Product Lifecycle Management

RMS Root Mean Square

SET Standard D’Echange et de Transfert

STEP Standard for the Exchange of Product Data

SysML Systems Modeling Language

TIGL TIVA Geometric Library

TIXI TIVA XML Interface

UML Unified Modeling Language

VDA Verband Deutscher Automobilindustrie

XMI XML Metadata Interchange

XML Extensible Metadata Language

XSD XML Schema Definition

List of Figures

2.1. Kinds of Knowledge, from [50] . 6

3.1. Class and Object . 17

3.2. Generalization Example . 18

3.3. Association Example . 19

4.1. Structure of Step items . 24

4.2. Parameter and type in Express . 26

4.3. Point Entity . 27

4.4. Generalization in Express . 28

4.5. Complex Entity . 29

4.6. Example for an Part 28 file . 32

4.7. Cpacs Structure, from [37] . 38

4.8. Header for a Cpacs example . 45

4.9. Tigl-GUI, from [37] . 47

4.10. Point Class, from [9] . 50

4.11. Airplane Design Language Class Diagram, from [9] 51

5.1. Express Project in Eclipse Navigator . 57

5.2. Converter Structure . 61

A.1. Delta per Section . 72

A.2. Volume Measuring in Catia . 72

B.1. Eclipse for Java . 73

B.2. Libraries in Converter Project . 73

1. Introduction

The introduction is split into three parts. At the beginning section 1.1 gives an outlook
about the motivation for the work carried out. A short lexical overview is listed in
section 1.2. This section outlines some of the major terms for information models.
Finally, section 1.3 introduces the concept and structure of this work.

1.1. Research Motivation

In preliminary airplane design various engineering domains have to be combined.
Aerodynamics and structure, flight control and systems as well as cabin design are
just some of the domains to be named. Different calculation methods like numerical
simulations based on geometrical data, or analytics based on symbolic equations come
along with these disciplines. Supplementary, shorter product design cycles have to be
established even though product complexity increases [7, 17].

The data from all domains has to be available instantly to allow shorter iteration cy-
cles and multidisciplinary design. Product Lifecycle Management and Product Data
Management systems have been developed to handle product data. These Systems
however do not handle data in a way that it is accessible as knowledge. Different engi-
neering domains still can not interact, as there is no common language available [55].
A holistic model accessible for all domains is the key to realize these tasks. Several
information models in preliminary airplane design are known.

At the German Aerospace Center (DLR) efforts are put in combining data for pre-
liminary airplane design in a single information model. The Common Parametric Air-
craft Configuration Scheme (Cpacs) enables project partners to adjoin and share data
from one single source [32, 37].

Along with Cpacs there are other information models such as the STandard for the
Exchange of Product model data (Step) published by the International Organization for
Standardization (ISO). Step is widely spread in today’s industry, especially for the
exchange of geometric data. Usage of Step is made in aerospace, automobile and ship
engineering [18].

The Unified Modeling Language (UML), having its origins in software engineering, being
distributed by the Object Management Group (OMG), and its successor the Systems
Engineering Language (SysML) have also been used to model airplane data [9, 38, 59].

1.2 Introduction to Information Models 2

The goal of this work is to analyze and compare these information models. We want to
find out, in which ways these different information models can help to increase speed
and quality of future aircraft design projects.

Along with the analysis a converter is written allowing the output of Cpacs data to
Step. The converter allows the transfer of one information model to another and
enables even more people to work on the same project. This can help to increase the
acceptance of Cpacs inside and outside the DLR.

1.2. Introduction to Information Models

“When I use a word,” Humpty Dumpty said in a

rather scornful tone, “it means just what I
choose it to mean-neither more nor less”

Alice in Wonderland
Lewis Carroll

In this section a short lexical overview for information models is given. The major
terms in information modeling are defined. Subsequently, characteristics and structure
of information models are described.

At first, the term information should be defined. Several formulations can be found
in the literature describing the term. The Oxford English Dictionary [1] defines in-
formation as “knowledge communicated concerning some particular fact, subject, or
event” whereas knowledge is specified as “the fact, state, or condition of understand-
ing”. The german encyclopedia Brockhaus [11] defines information as “knowledge
aligned in format”. Additionally, a philosophical interpretation of the term informa-
tion is given in [49] stating that information is “knowledge that can be communicated
concerning its content and matter”. The major Express book Information Model-
ing the Express Way [52] characterizes information as “data placed in context”. The
definition of data can again be found in the Oxford dictionary as “facts, esp. numerical
facts, collected together for reference or information”.

As it can be seen from the various quotes, there is no distinct definition of information.
In this work we will stick to the common economic hierarchy of data, information and
knowledge, where knowledge is on the top of this hierarchy. As mentioned in [55]
many of the PDM and PLM systems neither offer a holistic representation nor do they
handle knowledge. Integrating data into a preliminary airplane design process will
therefore target the modeling of information, as we put data in context. Of course,
the engineers view of a future product will include raw numerical data. The goal of
modeling however should be to allow an understanding and reconstruction of these
data.

1.2 Introduction to Information Models 3

An information model is defined in [42] as “a collection of symbol structure types [..]
and a collection of general integrity rules”. Symbol structure types describe entities
that can be produced inside the information model. General integrity rules check for
the consistency of the produced entities inside the model. A typical information model
is described by the relational database model from [15]. The model is established from
the three different symbol structures: table, tuple and domain. The integrity rule for
the relational database is defined as: No two tuples within a table can have the same
key.
Another more extensive definition for an information model is given in [36], “an in-
formation model is a representation of concepts, relationships, constraints, rules, and
operations to specify data semantics for a chosen domain of discourse”. One of the
first attempts to create modern information models was established by the creation of
the Entity Relationship Model described in [13].

The creation of an information model is described in the literature as well. During the
development process of an information model, four different worlds are distinguished
by [29]:

⇀ subject world
subject matter of the information system

⇀ system world
information system itself

⇀ usage world
organizational environment

⇀ development world
describes the creation of the information system

This definition goes along well with the three schemes architecture in [58] that arro-
gates an external (usage world) and an internal (system world) schema as well as a
conceptual schema (subject world). The development world is not regarded in this
paper.

In modern industry the usage and subject world are more complex as a product ori-
ented view and a resource oriented view exist. The parallel existence of ERP and
PDM-Systems shows this conflict [22].

For the creation of every information model an information modeling language is
needed. The definition of an information modeling language is given in [36] as “an
information modeling language is a formal syntax that allows users to capture data
semantics and constraints”. Several information modeling languages have been devel-
oped over the past decades. Idef1x, Express and UML are just some of the languages
to be named.

1.3 Research Outline 4

The term information model is usually used in the context of information modeling
languages. In this work the models developed in Step, Cpacs and the Uml are gener-
ally called information models. Accurately, the term would only refer to the specific
metamodels.

1.3. Research Outline

This work analyses different information models in preliminary design and describes
the development of a Cpacs to Step data conversion tool. The thesis is split into the
following sections.

In chapter 1 the motivation for the work carried out is explained. More further a short
introduction into information modeling can be found. The introduction elaborated
some of the major terms quoting from common literature.

Chapter 2 gives a short review about information in preliminary aircraft design. The
goal of this section is to name the different approaches to classify information. One
classification scheme is chosen and the different objects and their relevance for pre-
liminary design are outlined.

The following chapter 3 describes the requirements for Information Models. In this
section not the information itself is outlined but severals important aspects are shown,
that should be handled by information models. Additionally, some of the abstraction
methods commonly applied in information models are elaborated.

Chapter 4 then describes the different information models Cpacs, Step and Uml as
well as their underlying data languages such as Xml, Xslt, Express and Xmi. The
information models are checked for the requirements formulated in the chapters 2

and 3. Finally a comparison and analysis of the information models gives hints on
how to use the different information models.

In chapter 5 an outline is given on the developed converter tool. Along with a descrip-
tion of the converter tool, the different development tools are illustrated. Additionally
the test mechanisms and results for the validation of the converter are shown.

Finally, chapter 6 summarizes the results of this work and gives a short outlook on the
further development of information models in preliminary airplane design. Chapter 6

is followed by the bibliography and the appendix.

2. Information in Airplane Design

Before the different information models can be analyzed and rated, benchmarks need
to be set up. This chapter introduces all information that might be necessary in pre-
liminary airplane design. The following chapter 3 then lines out how this information
should be modeled.

The first section of this chapter introduces some classification methods for informa-
tion that can be found in the literature. One approach is chosen and the following
section outlines all objects that can be found from the previous classification. The ob-
jects are linked from their domain independent definition to their possible meaning in
preliminary airplane design.

2.1. Information Classification

When breaking down information into several fragments, many approaches can be
taken. Most engineering design books like [46] from Pahl et al. differ between func-
tions and flows. A flow can be of energy, material or signal and has a direction. This
portioning is however too abstract for our case.

In his lectures [31] Katzmann distinguishes product information into technical infor-
mation, commercial information and quality information. The modeling activities at
the DLR are limited to the introduction of new technologies into airplane design.
Quality information is of more interest when a product goes into production, and is
therefore of minor relevance for our consideration. Commercial information is only
regarded as long as it is limited to economic factors. Product marketing is also of
minor importance.

Analysis and synthesis are two opposite design steps. Executing an analysis deter-
mines the properties of a product from a given set of characteristics. Synthesis tries to
find the needed characteristics to fulfill a set of requirements (properties). Weber et al.
introduce this classification into PDM systems in their article [62].

In her proposal [38] for a tool for preliminary airplane design Lu defines two different
kinds of tools. Those that are used for design analysis and those that are used for
mission analysis. It might be possible to derive an information structure from this
portioning. Some parameters in a model like for example a wing span are related to

2.2 Information Objects 6

both segments. Hence the portioning can be sensible for tool structure but is not for
the related information.

Rudolph proposes a rather abstract definition of information as well. In his work [50]
he defines different types of knowledge and a counter pair to each type. This can for
example be continual or discrete information. Figure 2.1 gives an overview.

Figure 2.1.: Kinds of Knowledge, from [50]

For the following section these types are used to line out what information might need
to be modeled in preliminary airplane design. Additionally to the named types from
Rudolph, also implicit and explicit geometric information is described.

2.2. Information Objects

For the classification of information objects the scheme introduced by Rudolph is cho-
sen. As it is already outlined in the introduction no static definition of information is
available. Therefor any other classification scheme can lead to equal results.

2.2.1. Geometric Information

Modeling an airplane is based to a great amount to the modeling of geometry. Geo-
metric information is important for the analysis e.g. of structure and aerodynamics.
Geometric information is not only important for analysis of mission parameters, but
also airlines are curious about different cabin layouts. As most products are designed
for multiple purposes a freight configuration must be considerated as well. Many
information stays in connection to geometric information. This information can be im-
portant from an engineering point of view (e.g. materials) as well as from an economic
point of view (e.g. production information, suppliers). This section gives an outlook
on two ways to hold geometric information, either implicit or explicit. It has been

2.2.1 Geometric Information 7

stated many times that a product data management approach should not be based
on geometric information as the superior element. This is elaborated as well in the
following section.

Explicit Geometry

Geometric information can be stored using explicit file formats. This way a software
that interprets this information finds for example a set of points, lines and solids in an
already defined format. The explicit information can either be stored in a native file
format from a CAD-Kernel or in a neutral format like Step, Iges or Dxf.

Native data benefits from the fact that the operations to create the geometry are usually
still retraceable. The native files are however restricted to solely one CAD system.
This makes it vulnerable to updates and extensive costs. Additionally, new engineers
working on the model might be used to work with different software. The key to a
multidisciplinary information model should be, that people can still work with their
familiar tools. Also the exchange with other partners is only possible when changing
to a neutral file format.

A short list of the most used neutral formats can be found within Choi’s et al.’s works
in [14]. As it can be deduced from the name, neutral file formats can be run on almost
every CAD system. This is important for multi-company solutions, for example in
aerospace industry with usually one OEM and many suppliers. In this case however
solutions are sometimes established by using the same commercial CAD tool in the
whole product chain. This, of course, implies major cost effects for suppliers working
for several OEMs. One of the major shortcomings of a neutral file format is that all
information about the creation of the information (parameter and operation) gets lost.
Changes to the geometry are therefore costly.

Implicit Geometry

In the same way as an engineer develops geometry by running different operations
with parameters, geometric information can be stored as a series of these operations.
Geometric information stored this way is called implicit or history based. The benefit
of this approach is that as all operations describing the model are accessible, changes
in the geometry can be established easily. Approaches to generate implicit geometry
through scripts are described by Reichwein and Hertkorn in [48].

The approach itself is again bound to one CAD system as most CAD kernels know
different operations and parameters. Through mapping procedures it is possible to
bring together similar operations from different CAD systems. For this purpose it is
important to model an auxiliary geometric representation of the model, as references

2.2.2 Numeric Information 8

to existing parts must be recreated. This can be found in the work of Choi et al. in [14]
as well as by Mun et al. in [41].

Handling geometric information implicitly might be the best way for future informa-
tion models. The implicit information is highly modular through changes and holds
all parameters that can be accessed in other domains as well.

CAD Dilemma

Besides specialized analysis and simulation software, CAD systems belong to the most
widely spread and expensive tools in the engineering domain. One of the major prob-
lems with CAD is that all these extensive tools are not inter operable. Usually a
supplier must provide the CAD system its customers use. When the supplier tries to
stay independent and works for several OEMs he needs to provide additional CAD
tools. This is not only cost intensive but also inefficient because the same product
needs to be modeled twice as it can not be transfered from one system to another.
Meier calls this effect the “idle power”of CAD exchange. In his article [39] he also
lists some of the different CAD systems used by the major OEMs from the german
automobile industry. It can be seen that while Volkswagen and Daimler Benz mostly
use Catia V4/V5 tools, Opel sticks to Unigraphics and Ford uses Ideas. Along with
the CAD tools usually extensive PDM and PLM tools are used.

These tools are a step forward from a pure geometry based representation of product
data. The problem is that modeling of a product should start as early as the the first
concepts come up. The first elements of a product are however not geometry related
as much more requirements and properties need to be considered. Stark names these
issues in [55]. Katzenbach underlines these theses as he states in his lectures [31] that
geometric information is not at the top of product topology.

2.2.2. Numeric Information

Numeric information describes all parameters of an information model that can be in-
terpreted in a mathematical way. These parameters can therefore hold integer values
as well as real. Numeric data can be classified using a unit system. A partially di-
mensionless treatment of parameters (aspect ratio and wingspan instead of wingspan
and area) is possible as well. Numeric data are not necessarily to be retrieved from
mathematical coherences.

2.2.3. Symbolic Information

Equations are a major contributor for describing product data as well as for analyzing
them. Symbolic data can be used for some different reasons while modeling a product.

2.2.4 Continual Information 9

First of all, many aspects describing the product itself can be modeled via equations.
The most simple example in this case is a fuselage section with a circular cross section.
The location for fixing points on this section can be described using simple equations
as well as the number of stringers.

It is possible to use equations to validate the model up to a certain point. All values
that are brought into relationships via symbolic information can be recalculated and
changes can be monitored. Additionally symbolic information can be used to access
different analysis tools. To pick up the previous example a tool might work using the
aspect ratio and wingspan but the model only holds wingspan and area. In this case
equations can be helpful to ease the mapping process.

2.2.4. Continual Information

Regardless of the fact that continual data are hard to manage on a digital system
such as a computer it comes up in preliminary airplane design on several occasions.
Material data can be described using diagrams for tensile strength or elongation. This
data usually comes from data sheets or standards and is neither retrievable nor can it
be expressed via equations.

Continual data can also appear multi dimensionally such as in climate data which
are also handled at the DLR. Performance maps are an additional example where
continual data may arise in preliminary airplane design, for example with engine
data.

2.2.5. Discrete Information

Like already mentioned, in the previous section, on a digital system like a computer
data is always stored discretely. In this case the term discrete information is used in a
different association.

Discrete data is mostly important because of technical reasons since not all product
data is scalable. This can be seen in a simple example. As an airplane is supposed to
reach a certain range and carry a load over this distance a wing is designed for a certain
amount of fuel, aerodynamic drag and structural forces. To meet the requirements the
designer needs to choose an engine for the airplane. As there is no new engine for the
airplane the designer can only choose from pre-existing engines. The engines differ
in weight, efficiency and thrust and are relevant for the design of the wing. This
information influences the design process as it implies discrete steps.

2.2.6 Stochastic Information 10

2.2.6. Stochastic Information

Especially in preliminary airplane design, stochastic data plays a major role. Many
target values for a construction are derived from statistical data. Usually common
products in the same area are reflected via statistics and a delta is agreed on, by which
the new product should exceed previous approaches.

Stochastic data is also used in areas where a deterministic description is not possible.
For example in areas where research has not advanced enough for a reproducible
result. Or in areas where a calculation is too time and cost intensive (e.g. engine
noise).

2.2.7. Deterministic Information

As an airplane is a product developed by engineers and usually follows the laws of
physics, all pieces of information concerning an airplane are in some way determin-
istic. Principles can be derived from physics as well as from self determined guide-
lines. An airline might provide deterministic information by introducing a ratio for
seat length and height that guarantees comfort for the customer. This allows the de-
scription of a factor that is usually intuitive. If something like the introduced ratio is
appropriate is therefore disputable.

2.2.8. Intuitive Information

Intuition is derived from creativity and can therefor hardly be represented in a model.
Intuitive decisions can lead to new concepts or the development of new technologies.
An intuitive decision is made without an explicit understanding of the material of
interest. Something intuitive must not be something irrational. The decision or idea
can still be declared with explicit information. In the first place it might be something
no one ever thought of.

2.2.9. Explicit Information

Explicit information can be derived from intuitive information. An explicit term is
created through abstraction of a previously intuitive information. The explication for
the intuitive term is established via explicit rules. In terms of airplane preliminary
design this process would occur when a new winglet design that was chosen intu-
itively creates major benefits for the aerodynamic of the airplane and the reasons for
this behavior can be found so that the effect is reproducible

3. Requirements for Information Models

After a short introduction about information classification and information objects
was given in the previous chapter, this chapter describes some of the requirements
for information models in preliminary airplane design. The requirements are divided
into two subsets.

Primarily, some important aspects are named, that need to be fulfilled by the model,
e.g. holism. These aspects can however not always be accomplished solely by the
process of modeling. For instance, visualization needs a proper model to be based on,
but also a stable and easy-to-use software interpreting the model. Section 3.1 gives an
outlook on these aspects.

The second part of the requirements chapter elaborates some of the modeling mecha-
nisms and abstraction methods that are commonly used in section 3.2. These mecha-
nisms are mostly based on object oriented languages and can be identified in chapter 4

as all introduced models use these mechanisms in one or another way.

3.1. Important Aspects

In her paper [36] at the National Institute of Standards and Technology, Lee states that
a quality information model is described as a model that is: “complete, sharable, stable,
extensible, well-structured, precise, and unambiguous”. In their introduction [4] to Step

Anderl and Trippner outline the central functions of a product model as the exchange,
storage, archive and transformation of product data. While the list can probably be
continued beyond this point, we try to give an outlook on the most important aspects
of information models.

3.1.1. Holism

The first and foremost important aspect of an information model in preliminary air-
plane design is holism. The model does not only need to include all engineering
domains but also other departments like marketing, sales and production. As the
granularity of a model increases from preliminary design to production, misconcep-
tions at an early stage can cause major harm to a project. The holistic approach can
be subdivided into two sections. The first and most obvious requirement is the mul-
tidisciplinarity of the model. As the data has to be within the model, it also has to

3.1.1 Holism 12

be available for design work. Accessibility is another issue that can be linked with
holism.

Multidisciplinarity

A multidisciplinary model can be defined as a model that holds a common subset of
parameters and objects that have a relation to more than one domain concerned with
the design of the product. This model definition for example goes beyond the point
of dual disciplinary models that are used for fluid-structure interaction. These models
are related to one specific tool and are from an abstract point of view handled as one
domain.

Working in a multidisciplinary environment is an uncommon task for a design en-
gineer who usually is concerned with single domain solutions. The design engineer
should therefore be able to still work with his known single domain tools. This goal
is set up by Hoofman et al. in [25]. Working in a common environment is one reason
for this organization of tools. Additionally, there is no need to re-implement parts of a
model that are not related to other domains. For example an engineer that is currently
working on aeroelastic fitting might be interested in several different layer structures
of a carbon fiber material. The engineer tries out different structures using a parameter
study. He can trigger a calculation program for the characteristic values of the mate-
rial. The engineer is however only interested in these results. The characteristic values
are important for the work of other engineers in other domains. A multidisciplinary
model does not replace single domain specialists but makes parts of their knowledge
available to others in the design process. The goal of a multidisciplinary model is not
to create an engineer that has full knowledge in all accessed domains. The key is to
provide the information that influences the global design operations. This brings up
two major issues:

⇀ identify parameters that are relevant for a multidisciplinary model

⇀ announce domains accessing a single parameter

The first issue can only be handled by modeling specialists defining the meta model for
the multidisciplinary model in combination with single domain design experts. The
modeling specialist needs to know about the requirements for several design tasks
in single domain environments and their output and impact on the model. From
this information he needs to extract common subsets and make them available in the
holistic model.

Introducing a parameter to a model is however not enough. An engineer working on a
model needs to know which design task does influence a parameter. Only in this way
changes to parameters in the model are re-traceable, and only in this way an engineer
is informed that his changes may influence other domains of the model.

3.1.2 Transparency 13

Accessibility

As the model is built up as a multidisciplinary model it needs to be accessible for
all domains contributing to it. At this point it must be seen that while the model
should be set up by a modeling expert it is usually accessed by a design engineer
coming from a single domain background. The design engineer reads data from the
model, processes it and writes it back. Hence the model should be accessible as easy
as possible. In a study [19] about this issue Fidel and Green find the most frequent
accessibility factors for documentary sources as:

⇀ Saves time

⇀ Has the right format

⇀ Is physically close

⇀ . . .

Time is always saved by storing data in a single model. This way the number of sources
is kept small and information is easily retrievable. When additional information needs
to be put into the model, a modular and fast infrastructure must be set up, that allows
changes in the model quickly.

The right format for data is a requirement that is hard to establish as all pieces of
information are transferred into the central information model. As the models’ read-
ability should be good, information should be accessible. Extensive data used by e.g.
numerical simulations can be stored in the according format and then be accessed via
links from the central model. Being in the right format is an attribute that can also
be established by developing import/export functions that translate one information
model into another.

The term physically close can be replaced with at my desktop. The model should be
accessible from either local hard drives or via software that manages network storage.
The author would also encourage an accessibility for all departments involved in the
project, not only the design department. For example the sales and marketing de-
partments are part of the product development at an early stage. These departments
stay in contact to the customer, set up requirements and communicate development
improvements. Access to simple geometry representations would enhance the work
of these departments.

3.1.2. Transparency

The previous sections showed the holistic approach to an information model. It was
said that all information regarding more than one domain should be stored in the
model. Additionally the accessibility for all domains contributing to the model was

3.1.2 Transparency 14

requested. This section enumerates requirements on how to order and represent the
information in the model.

Visualization

The information stored in the model and the structure of it need to be represented
in a way that allows easy navigation. Although the model is stored in a string based
file (p21, stp, xml, xmi) the representation of the pure string based data would be far
beyond readable. Chapter 4 shows some examples.

In some CAD Systems Level of Detail (LoD) can be used to only represent data that
is currently under observation while other data from the model is not loaded on full
detail. A similar display of information can be achieved by e.g. a tree representation.
A designer that is faced with the full complexity of the model at once can hardly
manage all pieces of information.

At this point it might also be a benefit to enable the view on the metamodel. As the
metamodel only holds a reduced number of elements, it can provide a better overview
of the data. Tools for visualizing information models as well as their metamodels are
usually available as most languages contain a more or less detailed specification for
graphic representations.

Visualization is only an issue for human interpretation. It may differ in some form
from the stored model. One example for this representation can be seen for graphs.
While all information can be stored in a tree structure, not all information can be dis-
played via a tree structure (bipartite graph). The machine and human representation
must therefore not be identical.

Order

Transparency can not only be achieved by graphical representation of a model, but also
by a good structure. Several abstraction methods are introduced in section 3.2. Hier-
archy can be subdivided into the following three classes as elaborated by Mylopoulos
in [42].

⇀ Ahierarchical Systems:
“Ahierarchical systems are independent combinations of information. The terms
are coequal and without an inherent structure but they can be assorted e.g. al-
phabetically.”

⇀ Partial-hierarchical systems:
“By adding order characteristics partial-hierarchical systems provide the oppor-
tunity to make a first grouping of objects according to content-related criteria.

3.1.3 Reuseability 15

So there is the possibility to select groups by needed properties. One example
for this category of systems is a Thesaurus.”

⇀ Hierarchical systems:
“Hierarchical systems possess a strict hierarchical structure. [...] This system is
advantageous for a short, clear representation of information, but in consequence
of the limitation of digits there is just a poor significance of number coding
possible.”

Another way of introducing order to the information model is by using semantic-
or ontology-based systems. In these systems the focus is placed on modeling the
relationships between entities. Proposals for these systems are made by Weber et al.
for product data management in [61] and by Klein for ISO 10303 in [35].

Additionally, a possible breakdown for the order of information can be made by dif-
fering between top-down and bottom-up approaches. A top down approach starts by
an upper element like e.g. the airplane and then models minor elements. Bottom-up
systems are more related to biologic systems for example the build up of a organism
evolving from a single cell.

The introduced classifications overlap in many cases. Semantics can easily be used
to model hierarchic structures. Top-down and bottom-up systems guide the direction
of the hierarchy. Nevertheless, most information models (and all models evaluated in
this work) stick to a partial-hierarchical top down approach.

3.1.3. Reuseability

Modeling product data is a time and cost intensive task. As a result this task should
not be repeated for every product or product derivate. In the automobile industry
products are distributed in different configurations (coupe and convertible) as well
as in the aerospace industry (long range or freighter). The created information goes
through the process of: “specification, development, production, test, modification,
use, storage, etc”, as stated by Stark in [55]. Enabling the reuse of this information is a
major task for the information model.

The creation of a detailed metamodel (e.g. well defined classes) allows the reuse of
information. It is important to note that the information model should hold this infor-
mation in form of applied modeling mechanisms and not in form of documentation.
Documentation can encourage the understanding of a model but is often used to re-
place elements that could be modeled as well. Furthermore documentation may be
ignored as it makes limitations to the model that can not be validated.

Rule-based systems can offer operations to build up a model. When the set of rules
(production system) that was used to create a model is known, a reconstruction of the
model or variants of it can easily be achieved by using a similar set of rules.

3.1.4 Version Control 16

3.1.4. Version Control

The origins of version control for engineering information models lie within product
data management. The idea is that the changes to a part or product can be retraced.
The optimal solution allows a user to find out who and for what reasons applied
changes to the model. Also the timeline can be reconstructed.

The version control implies an additional layer to the model. While contents of the
model are stored in a partial hierarchical system, version control can add an additional
dimension. But version control does not only enable the control of changes to a single
model, but also to the development states of the metamodel.

Reuseablity that was demanded in the previous section can only be established when
it is possible to retrace previous projects. Additionally it is important to track the
versions of the metamodel, as tools targeting the model will only work for particular
versions of the metamodel.

3.2. Abstraction Methods

The process of modeling is divided into two parts. On the one hand there is the
specific or instance model of a product. This model carries detailed information about
the product, in our case the airplane. For example this model holds information about
the size of the wing as well as information about the number of seats in the business
class section.

On the other hand the information that is detailed in the instance model is placed as
abstract information in the metamodel. The metamodel describes the structure and
types that can be used to instantiate the specific model. The metamodel describes the
wingspan as an attribute of the wing and the number of seats as an attribute of the
fuselage section. For the wingspan it allows positive values from type meter. The
number of seats must be an integer value. In this work we examined languages for
metamodels that are mostly based on object oriented mechanisms. In their paper [8]
Bertino and Martino describe the basic concepts for such a model:

⇀ each real world entity is modeled by an object

⇀ each object has a set of instance attributes and methods

⇀ the attribute values represent the object’s status

⇀ objects sharing the same structure and behavior are grouped into classes

⇀ a class can be a specialized version of one or more classes

These concepts are lined out in the following sections to allow a better understanding
of the modeling mechanisms used in the various information models examined in this

3.2.1 Classification 17

work. At some points the explanation exceeds the definition of Bertino and Martino
by more modern concepts such as e.g. multi inheritance. Additional information on
object oriented modeling is given in the language specific literature such as in [52] by
Schenk and Wilson on Express or in [44] by Oestereich on the UML.

3.2.1. Classification

During the process of modeling, information is abstracted from an entity of reality.
Only those aspects that are relevant for our model are described. When an airplane
is described within a model for aerodynamic calculations the painting is not part of
it. A modeled entity is called an object. After it is decided what information will be
handled by the model, a class can be implemented. A class holds the structure and
behavior of a set of objects. When a specific airplane needs to be modeled, an airplane
object from the airplane class will be instantiated.

Airplane

Plane B

Plane A Plane B

Figure 3.1.: Class and Object

Figure 3.1 shows a graphical representation for the above example. Several objects
are derived from the airplane class. Objects are always underlined in a UML conform
representation. In object oriented programming classes describe the behavior and
structure of objects. The behavior is modeled via operations or methods. In our
example this means that the class is equipped with an additional fly() method. For
information modeling behavior is no longer considered.

The structure of a class consists of a set of attributes. Again this can be taken from
the example as the wingspan and number of seats. The class describes the types, the
object holds the values. The terms class, object, attribute, entity, element are used
frequently in similar meanings in this work. The following table gives an overview of
the language specific names in respect to the introduction given in this section.

It is important to note that each object should be marked using a unique identity.
Objects may hold identical values for their attributes as well as an identical name. The
example from above describes the modeling of an airplane. If there are two identical

3.2.2 Generalization 18

term Express Xml-Schema Uml

class entity element class
attribute attribute attribute
relationship relationship association

Table 3.1.: Object Oriented terms in Information Modeling Languages

airplanes both named A 320 with a wing span of 34,1m and 20 business class seats,
there must be a possibility to differ between the objects. This can either be established
by introducing an additional attribute e.g. named id, or by declaring for example
the name attribute to be of unique kind. The second method can of course only be
deployed if the information modeling language knows a unique keyword.

The distinction of a suitable set of classes is important for a well modeled information
model. Classification methods and schemes are elaborated in section 2.1.

3.2.2. Generalization

One powerful mechanism in object oriented structuring is generalization. Classes can
be ordered in different systems (see section 3.1) hierarchically. A subclass will inherit
all attributes and methods of the superclass. While inheriting preexisting elements the
subclass can declare additional elements.

To follow the example from the above section, we will introduce a more general class
than the airplane class. As an airplane is a means of transportation, the superclass
will be called vehicle. A vehicle can hold business class seats but must not have a
wingspan. A ferry can also offer business class seats but is defined through gross
register tons. The two classes airplane and ferry will inherit the number of seats from
the vehicle class.

Airplane
-wingspan:m

Vehicle
-numofSeats:int

Ferry
-grt:ft²

Figure 3.2.: Generalization Example

3.2.3 Association 19

Figure 3.2 shows a graphical representation for the example above. It is possible to
define the vehicle class from the example as an abstract class. Abstract classes can
hold attributes and methods as well as all other classes, but they may not be instanti-
ated. In some cases the inheriting subclass will overwrite elements from the superclass
and redefine attributes or methods. This mechanism is called specialization. Multi-
inheritance enables a subclass to inherit attributes and methods from two classes.

3.2.3. Association

One of the basic works for information models was the entity relationship model
presented by Chen in [13]. Entities are introduced as classes in the object oriented
modeling. Relationships are established via associations. In the terminology of the
UML an association is created between classes, objects are connected via links.

Along with the association a multiplicity can be implemented. The multiplicity defines
the number of objects that can be linked to each other. For example we can restrict the
number of wings that may be attached to an airplane object to three. On the instance
level the wing, the horizontal tail and the rudder can then be linked to the airplane
object. Figure 3.3 shows an example. The left hand side shows the metamodel and on
the right the instances are displayed.

Airplane

Wing

*

3

A 320

Wing

Horizontal Tail Rudder

Figure 3.3.: Association Example

Association attributes and recursive associations are additional elements that can be
used for modeling but are in this case outside of the scope of information modeling.
Many of the named mechanisms have their origins in object oriented programming
and make working with methods easier. However this is not relevant in all aspects to
information modeling.

4. Information Models

In the previous sections the scope of information modeling in preliminary airplane de-
sign was outlined. It is important to note that at the DLR not more than a preliminary
view on a product is interesting. The DLR is a major research institution and there-
fore curious about introducing new technologies into an airplane. This might lead as
far as the construction of a prototype but not any further. Therefore handling prod-
uct lifecycle data which is important for industrial users, is not an issue at the DLR.
Section 2 described all the data that might come up in the information models and
how it should be handled. The following section 3 lined out some requirements that
the information models need to satisfy. The requirements section was split into the
areas of modeling aspects and modeling mechanisms. This chapter introduces three
information models and describes their benefits and shortcomings.

The oldest of the compared information models is the ISO 10303 also known as the
STandard for the Exchange of Product Data (Step). It is an international standard
and widely spread throughout the industry. The models are built up by using the
object flavored language Express. Instance files are stored either as .p21 or Xml data.
As Step is a very extensive standard, only one application protocol is discussed. The
reasons for choosing this application protocol along with a description of the other
Step parts can be found in section 4.1.

So far Cpacs is a DLR intern standard. It is used in several multidisciplinary projects
that handle the scope of preliminary airplane design as well as further aspects. The
development came up in 2005. The standard is based on Xml and benefits from a
growing number of tools that are adapted to it. The Cpacs related work can be found
in section 4.2.

Although there is no standard for the modeling of preliminary aircraft data in Uml yet,
this chapter gives an outlook on some of the work done in this area. There are several
projects running that work on these issues. The greatest common subset however is
still the software specification of the Uml, as outlined in section 4.3.

The following sections do show not only facts concerning the reviewed information
models but also several hints that the techniques are in some way connected and
that there are several intersections. Finally an analysis (section 4.4) is carried out that
summarizes the evaluation made and gives hints about the the most valuable approach
for future work at the DLR.

4.1 ISO 10303 21

4.1. ISO 10303

The ISO 10303 Product data representation and exchange is also known as STandard
for the Exchange of Product Data. It is a set of standards for the modeling of product
data. The following sections give an outlook on the requirements that were set up
during the development process of Step. The history of Step along with some of
its ancestors is presented. Subsequently, the structure of the standard along with its
operational area and some of the main tools that have implemented Step is illustrated.

At the beginning of the Step development several requirements were determined that
describe the scope of the evolving standard. Fowler elaborates these requirements
in [20] as:

⇀ The creation of a single international standard, covering all aspects of CAD/CAM
data exchange

⇀ The implementation and acceptance of this standard by industry, superseding
various national and de facto standards and specifications

⇀ The standardization of a mechanism for describing product data, throughout the
life of a product, and independent of any particular system

⇀ The separation of the description of product data from its implementation, so
that the standard would not only be suitable for neutral file exchange, but also
provide the basis for shared product databases, and for long-term archiving

Ongoing from these requirements the development of Step started within the Interna-
tional Organization for Standardization (ISO) in 1984. Other neutral file formats of the
time did not comply with the challenges.

The most famous ancestor of Step is the Initial Graphics Exchange Specification (IGES).
IGES has been developed in the 1970s by the IGES/PDES Organization and was pub-
lished as ANSI standard. It is still used for the exchange of geometric information
and most major CAD-Kernels offer translators for IGES although it has been officially
replaced by Step [20, 27].

Several lacks of IGES (e.g. no handling of non-geometric data [14]) were tried to cap-
ture within SET. SET stands for Standard D’Echange et de Transfert and was developed
in France. Its first release [20] was in 1985.

Attempts for a neutral format for the exchange of surface data led to the development
of VDA-FS (Verband der Automobilindustrie-Flächen-Schnittstelle). VDA-FS came up
in the 1980s as well. The origins of the project lay within the german automobile
industry. As some measuring systems output their data via VDA-FS it enables the
control of CAD-Data. Due to internal recommendations by the VDA [5] the format
was replaced by Step. The list of neutral data formats could be continued and includes

4.1 ISO 10303 22

formats such as DXF or Parasolid. These standards however neither manage the hole
scope of product data nor are they connected to the history of Step.

Until the first release of Step in 1995 a lot of development was carried out. Within
the release ISO published the first 12 parts of Step. Over the years the standard
has evolved to a much bigger information base for product data handling. Part of the
development is the new information modeling language Express. Express is described
further in section 4.1.2. As Express is just one of the many parts published until
today the structure and organization of the different parts of the standard are outlined
further in section 4.1.1. Some of the parts that are related to the work carried out are
described in the following sections.

As already stated, Step is developed and distributed by the ISO. Within the ISO the
technical comittee 184 with the sub-commitee 4 is responsible for Step. Along with
Step several other standards such as IIDEAS or PLIB are in the TC184/SC4’s1 liability.

As Step is still mostly used to exchange geometric information, all major CAD-Kernels
have implemented it. These tools such as Catia2 or OpenCascade3 however only cover
a small bandwidth of the standard. The fact that no parametric information is trans-
lated by Step is in someway appreciated by industrial customers [14]. In this way only
pure geometric information en bloc is exchanged. This is common practice between
OEMs and their suppliers. Additional features of Step are implemented within some
parts of Catia2 and the software packages by LKSoft, namely JSDAI4 and IDA-Step

5.
A more extensive list of tools that use Step can be found in the Step Application
Handbook [2]. All named tools are explained more precisely in section 5.1.

Due to the long and intense standardization process6 of Step its bandwidth is broad
enough to attract the big companies in the aircraft industry. Boeing has started work-
ing with Step early on AP 210 as stated by Smith in [54]. In 2004 the Value Improve-
ment through a Virtual Aeronautical Collaborative Enterprise(Vivace)7 project started. The
project is funded by the EU and Airbus. For the developed EDM framework Step was
also used.

Due to the continuing development of Step a lot of scientific work is carried out. One
of the best sources for Step related projects is the NASA-ESA workshop for Product
Data Exchange. The PDE8 has been carried out for the 10th time in 2009.

1 http://www.tc184-sc4.org/
2 http://www.3ds.com/products/catia/
3 http://www.opencascade.org
4 http://www.jsdai.net
5 http://www.ida-step.de
6 This must not be an advantage. Solely, AP 214 holds 3500 pages. The information in this document

however is not sufficient enough to create a geometric model.
7 http://www.vivaceproject.com
8 http://step.nasa.gov/pde2009/

4.1.1 Structuring in STEP 23

4.1.1. Structuring in STEP

As already mentioned in the previous section, the STandard for the Exchange of
Product Data is split into several parts. This section gives a rough outlook on the
arrangement of the different parts. The line-up off the application protocols is de-
scribed more precisely.

The standard is split into the different items:

⇀ description methods

⇀ implementation methods

⇀ integrated resources

⇀ application protocols

⇀ conformance testing

⇀ abstract test suites

All items hold a set of parts and all parts are published separately. Description
methods hold information regarding the modeling aspects in Step. In particular, in
this area the Express language is described in several domains (Express, Express-I,
Express-X). A review of Part 11: Express language reference manual is given in sec-
tion 4.1.2.

The second item implementation methods includes several parts that allow the creation of
Step-related data as well as the output format of the data. Parts 21: Step-File Clear text
encoding of the exchange structure and 28: Step-Xml Xml representation for Express-driven
data describe the output as p21 file and xml. These parts come up in sections 4.1.3
and 4.1.4. Subsequently, several interfaces for programming languages are defined in
other parts of this item. Part 22 is the Standard Data Application Interface. Its definition
is used by JSDAI4 which is one of the development tools elucidated in 5.1.

The item integrated resources is split up into the two areas of integrated generic re-
sources and integrated application resources. As an example for an integrated generic
resource Part 42: Geometric and topological representation can be quoted. This part holds
several definitions for entities describing geometric elements. Integrated application
resources describe parts that cover the areas of e.g. finite element analysis or kinemat-
ics. Application protocols bundle integrated resources to one specific set of entities.

Application protocols (AP) are the items of the standard that are best known to most
users. Their task is to define the scope, context and information requirements for a
domain as stated in [17]. The APs are built up from an application reference model
and an application interpreted model. The idea behind this separation is that a user
begins to conceptualize an application protocol with the terms and connections known
in the domain the application protocol is defined for. This semantic information is put

4.1.1 Structuring in STEP 24

into the application reference model. Via a mapping procedure these terms and con-
nections are linked to entities and relationships already defined in the integrated re-
sources in the application interpreted model. The application interpreted model there-
fore holds the syntax of the model. This part of the AP is the computer-interpretable
model.

Several parts can be named that are well known APs. One of the more complex
APs is Part 210: Electronic assembly, interconnect and packaging design handling. The
Part 203: Configuration controlled 3D designs of mechanical parts and assemblies covers the
application range for most work relating CAD. Most CAD-Kernels have implemented
a Step-processor that can handle AP 203 as well as AP 214: Core data for automotive
mechanical design processes. AP 214 is outlined in section 4.1.5. At this point it can
already be mentioned that APs can implement entities redundantly. For example,
several entities from Part 42 are mapped in AP 203 as well as in AP 214.

Generally, all software tools that implement Step APs can choose from a subset of
conformance classes. A conformance class covers a set of entities from the AP that can
be interpreted semantically. This however makes it difficult for a user who works with
a certain AP to know if his work can be translated into different systems. Due to the
ongoing development of Step and its surrounding tools a milestone system seems to
be an adequate measure, but the implementation level has to be found for each tool
separately [2]. The structure of the named items is presented in fig. 4.1.

description
 methods

integrated
 resources

application
reference model

application
interpreted model

implementation
 methods

application protocol

modeling language

entities,
relationships

mapping

manipulation
output

Figure 4.1.: Structure of Step items

4.1.2 EXPRESS language reference manual - Part 11 25

The question comes up whether the APs are a irreplacable part of Step or not. The APs
bundle sets of entities that are already described in the integrated resources. Hence,
the integrated resources can be seen as the domain specific models (e.g. geometry,
finite element analysis). APs only collect several pieces from these resources as they
are application specific models. Most applications however cover identical domains.
Ship, automobile and aerospace industry are all related to the named domains and
use them in a more or less identical way. Due to the fact that all APs are based on an
identical set of resources, the interchangeability between the APs should be given.

The last two items are not in the scope of this work and are therefore not covered
entirely. The item conformance testing describes several parts that are applied to parts
in development. Abstract test suites are a sub-item of conformance testing, namely
Part 34. Originally it was planned to implement an abstract test suite for each AP. A
full list of all parts can be found on the TC184/SC4 homepage1.

4.1.2. EXPRESS language reference manual - Part 11

Express is a language for information modeling. It was developed during the first
years of Step after the initial work was undertaken at McDonnell Douglas Informa-
tion Systems [30]. Although it has been a Step project, the authors of the language,
Schenk and Wilson [52], state that the language is used in several other cases. An-
cestors of Express are the Natural language Information Analysis Method (NIAM)
also known as Object Role Model (ORM) by Njissen [43] and the IDEF1X language
developed by the U.S. Air Force [3]. By now, the language is accepted by the Object
Management Group (OMG) and is made one of the OMG languages [18]. Express

is part of the description methods in Step. The language is used to define the enti-
ties in the integrated resources. The data itself is stored within the parts 21 and 28.
These are explained in the following sections. This section gives examples for some
of the modeling mechanisms that Express offers. As Express can be represented us-
ing the graphical form of the language Express-G, some of the examples are shown
in figures, while others due to shortcomings of Express-G are shown in small code
examples. The representation is compliant to Express-G in most, but not all cases. Of
course, the Express language holds a broad variety of modeling mechanisms. Since
not all of them are used in Step and the whole description of the language would go
beyond the scope of this work, interested readers are directed to the work of Schenk
and Wilson. Some of the more known software tools for the work with Express are
Expresso9, CoOM10 and the Express Compiler in JSDAI which are described further in
section 5.1. The process of Express tool development is described by Goh et al. in [24].

9 http://exp-enginge.sourceforge.net
10 http://www.dik.tu-darmstadt.de/forschung_2/produkte/

4.1.2 EXPRESS language reference manual - Part 11 26

An information model in Express is called a schema. Several schemas can be joined to
one revolving schema. The APs of Step do not unite several schemes since the entities
are simply copied from the integrated resources. The simplest case for the modeling
of data is a parameter of a certain type. The starting point for a row of examples is
a parameter x from the type Real. In the graphical representation of Express a base
type is indicated by a box with an auxiliary line on the right side. This small example
is displayed in figure 4.2.

x REAL

Figure 4.2.: Parameter and type in Express

Type definitions can be more complex in Express and go beyond the base types such
as String, Boolean or Real. New types can be made of these base types for example
a length_unit that is of the type Real. This way the interpretation of the parameter
x is bound semantically to a length and can not be misinterpreted for e.g. a ratio.
Enumerations and Selects can be used as well to model types. The following lines
give an example for both commands.

1 TYPE unit = SELECT
2 (named_unit, derived_unit);

3 END_TYPE;
4

5 TYPE si_unit_name = ENUMERATION OF
6 (metre,gram,second,ampere,kelvin,mole,candela,radian,

7 steradian,hertz,newton,pascal,joule,watt,coulomb,volt,

8 farad,ohm,siemens,weber,tesla,henry,degree_celsius,

9 lumen,lux,becquerel,gray,sievert);

10 END_TYPE;

The Select command in line 1 enables the user to choose one element from a list of
entities or types. named_unit and derived_unit are entities from part 41: Fundamentals
of product description and support. An Enumeration holds a list of names. The names
do not need to be declared any further. In this example several names are declared
that can be used to specify the unit of an attribute. As Step only uses SI-units there is
only a small amount available.

After a parameter or attribute is declared to be of a certain type it is connected to an
entity. The term entity is used to describe an abstract form for a set of similar objects
of the reality. Other object-oriented languages use the term class instead of entity.

4.1.2 EXPRESS language reference manual - Part 11 27

As Express is not a programming language, its entities only hold attributes and no
methods. In our case we declare an entity point that holds three attributes of type
Real and one attribute of type String. The entity is shown in figure 4.3.

point

x

y

z

REAL

name STRING

Figure 4.3.: Point Entity

The entities and attributes are connected via a line with a circle end. The name at-
tribute is Optional and therefore only attached to the entity with an intersected line.
The definition of IDs can be encouraged by an Unique statement. Instances of an
Unique attribute may not hold identical values. In a Express-G conform represen-
tation the attributes would be displayed as text on the connecting lines and not as
separated boxes. Relationships are established by declaring attributes that have an
entity as a type. E.g. name could be an entity of its own, and hold several attributes
such as a String for an identifier as well as an Integer for reference. The point entity
could then be connected to the name by an attribute of the same type.

Generalization is a powerful mechanism for building models. One of the common
application reasons for generalization is the description of a more determined mathe-
matic model. The point example is elaborated further by introducing a subtype. The
subtype is called point on parabola. The subtype inherits all attributes of the super-
type. Two constraints are applied to the subtype using a Where statement. First the
x and y attribute are combined using the parabola equation. Subsequently, the value
of z is limited to values greater than zero. Note that the Where statement is used for
validation and not calculation. Attributes that shall be calculated from symbolic equa-
tions can be declared via the Derive command, which is not used in Step. Figure 4.4
shows the extended example.

4.1.2 EXPRESS language reference manual - Part 11 28

point

x

y

z

REAL

name STRING

point on parabola

WHERE
parabola : y=x**2
zPositiv : z >=0;

Figure 4.4.: Generalization in Express

Note that the generalization is represented as a thick line. The circle end is at the
side of the inheriting entity. In Express-G there is no graphical representation for
Constraints, Rules, Functions or Where statements. For this figure a simple box
with an intersected edge was chosen.

When we look at the code for the generalization one problem in Express becomes
obvious. In the following lines the code is displayed. One can see that the subtype
and the supertype reference each other. This implies that the creation of a new subtype
requires a modification of the supertype. This becomes a major problem with bigger
information models11. Abstract supertypes can also be implemented in Express. This
and other items not in the scope of this section are explained in [57].

11 This is not a problem for users of Step, as the entities are predefined and can not be altered without
violation of the standard

4.1.2 EXPRESS language reference manual - Part 11 29

1 ENTITY point

2 SUPERTYPE OF point_on_parabola;

3 ...

4 END_ENTITY;
5

6 ENTITY point_on_parabola

7 SUBTYPE OF point;

8 ...

9 END_ENTITY;

The Express language holds the possibility to create complex entity. A complex en-
tity is created by an entity that is constructed from two subentites with an identical
superentity. In the common geometry definitions of Step a simple example can be
found. The superentity in this case is the named unit. Two out of many subclasses are
the length unit and the si unit. As all numerical information should be stored in
SI-units a combination of these two entities is constructed. The complex entity holds
the information off all three classes. See the following figure 4.5 for an example. The
figure shows the metamodel as well as the appearance of the complex entity in a p21

instance file.

named unit

si unitlength unit

#1=(LENGTH_UNIT()NAMED_UNIT(*)SI_UNIT(.MILLI.,.METRE.))

Figure 4.5.: Complex Entity

Feeney and Price promote in their talk [18] that Step should adapt to modern software
mechanisms. One of the key requirements is the adoption of the Unified Modeling
Language as replacement for Express. Several projects such as Engineering eXchange
For Free12 work on this issue and build a metamodel for the Express language.

12 http://www.exff.org/

4.1.3 STEP-File Clear text encoding of the exchange structure - Part 21 30

4.1.3. STEP-File Clear text encoding of the exchange structure - Part 21

With the use of various tools, instances of Step data can be output via the rules of
part 21. Part 21 introduces files with the endings .p21, .stp and .step. Sovereign from
the file ending, part 21 can be seen as the standard file format for Step-data. All major
software tools have implemented it.

In the following lines a short code example for a part 21 file is given. The example
shows the code for a simple geometric file containing a cartesian point. Beginning
and end of the file are declared by the ISO statements in lines 1 and 21. The file is
divided into two parts. At first the header (ll. 2-16), containing various meta data,
introduces information about the file, the name, the date of creation, et cetera. This
information however is string based and not relevant for a computer interpretation.
The schema (l. 14) gives a hint about the application protocol for which the file was
created. Knowing the related schema enables a syntactic validation of the file. Subse-
quently, the instances are stored in a data segment. In this example the data segment
holds only one instance (l. 19). The instance can be identified by the integer placed
first in the line. After the identifier of the instance, the entity of the instance is named.
In brackets the attributes of the entity are written.

1 ISO-10303-21;

2 HEADER;

3 FILE_DESCRIPTION(

4 /* description */ ('STEP Point Example'),

5 /* implementation_level */ '2;1');

6 FILE_NAME(

7 /* name */ ' ',

8 /* time_stamp */ '2009-05-27T15:33:06',

9 /* author */ (' '),

10 /* organization */ (' '),

11 /* preprocessor_version */ ' ',

12 /* originating_system */ ' ',

13 /* authorization */ ' ');

14 FILE_SCHEMA(('AP 214'));

15

16 ENDSEC;

17

18 DATA;

19 #1=CARTESIAN_POINT('Point.1',(1.,2.,3.)) ;

20 ENDSEC;

21 END-ISO-10303-21;

4.1.4 STEP-XML representation for EXPRESS-driven data - Part 28 31

Relationships can be established via attributes. This is already shown in section 4.1.2.
The identifier of an entity is put into the correlating attribute. The following code
example shows the data segment from the previous extract. Additionally, there is an
axis_placement related to the point placed in the model. The center of the axis is
placed on the coordinates of the cartesian point. The dollar symbol (l. 3) stands for
attribute values that are not assigned to a value.

1 DATA

2 #1=CARTESIAN_POINT('Point.1',(1.,2.,3.));
3 #2=AXIS2_PLACEMENT_3D(' ',#1,$,$);

4 ENDSEC;

The problem with complex entities in Express modeling has already been shown.
These complex entities are parsed into the code in an additional set of brackets. The
example for the length unit in part 21 file format is shown below.

1 DATA;

2 #1=(LENGTH_UNIT()NAMED_UNIT(*)SI_UNIT($,.METRE.));
3 ENDSEC;

The files are saved ASCII coded and are therefore easily portable on multiple systems
and via email. On the first sight, the part 21 files are human-readable and easy to
interpret. The problem however is that at a certain filesize13 the format gets unclear.
There is no possibility to follow relationships and jump through the file. The partial
hierarchic order is not apparent for the user. A special part 21 editor could solve
these problems. Admittedly, the goal of part 21 was to create a file format that is
exchangeable through organizations and is sovereign from specific tools.

4.1.4. STEP-XML representation for EXPRESS-driven data - Part 28

This part of Step enables the user to output data via the Extended Markup Lan-
guage (Xml). The history of Xml and its properties is discussed at full account in
section 4.2.3. Part 28 was introduced as a new item to the TC184/SC4 committee in
1999. It is supposed to substitute part 21. The reasons to choose Xml are expressed by
Kimber in [33] as14:

⇀ defines a generic, robust, and time-tested character syntax for representing struc-
tured data objects

13 The translated Cpacs data contains approx. 6000 instances.
14 see page 12 of [33] for the full argument list

4.1.4 STEP-XML representation for EXPRESS-driven data - Part 28 32

⇀ facilities for the syntactic validation are available

⇀ inherently extensible and flexible

⇀ supported in Web browsers

⇀ tied to an existing ISO standard, ISO 8879 (SGML)

⇀ hot new technology that is attracting lots of attention

A similar list of arguments can be found from Peak et al. in [47]. The implementation
of Xml in Step however is only limited to the instance level. In the following sections
some examples of Step Data saved in Xml are shown. The examples outline the
differences to the part 21 output.

Figure 4.6.: Example for an Part 28 file

4.1.4 STEP-XML representation for EXPRESS-driven data - Part 28 33

Figure 4.6 shows a set of Step data equivalent to the first example from section 4.1.3.
It can be seen that the tree-like structure of Xml makes the presentation of the data
more lucid15. With the use of modern Xml tools, it is possible to collapse parts of the
tree. On the left the tree is displayed. The right side of the figure shows the attribute
data. In this example one can see the schema information on the top followed by the
attributes.

Additionally to the attribute values, the type and in case of an inherited type, the
supertype is displayed. This can be seen at the name of the point, where the name
attribute is inherited from the representation item type. The following lines show the
full code for the point entity of the part 28 file.

1 <entity_instance id="e1" express_entity_name="cartesian_point">

2 <attribute_instance express_attribute_name="coordinates">

3 <list_literal>
4 <type_literal express_type_name="length_measure">
5 <real_literal>1.</real_literal>
6 </type_literal>
7 <type_literal express_type_name="length_measure">
8 <real_literal>2.</real_literal>
9 </type_literal>

10 <type_literal express_type_name="length_measure">
11 <real_literal>3.</real_literal>
12 </type_literal>
13 </list_literal>
14 </attribute_instance>
15 <partial_entity_instance express_entity_name="representation_item">

16 <inherited_attribute_instance express_attribute_name="name">

17 <type_literal express_type_name="label">
18 <string_literal>Point.1</string_literal>
19 </type_literal>
20 </inherited_attribute_instance>
21 </partial_entity_instance>
22 </entity_instance>

The identifier (l. 1) from the part 21 file changed from the hash code #1 to e1. Due to
the tree structure most references are not needed. They are only used to jump through
the file. This not interpreted version is harder to read for a human, as much more
information is displayed. This however enables a much better computer interpretation.

15 The displayed representation was generated using Xml Notepad. The software is freeware and dis-
tributed by Microsoft. http://www.microsoft.com

4.1.5 Core data for automotive mechanical design processes - Part 214 34

4.1.5. Core data for automotive mechanical design processes - Part 214

AP 214 was designed to support the management of product data in the automobile in-
dustry. The development was initiated by the Verband Deutscher Automobilhersteller
(VDA). Todays work on AP 214 is sponsored by the shareholders of the ProStep As-
sociation and the BMWi (german federal ministry of economy and technology). Some
encouragement comes from members of the SASIG (Step Automotive Special Interest
Group) [23].

The development of AP 214 began during the 1990s, the latest version [28] was pub-
lished in 2003. The scope of AP 214 holds 16 items. To allow a detailed analysis of the
information models, the requirements of each model are shown. Therefor all 16 items
are displayed, however not all in extend.

⇀ products of automotive manufacturers and of their suppliers
⇀ process plan information
⇀ product definition data and configuration control data
⇀ data describing the changes that have occurred during the design phase
⇀ identification of physically realized parts or of tools
⇀ identification of standard parts
⇀ release and approval data for product data
⇀ data that identify the supplier of a product and related contract information
⇀ eight types of representation of the shape of a part or of tool
⇀ data that pertains to the presentation of the shape of the product
⇀ representation of portions of the shape of a part or a tool by form features
⇀ product documentation represented on drawings
⇀ simulation data for the description of kinematic structures
⇀ properties of parts or of tools
⇀ data defining surface conditions
⇀ dimensional data and geometrical tolerance data

The first and most outstanding item defines the automobile industry as the key cus-
tomer of the standard. There are no APs that are related to the aircraft industry explic-
itly. Some shipbuilding APs are released, but they lack the extent of AP 214. As long
as no production related decomposition of the product is intended the approached
tools can be dropped for preliminary airplane design. Interesting is item four, which
enables the traceability of design changes. As a matter of course, the representation
of the product data in various CAD formats (e.g. B-Rep, CSG) is part of the standard.
The first chapter of AP 214 also defines several items that are not addressed in the
standard. These are:

⇀ product definition data pertaining to any life cycle phase of a product not related
to the design phase

⇀ business or financial data for the management of a design project

4.1.5 Core data for automotive mechanical design processes - Part 214 35

⇀ a general parametric representation of the shape of a part or of a tool
⇀ data describing the pneumatic, hydraulic, electric, or electronic functions of a

product
⇀ continuous kinematics simulations over time
⇀ data describing the input or the results of finite element analysis

These limitations narrow the usefulness of AP 214 for preliminary airplane design.
Not handling economic data may be suitable from an engineering point of view, es-
pecially in the early phases of product development. The life of a new airplane type
usually starts by an offer for a new concept getting sold. Therefor a product model
should hold at least some minor information regarding cost factors.

As already mentioned in the previous sections Step does not support any paramet-
ric representation of modeling mechanisms. Due to several low-level attributes (e.g.
radius of a circle) some kind of parametrization is still possible. Nevertheless, no
symbolic equations are part of Step. The fact, that numeric simulation data is at the
moment not part of the AP is not fatal, as this data is usually extensive and is evacu-
ated from the central model. This is even more true for unsteady simulations.

The named items are implemented and divided into several Conformance Classes
(CC). These CCs can again be split into the different domains bundled in the model,
as shown in table 4.1.

CC description
1-5 subsets of CAD Representation
6-10 modeling of product data
11-13 process planing
14,15 feature-based construction
16,17 simulation and measurement data
18,19 data exchange via process-plans

Table 4.1.: Conformance Classes AP 214

For the investigations of Step and Cpacs it was evident, that we had to choose one
AP. The decision to select AP 214 was made, because its scope is much wider than in
AP 203. The Conformance Classes 1 and 2 of AP 214 are described as look a likes of
AP 203 [4]. Additionally there have already been tries to implement other models into
the existing AP [30]. The results from this work were used during the implementation
of the converter tool (s. Section 5). Another key item of AP 214 is the scope on the
easy handling of several variants of one product. This is important for the automobile
industry (e.g. coupe and convertible of the same model) as well as for the aviation
industry (e.g. several cabin layouts). Especially in preliminary airplane design several
new concepts are tried, and should be easy to integrate into the central model.

4.2 CPACS 36

4.2. CPACS

Cpacs stands for Common Parametric Aircraft Configuration Scheme. The idea of
Cpacs came up during the first Tiva project at the German Aerospace Center (DLR)16.
The DLR carries out major research in aerospace related technology. Due to its wide
spread structure, many different tools are developed separately. These tools come from
domain experts and vary in their level of detail from simple stochastic and analytic
approaches up to full numeric simulations. While these tools have been tested in
single domain projects, the future goal is the integration to reach more for a global
maximum in multidisciplinary design workflows. Tools that need to be integrated are
either under development or commercial (or tools with code that can not be accessed
for other reason) tools. The number of interfaces can be decreased by introducing a
central information model.

The goal of the Tiva project is to integrate these tools into one (or a set of) process
chain. This led to the development of a single data structure called Cpacs. The re-
quirements that Cpacs was designed for are:

⇀ easy to handle

⇀ hierarchic

⇀ human readable and computer processable

⇀ can be validated

The first point is probably the most important. Domain engineers first need to be
convinced that a holistic approach to airplane design can result in major benefits for
the product. The academic benefit from integrating a tool into a process chain in
opposite is unquantifiable. Therefore the integration into and work with a new model
should be as easy as possible. Note that the people working on the tools are in the
first line engineers, mathematicians or other natural scientists. They are experts in
their domains and inconclusively software engineers.

The requirement for a hierarchic and human readable format is standard in most
information languages. The software-based interpretation is realized by a set of syntax
rules. The possibility to validate the data is very important. However only a syntactic
validation is possible. There is no opportunity to tell whether a value is reasonable or
not in certain boundaries17.

It was found, that the Xml format offered the solution for the set off requirements. The
format is widely spread and can be edited via a simple text editor. The tree structure

16 http://www.dlr.de
17 A negative value for a wing span is not sensible and can be caught by validation tools. A computer

program can however not tell whether a wing span of 20m or 80m leads to correct results.

4.2.1 Structuring in CPACS 37

is lucid. By using the Xml-Schema a validation could be introduced. These topics are
elaborated in the following section more pervasive.

Tiva I started in 2005. Evolving from this first project Cpacs has been used and ex-
tended in the following projects:

⇀ TIVA I & II
Technology Integration for the Virtual Aircraft

⇀ CATS
Climate optimized Air Transport System

⇀ EVITA
EValuation of Innovative Turbine Engines

⇀ UCAV 2010
Unmanned Combat Air Vehicle

The scopes of these projects are spread from analysis of climate data over the pre-
liminary design of airplanes to multidisciplinary approaches in jet engine design. Of
course, the detail level in each project is different. While for example Evita contains
extensive data on jet engines, the engine data in Tiva is relatively simple. Tiva II ended
mid 2009 and is followed by Vamp. This project continues the integration of tools and
establishes further process chains in the preliminary analysis methods. A more de-
tailed description of the project’s scope and the relevance of Cpacs can be found in [6]
by Bachmann et al.

The following sections at first gives an outlook over the project structure of Cpacs,
section 4.2.1. Subsequently, the Cpacs model is explained. The metamodel is declared
as Xml-Schema (section 4.2.2) whereas the instances are stored as Xml (section 4.2.3).
Finally, the two libraries that are used for the manipulation of Cpacs data Tixi and
Tigl are presented in sections 4.2.4 and 4.2.5 .

4.2.1. Structuring in CPACS

As already mentioned, tools are integrated into Cpacs using different libraries. The
following figure 4.7 shows the overall structure. The reason for the central data format
can be at first explained by the lower number of interfaces. For a set of tools that need
to interface each other the number of interfaces is n(n − 1). With a central data format
the number of interfaces is reduced to 2n. Another reason is that the tools to some
extent already exist. Hence their connection to the data format should be as easy as
possible.

The tools are integrated using a framework that is based on a Server/Client approach.
A user chooses a Cpacs data set and connects the data set via a process chain to several

4.2.1 Structuring in CPACS 38

Central Dataset

System Overview

Input
File

Output
File

Input
File

Output
File

Input
File

Output
File

TIVA XML Interface (TIXI)

TIVA Geometry Library (TIGL)

ModelCenter Components

Application

A Application

B Application

…

Figure 4.7.: Cpacs Structure, from [37]

tools. The tools are running on servers that are set up at the different institutes of the
DLR. While executing the process chain the data is transferred to and from the servers.

The integration of one specific tool is established by a mapping structure. This way
a tool designer only has to build one Xml-file for input and one for output. Via the
mapping this data is linked to entities in the Cpacs-file. A change in the Cpacs-file
only leads to a change in the mapping files. The tool itself does not need to be altered.
The mapping is also established using Xml-files. A short quote from a mapping file is
shown in the following lines.

1 <map:mapping>
2 <map:source>/result/values</map:source>
3 <map:target>/configuration/common/values</map:target>
4 </map:mapping>

The example above shows a simple mapping. In this case an output from a tool is
stored in a Xml-File. The value from l. 2 is transfered to the value specified in l. 3.
The mapping is probably a very powerful tool for the future work with Cpacs. A
new graphical editor for the creation of mappings is currently under development at

4.2.2 XML-Schema-Definition - XSD 39

the DLR. One possible extension would be the execution of symbolic equations in the
mapping rules.

It should be noted that the mapping is resolved to XSL Transformations18 by the in-
terpreting software. These transformations can be used to transfer one Xml file into
another. Alternatively to the shown mapping syntax above, a user can define mapping
definitions in XSLT. The reason to develop an additional mapping syntax was to hide
the difficult transformation language from the user.

As a framework currently ModelCenter19 by Phoenix Integration is used. ModelCenter
is the Client Software. One of the reasons to choose ModelCenter was its inbuilt
optimization algorithms [32]. The tools run on Analysis Servers20. This way only a
single version of a tool has to be administrated. The support of the tool is easier as well,
as the servers are located at the institute that developed the code. Software is stored
as simple executable programs that can be accessed through an API or command line
interfaces. A change to a different framework is possible e.g. to an Eclipse21 based
system like the Reconfigurable Computing Environment(Rce)22. Rce is developed at the
DLR as well. Another commerical tool for the integration of engineering tools and
evaluation of process chains is iSight23.

One of the problems with the current Cpacs is the non-central administration. All
named projects work within different domains. The Evita project for example is based
on jet engine design. The Cpacs-version that is used in this project is therefore much
more based on elements relevant for this scope. Other more holistic projects targeting
airplane design might find a very different structure to organize jet engine data. The
interchangeability of the process chains is therefor not given. Another problem from
the decentral versioning is that some of the tools might not run in future versions of
Cpacs.

4.2.2. XML-Schema-Definition - XSD

The content-model of Cpacs is created using the Xml-Schema24. Xml-Schema files are
noted in Xml format and stored via the .xsd extension. Xml-Schema is explained by
Duckett et al. in [16] and by van der Vlist in [60] as well as by the World Wide Web
Consortium (W3C)25itself. Xml-Schema files can be used to validate a set of Xml data

18 http://www.w3.org/TR/xslt
19 http://www.phoenix-int.com/products/modelcenter.php
20 http://www.phoenix-int.com/products/analyzer.php
21 http://www.eclipse.org
22 http://www.rcenvironment.de/
23 http://www.simulia.com/products/isight.html
24 This section refers to the Cpacs-Version 0.9b from March 17, 2009

25 The W3C website (http://www.w3.org/) holds several recommendations for the work with Xml-
Schema. The most relevant documents are:
⇀ Xml Schema Part 0: Primer Second Edition

4.2.2 XML-Schema-Definition - XSD 40

in the same way as in Step. One of the many tools for validation to be named is XSV26.
Ancestors of Xml-Schema are the Document Type Definition (DTD)27 and the Regular
Language Description for Xml New Generation (RELAX NG)28. The following section
gives an outlook on the mechanisms used to set up Cpacs. Additionally, some of the
entities in Cpacs are described.

Similar to Express all definitions are saved in a Schema block surrounding all other
implemented items. The following examples try to stick as near as possible to the
introduction already given in section 4.1.2 on Express. At first a simple parameter of a
base type is declared. The parameter is named x and is of a float type. In Xml-Schema
we use a Double type. The example is shown in the following line.

1 <xsd:element name="x" type="xsd:double">

Similar to Express, Xml-Schema knows two different items. An element can be of any
type and can be a leaf or node item in the Xml-Tree. An attribute as it is noted in
Xml-Schema is always of a base type and may not carry any children items and is
therefore always a leaf item. The attribute is equal to the same term in Express, so
the element can be associated with the entity.

Xml-Schema distinguishes between two types. The Double from the above example
is a so called SimpleType. These types only restrict the text that is put into an at-
tribute’s instance. A valid input for the x attribute would be 3.142 but not true or
false. SimpleTypes are used for attributes or text-only elements in Xml-Schema. A
ComplexType is used to describe an element. It declares the allowed sub elements and
attributes of the element.

Xml-Schema enables the user to create extensive documentation of the created data via
annotations. The annotations can be used for the documentation of the saved data as
well as annotations for applications processing the data. In this case the annotation is
saved with an additional appinfo element. The following lines show a simple example
for a documentation of the x attribute that has already been declared. The annotations
can be used in a graphical form of the Xml-Schema as it is shown later in this section.

⇀ Xml Schema Part 1: Structures Second Edition
⇀ Xml Schema Part 2: Datatypes Second Edition

26 http://www.w3.org/2001/03/webdata/xsv
27 http://www.w3.org/TR/REC-html40/sgml/dtd.html
28 http://relaxng.org

4.2.2 XML-Schema-Definition - XSD 41

1 <xsd:annotation>
2 <xsd:documentation>X-Component</xsd:documentation>
3 </xsd:annotation>

Enumerations and lists are possible in Xml-Schema but not in use in Cpacs. Different
from the modeling in Express where an attribute needs to be adressed by a value
unless the attribute is optional, Xml-Schema offers the introduction of a quantity of
instances. The quantity can be restricted by minoccur and maxoccur elements. A
minoccur value of zero is equivalent to the Optional keyword in Express.

1 <xsd:complexType name="pointType">

2 <xsd:annotation>
3 <xsd:documentation>
4 Point type, containing an xyz

5 data triplet with optional z component

6 </xsd:documentation>
7 <xsd:appinfo><point></xsd:appinfo>
8 </xsd:annotation>
9 <xsd:sequence>

10 <xsd:element name="x" type="xsd:double">

11 <xsd:annotation>
12 <xsd:documentation>X-Component</xsd:documentation>
13 </xsd:annotation>
14 </xsd:element>
15 <xsd:element name="y" type="xsd:double">

16 <xsd:annotation>
17 <xsd:documentation>Y-Component</xsd:documentation>
18 </xsd:annotation>
19 </xsd:element>
20 <xsd:element name="z" type="xsd:double" minOccurs="0">

21 <xsd:annotation>
22 <xsd:documentation>Z-Component</xsd:documentation>
23 </xsd:annotation>
24 </xsd:element>
25 </xsd:sequence>
26 </xsd:complexType>

The above example combines most of the items already named in this section. A
ComplexType is used to model the pointType (ll. 1, 26). Annotations are used for
documentation as well as for appinfo (l. 7). The minoccur (l.21) expresses the optional
z-component of the point.

4.2.2 XML-Schema-Definition - XSD 42

In Xml-Schema inheritance mechanisms can be used. If a type inherits from another
this type is called derived in Xml-Schema. It is possible to derive SimpleTypes but for
our example we stick to ComplexTypes. As there is no predefined element in Xml-
Schema that allows the modeling of symbolic equations such as in Express a different
example for inheritance is chosen in this section. The equation from the where state-
ment is dropped and a new ComplexType is created that inherits the pointType from
the previous example. ComplexTypes can be derived either by extension or restriction.
The new ComplexType is called translationType and needs to hold a data triplet as
well. In the following lines the code29 can be seen. For this case we used an extension.
Usually with the use of extensions, further attributes or elements are added to the
entity. Restrictions are used to insert further constraints to the entity. In the example
the extension is used without adding any elements.

1 <xsd:complexType name="translationType">

2 <xsd:complexContent>
3 <xsd:extension base="pointType">

4 </xsd:extension>
5 </xsd:complexContent>
6 </xsd:complexType>

Additionally to the Xml-Schema elements, the developers of Cpacs included own
mechanisms for the work with the content model. As already seen Express can model
relationships easily. To allow the creation of these relationships in Cpacs as well, a
new element for identification was introduced. The uIDs are introduced as attributes.
They enable the libraries to jump inside the model. The following line shows the code
for a simple uID.

1 <xsd:attribute name="uID" type="xsd:string" use="optional"/>

An element like an airfoil for example is tagged by an uID. A wing segment can then
reference the airfoil data by the uID. The translation element shown earlier can be used
to alter the airfoil data properly for the wing segment. The structure of geometric data
stored in Cpacs is shown in section 4.2.5 more precisely. There is no mechanism in
Xml-Schema that allows the validation of uIDs in the way they are declared. They
should obviously carry unique values. This is a potential source for errors, but is
catched by the TIXI library.

29 This code does not originate from the Cpacs Xml-Schema. In the Cpacs Xml-Schema the
translationType is a complexType that simply holds a element from pointType

4.2.2 XML-Schema-Definition - XSD 43

An alternative declaration could be achieved using the unique keyword and Xpath30.
This solution has one shortcoming compared to TIXI. The unique keyword can only be
used on an instances of an element locally. The uIDs are unique globally throughout
the document.

Including all data into one single Xml-File could lead to very big files. This could
cause trouble with the limitations of simple parsers as well as with the readability of
the file. Therefore an externaldata node was introduced into Cpacs. This element
allows the import of data from other Xml-files. The structure is redundant therefore
huge Xml-Trees can be constructed from simple files. Via an extension the following
lines are added to each base type. So in all parts of the model external data can be
attached to a leaf.

1 <xsd:attribute name="externalDataNodePath"

2 type="xsd:string" use="optional"/>
3 <xsd:attribute name="externalFileName"

4 type="xsd:string" use="optional"/>
5 <xsd:attribute name="externalDataDirectory"

6 type="xsd:string" use="optional"/>

Generally speaking, Xml Schema offers a broad variety of modeling mechanisms. In
depth these mechanisms show some weak points. The creation of relationships is not
very lucid. Even though graphical representations of the model can be created, only
the tree structure is recognizable. The inheritance mechanisms are suitable for easy
modeling activities but e.g. do not enable multi-inheritance.

For future versions of Cpacs a more extensive use of the inheritance methods should be
made. The translation example shown previously in this section is a good example.
In the current Cpacs there is no inheritance from the pointType. As the pointType

is also used for multiple other entities the interpretation of the data would be much
easier with inheritance. A distinction between 2D and 3D points should be established
as well. An entity should be restricted by modeling mechanisms and not only by
documentation.

Although it is mentioned in the documentation of the Cpacs Xml-Schema that only
SI-Units are allowed, these units should be modeled as well and get attached to the
attributes. For example the attributes of the pointType should be from type [mm]. The
scalingType which holds an element of pointType is without units since the scaling is
based on dimensionless factors. This does not a support a sensible interpretation
of the data. The author recommends to create a dataTriplet element that holds
three dimensionless elements. Other elements such as pointType, scalingType or
translationType should then inherit the dataTriplet and add units via extension.

30 http://www.w3.org/TR/xpath

4.2.3 Extended Markup Language - XML 44

Xml-Schema offers simple mechanisms for the creation of a content model. The stan-
dard is widely spread due to the extensive use in other application areas. Several
tools, commercial and free, such as XmlSpy31 or the XmlNotepad32 can be used to
work on Xml-Schema. With the use of stylesheets33 graphical representations can be
generated.

4.2.3. Extended Markup Language - XML

The probably most famous example for a markup language is the HyperText Markup
Language (Html)34. The Html is used for displaying content in web browsers. Both
Html and Xml have their origins in the Standard Generalized Markup Language SGML35.
Detailed information on Xml can be found in the literature by Hunter et al. in [26] and
on the already mentioned W3C homepage36. The tools named for the manipulation
on Xml-Schema can be used for Xml as well.

It should be noted that Xml does not more than markup data. It does not help in
any way to interpret or process the data as stated in [33]. Only putting data into Xml

syntax can not result in a persistent data model. The creation of a metamodel (e.g. in
Xml-Schema) is therefore an unreplaceable step. It can be found in [51] by Sachers,
that there are no guidelines or examples how to use Xml in product data management
yet. The current work on Cpacs may help to close this gap.

Comparing Xml and p21 files leads to one of the shortcomings of the format. There
is no compatibility to any CAD-Kernels. The only way to access geometric data is
through Tigl. The library is based on OpenCascade3. There is no exchangeability to
other CAD-formats so far. The geometry information is extracted by Tigl, but it can
not be processed to a representation without implicit steps. These calculation steps
are not documented in the data itself. Hence a user can not generate a geometry
representation by himself.

An example for a markup language that is used for geometry representation is the
Virtual Reality Modeling Language (Vrml)37. This language is known for a very fast
build up of geometry data. The fact that Vrml files are calculated for every view,
makes them not useful for high-level representations. For fast geometry generation
however Vrml might be an valuable extension38 for the Cpacs data.

31 http://www.altova.com/xml-editor
32 http://www.microssoft.com
33 http://www.w3.org/TR/xml-stylesheet/
34 http://www.w3.org/TR/html/
35 http://www.w3.org/MarkUp/SGML/
36 http://www.w3.org/Xml/
37 http://www.w3.org/MarkUp/VRML/
38 In section 3 it was already mentioned that the access to geometric data should not be restricted to

only the design department. As there are many free Vrml-players available, a low weight geometric

4.2.3 Extended Markup Language - XML 45

Dassault Systems, one of the major developers of CAD software, is currently working
on a new file format named 3Dxml. A provisional version of a 3Dxml player39 is
already available. The format targets applications in the area of wide spread office
software. In this way CAD data shall be made available in other company areas.
Additionally, through a 3D printer information can be converted from OpenGl or
DirectX applications. The sample data available is however not readable and can
therefore not be analyzed.

Some simple examples for data modeled in Xml following the Cpacs Xml-Schema is
shown in the following lines. Primarily, a short example for a instance from pointType

is demonstrated

1 <point>
2 <x>1</x>
3 <y>2</y>
4 <z>3</z>
5 </point>

The instance does not carry an identifier as in a Step file. Although instances can be
traced through the hierarchic structure of the document, an identifier like the uID or a
xpath should be introduced into future versions. As already mentioned in the authors
opinion, the attributes should be extended by a unit declaration. In this way the user
could for example distinguish between data for rotation or translation.

One of the major benefits from the work with Xml is graphical representation of the
data. This has already been shown in section 4.1.4. The graphical representation is
used to show an example of the header data for Cpacs in figure 4.8.

Figure 4.8.: Header for a Cpacs example

representation even in other departments (e.g. marketing) without CAD-equipment is possible. Vrml

would also offer the neat feature of a company specific background for the representation
39 http://www.3ds.com/de/products/3dvia/3d-xml/player/

4.2.4 TIVA XML Interface - TIXI 46

As it can be seen, most data in the header is similar to Step. Additionally, through the
update data an in-file version control can be established. This enables the user to keep
an overview over changes in the data. Yet there is no mechanism to create Cpacs-files
automatically. Because of this, the number of example data sets is low. A rule based
system might help in the generation of valid Cpacs data sets. This idea is currently
under consideration at the DLR.

4.2.4. TIVA XML Interface - TIXI

One of the requirements during the development of Cpacs was an easy integration
of tools. This was one of the reasons to choose Xml. Ongoing from this simple file
format the Tixi library was designed to enable an easy access to data in Xml files.
In big Xml files the tree structure grows large and referencing items becomes more
time-consuming.

Additionally, the creation of data from simple types is easy. When writing data like
arrays or vectors, these operations can become costly as well. The developer would
have to create excessive and annoying string buffers for these operations.

The Tixi is based on the libXml240and offers an API for programmers using C, Fortran
and Python. Through the API most operations to manipulate Xml data can be trig-
gered. The need for the different interfaces comes from two reasons. Primarily, this
comes from the easy integration. The developers of the tools should be able to work in
the programming languages they are familiar with. Secondarily, it is obvious that for
the broad varsity of applications some languages are more suitable than others. For
most numerical simulations Fortran is still used. Small scripts are written in Python.

If the software code of an analysis tool is not available, it is possible to introduce
converter tools. These converter tools can then transform Xml information into the
native format of the analysis tool.

4.2.5. TIVA Geometry Library - TIGL

To get a better access and control geometric data in Cpacs the Tigl was created. It
calculates the geometry from the data in the Xml file. Possible geometric entities so far
are wings and fuselages. Through the Tigl-Viewer, which is based on OpenCascade3,
a graphical representation of the Cpacs data is possible. An example for the GUI is
given in figure 4.9. Note that this GUI comes from a testing toll named TiglViewer.
This tool is still under development and not an offical part of Tigl.

Additionally, Tigl can output data concerning the geometric structure. For example
the number of airfoils in a wing, or the number of fuselage segments. The output is

40 http://www.xmlsoft.org/

4.2.5 TIVA Geometry Library - TIGL 47

Figure 4.9.: Tigl-GUI, from [37]

however limited to theses numeric values. Tigl is not able to write geometric data.
This issue has been identified as a problem and might be a target for future develop-
ment. Alternately, it does enable the output as Iges or Stl file. So far there are no
tools in the process chains that modify the geometry. As soon as this is changed the
issue becomes more important.

Although the existence of a geometric library offers great potential41, this brings up
problems for the model. As misleading information can easily be caught by the library,
the risk to create misinterpretable models is great. This can be seen for the already
mentioned pointTypes. In this case 2D information for airfoils is stored into the three
dimensional element. For the calculation Tigl swaps values as they are not stored in
the correct attributes. This operation can not be seen by the user. The model in this
case is therefore false.

41 Commercial CAD Kernels can only be interfaced via APIs in many different and often aged languages.
As Tigl uses OpenCascade theoretically a much wider application area is accessible.

4.3 UML 48

4.3. UML

The development of the Unified Modeling Language began in 1990. The three authors
Booch, Rumbaugh and Jacobsen joined their ideas for an object oriented modeling
language in [10]. Uml2 was published in 2005. The language is managed by the
Object Management Group(OMG)42. Primarily, the Uml has been developed to support
the automatic generation and description of object oriented software. Through its
graphic design layout it enables a lucid representation of contents. Currently the
Uml is extended to other domains such as systems engineering through the Systems
Modeling Language(SysML)43. Further information regarding development using the
Uml can be found by Oestereich in [44]. Various tools for the Uml can be found,
either open source in the form of Eclipse21 plugins or commercial tools such as Altova’s
UModel44.

As well as a high bandwidth of modeling mechanisms, the Uml offers several views
on models. These views can come from different approaches, examples are a class or
a use-case diagram. Through these views the model gets reduced to only some as-
pects. This mechanism allows a better overview, which is necessary in bigger models.
Complexity can arise quickly in Uml as Oestereich states.

The fact that future product models should use object oriented modeling has been
stated by Stark in [55]. This section gives an outlook on some of the attempts to use
the Uml in engineering domains. As there is no major standard on how to use the
Uml in preliminary airplane design, most elements are explained by quoting from an
airplane design language in the Uml described in [9]. The author took part in the
development of the design language.

Previously, some Uml projects are introduced. Park and Sung [56] use the Uml for
the creation of a PDM system. All parts of the system are described in the Uml. One
of the requirements for the project was the web-based approach.

Lu proposes in her dissertation [38] requirements for a Next Generation Aircraft Con-
ceptual Design Software Environment (NextADE). The work offers a detailed overview
of modeling technique’s and implementation method’s history. The implemented ver-
sion of NextADE is coded in Java with the help of Uml. Several Uml views are used
for displaying the different development matters.

Van der Laan proposes the use of Knowledge Based Engineering (KBE) for airplane
design in [59]. He describes the design process using KBE and outlines some tools
that are used for this process. The step from an informal model to a formal is made
using the Uml.

42 http://www.uml.org/
43 http://www.sysml.org/
44 http://www.Altova.com/UModel

4.3.1 Design Language for Airplane Geometries using the UML 49

Oh and Yan [45] use the Uml in combination with PDM Systems. In their approach
the Uml is used to create a mapping from product data stored in Step files into a
commercial PDM System. The transfered Step is limited to CAD-Systems and conform
to AP 203. Step and Uml are brought into relation more and more often. Besides
the official Part 25: EXPRESS to OMG XMI binding, the exff12 project has already be
named. An overview on the connections between Xml, Uml and Step is given by
Peak et al. in [47]. In this work the Uml is more seen as an implementation model. In
the author’s opinion the Uml holds the most powerful modeling mechanisms of the
presented languages. The following section gives an outlook.

4.3.1. Design Language for Airplane Geometries using the UML

The lack of a standard implementation45 of product data in the Uml leads to a more
extensive presentation of a single approach for the preliminary airplane design. The
following section outlines the work from a design language implementation that is de-
scribed at full detail in [9]. The author contributed to this work and implemented the
design language for airplane geometries during his secondary thesis at Stuttgart Uni-
versity. This could not have been accomplished without the expertise of Rudolph and
Reichwein on design languages and the Uml. The work is concentrated on the creation
of geometries. Further work in this area extended the model for CFD-Analysis. More
domains are to be accessed.

Therefore the design language can not handle data up to an extend such as Cpacs or
Step. Further development might close the gap. It has however been shown that a
holistic and multidisciplinary model could be developed. Additionally, through the
methods of the design language, a fast and valid method for the creation of models is
available for the user. This is an advantage over the other models.

Vocabulary

As mentioned before, the airplane design language vocabulary is expressed in Uml

through classes and instances. The implemented classes serve as templates for the
generation of the instances. The objects are instantiated during the rule execution
phase of the design compiler. The result forms a semantically interpretable model
when combined in the correct way, using a set of rules in a production system.

The specific vocabulary is derived from the abstract intellectual decomposition of a fu-
ture product concept. Since the Airplane Design Language is supposed to be used for
the creation of geometries for an aerodynamic analysis using a computational fluid dy-
namics (CFD) software package, a geometrical and mathematical decomposition was

45 This does not imply that there is no interest in the industry for the Uml. Some of the OMG members
to be named are: IBM, HP, SUN, Oracle and Daimler Benz

4.3.1 Design Language for Airplane Geometries using the UML 50

chosen. Within a geometric decomposition scheme an object is split along its assembly
boundaries. In many engineering disciplines information is bound to geometry. The
mathematical decomposition is more function-oriented and uses typically mathemati-
cal operands and operators in the form of equations.

In the previous sections the point entity or pointType was used to elaborate some
mechanisms of the language. Being the youngest of the languages for information
modeling, the Uml offers the biggest bandwidth of modeling mechanisms. In this sec-
tion the point example is used as well. The following figure shows a point class and
two classes inheriting from this class. The point class solely implements the three co-
ordinates. Stereotypes tag the point class and its attributes to the adequate element in
Catia V5

2 so that a output to CAD is possible. Using inheritance mechanisms and ex-
pressions new elements are created. The point on circle and point on ellipse classes are
used within the design language for the modeling of fuselage ribs. Both classes hold
new attributes and are determined through symbolic equations. Figure 4.10 shows the
three classes along with the expression that hold the symbolic equations to determine
the point on circle coordinates.

Point
Xcoord : mm
Ycoord : mm
Zcoord : mm

PointOnCircle
CRibRadius : mm
CNumOfPoints : Integer
CNumOfPoint : Integer
Cxcoordcenter : mm
Cycoordcenter : mm
Czcoordcenter : mm

PointOnEllipse
Ea : mm
Eb : mm
ENumOfPoints : Integer
ENumOfPoint : Integer
Excoordcenter : mm
Eycoordcenter : mm
Ezcoordcenter : mm

{Xcoord == Cxcoordcenter}

{Ycoord == CRibRadius *
sin (360 / CNumOfPoints *
CNumOfPoint * pi / 180) +
Cycoordcenter}

{Zcoord == CRibRadius *
cos (360 / CNumOfPoints *
CNumOfPoint * pi / 180) +
Czcoordcenter}

Figure 4.10.: Point Class, from [9]

With the introduced vocabulary several airplanes can be designed. Of course, a specific
choice of a vocabulary set influences the future rule set. Since the rule set represents
the design activity while the vocabulary represents the static entities, both choices
influence each other and ennoble the conception of a “good” design language to an
art, as long as no better, more systematic and theoretically sound way of doing this is
known.

Classes are connected using generalizations and associations. Figure 4.11 shows the
class diagram for the vocabulary in the Airplane Design Language. On top of the

4.3.1 Design Language for Airplane Geometries using the UML 51

class diagram is the class Airplane, similar to the tree hierarchy in Catia V5, where the
airplane is the highest product instance. The classes on the next level are described
in this section. They are the parts in Catia V5 holding geometric information about
volume bodies. The class Profile is an abstract class. Only instances are created of
classes inheriting the wing- or intersection-profile class. On the bottom of the class
diagram in figure 4 several classes are shown that inherit the class point. Points are the
geometrical and mathematical basis for the Airplane Design Language. The general
point class links to a point in Catia V5. The more specific point classes own more
mathematic constraints.

Figure 4.11.: Airplane Design Language Class Diagram, from [9]

4.4 Analysis/Comparison 52

Rules

Rules create instances out of classes. Using input parameters, they fill the instances
with information to create semantic entities. In between instances, links must be set
to connect corresponding elements. Links can only be built between instances, whose
classes share an association. A fuselage only has a link to ribs belonging to the fuselage
instance, not to all instances of the class rib. Using the object-oriented structure of the
Uml links and instance-specifications can be used to reference entities. A set of rules
is called a production system. The production systems work through a sequential set
of rules, chosen by the design engineer. The rules are written in Java code, a GUI for
the selection of rules is currently under development.

4.4. Analysis/Comparison

In the previous sections three different information models were elaborated. The goal
of this work is to evaluate these models in respect to preliminary airplane design. The
chapters 2 and 3 line out some benchmarks. This section will analyze the introduced
models in respect to the benchmarks.

Information in Step is mostly classified as product structure elements. Additionally a
classification relating geometric elements can be found. Apart from the geometric ele-
ments the classification is rough. Cpacs is more detailed and holds an airplane related
classification with clear structure. Additionally, Cpacs can handle tool specific data.
Cpacs is therefore very powerful for preliminary airplane design, but the specific clas-
sification may result in conflicts when the data needs to be transfered. As it is already
stated in the Uml there is no standard for preliminary airplane design. This section
can only rely on the approaches in the literature [38, 59, 9] outlined in section 4.3. The
approach from the airplane design language uses a purely geometric classification. To
reach the extent of Step or Cpacs it still needs to be enlarged.

Information Objects can be expressed via entities, elements, classes and attributes etc.
in the three information models. Express and Uml are more powerful when it comes
to more complex elements like arrays or vectors. Also these two languages offer more
possibilities for e.g. symbolic information. The current .p21 files of Step however turn
the structure from Express into hardly readable notations. The way to Xml files for
Step data can improve the transparency of the information. Xml is still limited on
some of the listed issues. As a workaround Cpacs allows external files, either coded
in Xml or some other file format.

Geometry was identified as key information object. Step is by far the most prevail-
ing geometry format in the industry. It can be processed by all major CAD Kernels.
Parameters can not be modeled via Step. Cpacs offers a geometric approach using

4.4 Analysis/Comparison 53

the Tigl library and OpenCascade. OpenCascade offers for example mechanisms to
output Step data. Much of the geometry is however produced by Tigl, the implicit
steps are not retraceable in Cpacs. The only implicit geometry modeling is done in
the airplane design language interfacing Catia. The macro parametric approach is
still limited to one CAD-Kernel. As the geometry is modeled via symbolic equations,
changes can be introduced easily.

All introduced models fulfill in some respect the requirement of holism. Step is the
most extensive model. An arising question is, if holism can be kept up with a rising
number of entities. Step can therefore be accessed by many tools. Version Control
is not a big issue. The standard is published by the ISO. Changes are made rarely
once an AP is published. Cpacs introduces various disciplines on different detail
levels into the design process. The mapping structure also enables the creation of
further information. A rulebased mechanism to create models would increase the
reuseability even further. A version control system is identified as possible future
development. Again the Uml model is not as voluminous as the other models, but
the stereotype mechanism is useful for identifying domain specific elements. Uml is
not as widespread as Xml and therefore the accessibility is rather low. In return the
reuseablity is high.

Express is an advanced object flavored modeling language. The development started
in the 1980s. Some of the mechanisms are therefore outdated (e.g. inheritance).
Adopting the language as a OMG language and creating links to the Uml and SysML
are the current steps of development. Xml-Schema is not an information modeling
language by definition. It serves well for validation, but lacks several modeling mech-
anisms. The Uml is the most advanced modeling language introduced in this work.
Nevertheless, working with the Uml needs some preparation and may be restricted
to modeling experts. This does not imply, that the Uml is a too complex language.
On respect to the fact, that the barrier for a designer needs to be low the work with a
instance model in the Uml is more complex than working in plain Xml.

The instance model of Step was initially stored via p21 files. These files are hard to
read and will be replaced by Xml notations. The Cpacs model is stored in a xml
file. Xml can be processed easily and is readable for everyone. The barrier for design
experts starting their work on multidisciplinary models is therefore low. Uml holds
the instances in the same model. However Uml data is saved as Xmi and is therefore
near Xml.

4.4 Analysis/Comparison 54

Conclusion

Before a conclusion can be drawn it must be said, that the target information model
needs to work in a relatively small environment. The key design processes are carried
out by engineers at the DLR and are reduced to the implementation of new technolo-
gies. Hence the integration of domain experts is important. The conclusion drawn in
this subsection must not be suitable for a major producer of airplanes. These orga-
nizations might have different requirements for their models. For the work on mul-
tidisciplinary models in preliminary airplane design at the DLR the author suggests
a combination of Uml or SysML as metamodel and Xml as instance model for the
following reasons:

1. Why UML / SysML?
Uml holds the most powerful modeling mechanisms. It originates from Software
development and enables an easy integration of tools. SysML is a dialect of the
Uml specified for engineering systems. Step is evolving into Uml and SysML

2. Why XML?
Xml is easy - there is only a low barrier for domain experts. This the most
important requirement. Step is evolving into Xml as well. Xml can revert to
existing libraries like Tigl and Tixi.

3. Why not STEP?
The scope of Step is large and at some points too abstract. The benefits of Step

(shareable, accessible) can be gained through a Cpacs to Step converter (see
chapter 5)

For the development of a future modeling environment some questions are still to be
answered. While SysML and Uml are very similar both bring different advantages.
On the one hand more software is available for Uml as its origins lie within software
development. On the other hand SysML is not as complex as Uml and may be better
suited for the description of product data.

Subsequently, several ways are possible to connect the metamodel, whether Uml or
SysML, and the instance model. One possible solution is to create a metamodel to
the Xml-Schema. The Uml can map elements from Xml-Schema. The intermediate
schema can for example be used for validation. Alternatively, a direct link between
Uml and Xml can be established. How much coding must be done for this approach,
is a question for future research. Since Uml data is saved as Xmi it is even possible
to extract instance data from it and store it in the known Cpacs syntax in a Xml file.
Nevertheless, the list of possible approaches makes no claim to be complete and only
future research can lead the way to the best solution.

5. Converter for Information Models

Although the Cpacs standard is spread more and more through the DLR and it is
written in Xml, one of the most wide spread data exchange formats, one of the goals
of this work was to increase its compatibility. Step is a standard that can be interpreted
by all more advanced CAD-Kernels. It was our goal to write a converter tool that
enabled us to put out all data from Cpacs to Step. Besides the transformation of
geometric data the question came up whether it is possible to:

⇀ reuse existing tools for straightforward development

⇀ transfer all Cpacs data without data loss

⇀ put all other product and tool data into Step

⇀ rebuild the part-hierarchic structure in Step

⇀ develop a modular software that can be adapted to new Cpacs Versions easily

For Step as well as for XML there are several software packages available as free ware
or under open source licenses such as the GPL. Commercial software is used mostly
in the area of CAD. The tools used to develop the converter as well as the tools to test
the results are outlined in section 5.1.

Some tries to implement additional data into Step have already been published. Most
of the connections are established via an additional mapping from external data to
the ARM of the Step data. The methodology of these approaches has been adopted
to create the converter. The structure of the converter and the approach behind it are
explained in section 5.2.

With the development of software, quality assurance is important. This is even more
important for extensive amounts of data such as in Cpacs. Several validation methods
were applied to the created Step data. These methods along with shortcomings of the
translation can be found in section 5.3

5.1 Development Tools 56

5.1. Development Tools

5.1.1. Eclipse 3.4

The development of a converter tool forces the designer to work with various different
computer languages. At first the languages of the two data formats which are to be
converted into each other must be handled. Secondly, and very important in this
particular case, the metamodels and their respective languages need to be interpreted
to allow the handling of classes and make validations possible. Afterwards a central
programming language must be chosen that can handle the named models as well as
it offers a structure in which the converter tool can be written.

In modern software development Eclipse21 is one of the most widespread development
platforms. Through its plugin structure it can be adopted to various development en-
vironments. This applies to general decisions (which programming language) as for
specializations (integration of e.g. Step specific tools). Eclipse evolved from the IBM
Visual Age for Java 4.0. Today it is developed further by the Eclipse Foundation. Al-
though Eclipse is open source now, its development is still supported by IBM. Eclipse
is described more precisely by Bernette in [12]. The converter tool is developed under
Eclipse version 3.4.2.

Eclipse is based on Java46 technology. Several other programming languages can be
used with Eclipse, but we decided to stick with Java. First of all Java is a widespread
and accepted modern programming language. Additionally most plugins (see other
sections in this chapter) are written for Java code. Java is a modern object oriented
programming language. It was important that the language for programming the
converter tool at least owns all the modeling mechanisms the translated languages
know. This way the superior programming language provides all the methodologies
natively.

Java is a platform independent language. This ensures that the converter can be used
in several environments. The language is developed and trademark of Sun Microsys-
tems47. As Sun Microsystems was overtaken by Oracle48 the future of Java is currently
unpredictable. Information for the work with Java can be found by Sierra et al. in [53].
Java runs under version 1.6.

As the development of Cpacs and the surrounding libraries is an ongoing process, a
versioning system for the developed software was desired. The standard that comes
with Eclipse is the Concurrent Versions System (CVS). At the DLR instead of CVS an-
other versioning system named Subversion49 is used.

46 http://java.com/de/
47 http://de.sun.com/
48 http://www.oracle.com/
49 http://www.eclipse.org/subversive/

5.1.2 JSDAI 4.2 57

5.1.2. JSDAI 4.2

With the development of Step, an application programming interface was developed.
It ensures that Express schemas can be created and manipulated. It also enables the
output and validation of p21 and XML files. The interface is described in part 22: SDAI
Standard data access interface specification.

LKSoft is a company that develops many Step related tools. One of these products
is JSDAI4. This Eclipse plugin enables the work with SDAI while using Java under
Eclipse. JSDAI is published under the GNU APGL license. For this work we used
version 4.2.0 of the JSDAI Eclipse plugin. Further reading about JSDAI can be found
by Klein (Head of LKSoft) in [34].

Several packages from JSDAI can be used within Eclipse. Express related work is
done using the Express compiler. For the work with the compiler an Express project
needs to be created first. During the development of the converter tool a new schema
was developed from existing entities, rules, types and functions from AP 214. This
information is stored in a simple .exp file. Using the compiler creates a .jar library that
can be used in other Java applications.

Figure 5.1.: Express Project in Eclipse Navigator

To compile complex entitiesm, they have to be declared separately in a complex entity
(.ce) file. In the current work this was made for the already named unit example.
The complex entities are declared in a plain file and are combined using a + sign as
follows:

5.1.3 JAXB 2.0 58

1 length_unit+si_unit

2 plane_angle_unit+si_unit

3 si_unit+solid_angle_unit

4 geometric_representation_context+'

5 global_uncertainty_assigned_context+'

6 global_unit_assigned_context

7 geometric_representation_context+'

8 global_unit_assigned_context

9 global_uncertainty_assigned_context+'

10 global_unit_assigned_context

The created .jar file can be used within Java applications. It contains constructors as
well as setter/getter methods for the compiled entities. For practical reasons a separate
class was written that bundles these methods again. JSDAI holds several methods to
create and manipulate data repositories. The repositories can be output via part 21

and 28. A validation for the created data is possible as well. For more information on
the work with JSDAI help can be found on the projects tutorial50 website.

5.1.3. JAXB 2.0

As shown in the previous section, for the handling of Step related data JSDAI was
chosen. Another package is needed that allows us to work with the metamodel and
the data of Cpacs. The Cpacs data is stored via XML files and modeled in XML-
Schema definitions. As these standards are popular, it is easy to find appropriate
software. For the work with Java, the JAXB51 package is the most suitable. JAXB is
available as an Eclipse plugin as well.

At first, the metadata of the model has to be transfered into Java. For this purpose the
XJC Plugin52 is used. It is also part of the JAXB project. XJC allows the compilation
of a .xsd file. Unlike JSDAI, it does create a separate Java class for each element in the
.xsd file. These classes contain all information of the schema and are equipped with
additional setter and getter methods. The following lines show a short example for a
Java class, generated from XML Schema using XJC. The full example holding all XML
annotations and Java methods can be found in the appendix.

50 http://www.jsdai.net/support/tutorials
51 https://jaxb.dev.java.net/
52 https://jaxb-workshop.dev.java.net/plugins/eclipse/xjc-plugin.html

5.1.4 Catia V5 R17 59

1 public class PointType

2 extends ComplexBaseType{

3 protected DoubleBaseType x;

4 protected DoubleBaseType y;

5 protected DoubleBaseType z;

6 @XmlAttribute(name = "uID")

7 protected String uid;}

This example shows that the superior programming language should provide all (or
more) modeling mechanisms as handled languages. Therefore the models can be
integrated easily. The classes were integrated into the converter tool using a design
pattern. Extensive information for design patterns is given by Freeman et al. in [21].
To extend the generated classes the decorater pattern is used. See the following lines
for an example. Again the example is conform to the point element.

1 public class PointTypeC extends PointType{

2 PointType myPointType;

3

4 public PointTypeC (PointType pointType){

5 this.myPointType = pointType;}

6

7 /**Method to process Object Elements to STEP*/
8 public void process2STEP(...){

9 ...

10 }}

A new class is defined (l. 1) that extends the class that is generated via XJC. This
class holds an attribute of type PointType (l. 2). The constructor (ll. 4,5) than accesses
the attribute. Finally, a new method (ll. 7.10) is introduced that holds the constructor
specific methods. These methods are explained further in section 5.2.

Besides the handling of XML Schema information, JAXB can be used to read out XML
data and transfer it into a set of objects. These objects are instances of the classes
previously generated via the XJC plugin. As all classes can be generated easily, the
software can adapt to new versions of Cpacs without inconveniences. Further reading
for JAXB can be found by Michaelis and Schmiesing in [40].

5.1.4. Catia V5 R17

Catia2 is one of the major CAD-tools that is in commercial use nowadays. The short
form stands for Computer Aided Three-Dimensional Interactive Application. The version

5.2 Converter Structure 60

5 is available since 1999. New retails are published on a regular basis. Catia is de-
veloped and distributed by Dassault Systems and IBM. Catia V6 has been published
recently, but has not made its way to become an industrial reference yet. Catia V5 is
an appropriate tool for testing the translated data as it is used widely in the aerospace
industry (e.g. Boeing and Airbus). The Step processor of the current version can han-
dle the Conformance Classes 2,3,4 and 6 from AP 203 and 1 and 2 (assembly and 3D
geometry / topology management) from AP 214.

5.2. Converter Structure

This section explains the approach that was taken to create a Cpacs to Step converter.
In the previous section the used tools were described in more detail. We show how
the information is processed through the different models.

As a first step, the converter reads a Cpacs Xml file from a named location. The named
file is processed via the JAXB plugin. Its content is loaded into the class structure that
was generated previously using the XJC compiler.

As the class structure is of course given, it is not known whether any or how many
objects are instantiated in the Cpacs tree. Changes can come up for every Cpacs file. A
fuselage element can for example carry fifty or hundred points. In this case the method
must be modular so that it can act with an arbitrary number of objects. Another issue
might come up with changes in the Cpacs schema53. Updates from the schema are
followed by changes in the compiled classes. As the compilation can be automated,
the method should adapt to these changes by itself. The method that accesses the
Cpacs objects is therefore recursive and reflexive.

A recursive method calls itself as long as no break condition becomes true. The method
designed to process the Cpacs data starts at the top-level Cpacs element and checks
all lower classes. If a class holds an object it calls a process2Step method that converts
the object. Afterwards the method calls itself and processes all sub elements of the
converted class. The break condition becomes true if it finds an object of one of the
base types.

While recursion is a term well known in software development, reflexion came up
with the use of object oriented programming languages. Reflexion allows to gather
knowledge about classes and objects during runtime. This way the central code of the
converter can be kept modular. Even if the Cpacs version changes, meaning that the
compiled class structure changes, the methods still work because the class structure
is not hard coded. The method already described therefore runs through the whole
Cpacs data and picks out all classes and objects while processing them. This way it

53 The current version of the converter tool works with Cpacs version 0.9b. The release of Cpacs version
1.0 is due to the end of July.

5.2 Converter Structure 61

can be guaranteed that all information stored in the model is found. The converter
tool knows two different sorts of classes:

1. elements and attributes that are translated generally, because there is no semantic
equivalent in Step

2. elements and attributes that need to be translated semantically correct, because
they are interpreted by Step processors

A very simple approach for the conversion of the first sort of classes is described by
Jaroš in [30]. In his dissertation he describes the mapping to the simple elements
item, specific item relationship. These elements are however part of the ARM. In
the AIM the equivalent entities are product and alternate product relationship.
The idea behind this mapping method is that elements and attributes are written to
the product entities and the tree structure is reconstructed using alternate product

relationship entities.

For the second set of classes specific methods have to be created that process the data
to Step. Section 5.1.3 shows how the classes generated from XJC are extended via the
decorator pattern. Each new class owns a method that processes objects of this class to
Step. These methods are of course specific for each class. The second type of classes
only comes up with geometric entities that need to be processed from Cpacs to Step.
Figure 5.2 shows a graphical representation of the translation process.

CPACS

unspecified

geometric

point

STEP

product

geometric set

pointproduct

alternate product
relationship

geometric
representation

real point coordinates are
calculated from superior

elements

unspecified elements are
written as product entities

structure is established via
additional entities

Figure 5.2.: Converter Structure

In Step basic geometric data is bound to point entities. The point entities are pro-
cessed directly and translated into cartesian coordinates. In Cpacs however the point

elements can hold all kinds of data. Generally speaking there are two sets of point
elements. At first, there is a point element that is used to describe fuselage ribs and

5.3 Validation 62

airfoil data54. Secondly, point elements exist in the data that are used to modify the
location from the previously named points. These elements enable rotation, scaling
and translation. Only the first class point elements can be translated automatically
to Step. Anyway else a misinterpretation of the named elements from the second set
of points might occur. Therefore this is one source of data loss during the translation
process.

5.3. Validation

Although the developed converter tool is only a prototype, a testing procedure is
introduced in this section. Two validation methods are possible. The first approach
compares the number of elements and attributes from the Xml data in Cpacs with the
number of entities that are created in Step. As it is already mentioned in the previous
section, data losses occur during the translation process. One simple example is all
information stored in pointTypes that can not be processed to Step. For example data
stored in a translation element. There is no semantic equivalent to this element. Hence
a comparison of the entity count is quite complex and does not reflect the quality of
the tool.

Another validation method relates to the information that can be translated seman-
tically correct. This concerns all geometry information. For this purpose the main
fuselage section from the Attas was chosen. The model is stored in Cpacs version
0.9c. The fuselage section is build up from 51 ribs. Each rib, except the first, holds 102

points. The volume of all the main fuselage sections can be calculated by Tigl.

Additionally, the converted version of the model is imported to Catia. In Catia scripts
are written in VisualBasic code. These scripts create polylines and connect the points
from the converted version. This way sections for the creation of a volume body are
created. The creation of scripts in Catia is described by Ziethen in [63]. Using the
measure tool of Catia the volume of the main fuselage section can be found.

Tigl Catia ∆
m3 m3 %

Volume 98,69 97,03 1,7

Table 5.1.: Validation by Volume Control

The above table shows the calculated values for the volume of the main fuselage sec-
tion. It can be seen that the ∆ for the overall fuselage volume is low. A more detailed
listing can be found in the appendix A.

54 Additional point elements are used to locate e.g. the position of a micro for acoustic calculation. This
data is however not in the scope of the geometric considerations

6. Summary

The goal of this work was to analyze the three different information models namely
Step, Cpacs and Uml in respect to preliminary airplane design. Additionally, the
scope of this work included the concept and prototype for a Cpacs to Step converter
tool

In this chapter the results of the work carried out are described briefly. A discussion
will follow which analyses the usefulness of the suggested solution as well as the
quality of the converter tool. Finally, a short outlook will be given on possible future
development tasks concerning Cpacs and the converter tool.

6.1. Results

For the analysis of different information models the lexical definitions for some of the
major terms are introduced. Classification schemes that can be found in the literature
are elaborated. The scheme of Rudolph is chosen and the named information objects
are set into context with preliminary airplane design. After describing the information
terms some important aspects for information models are defined. This list is how-
ever not complete and only outlines some of the major requirements. The common
modeling mechanisms from object oriented languages are explained.

The main part of this work contributes to the analysis of the information models.
Therefor all models are introduced extensively. The history and development of Step

are described along with the structure of it. The metamodel from part 11 and the
instance model in part 21 are introduced. Some major parts are elaborated in more
detail. Special interest is focused on AP 214. The origins of Cpacs at the DLR are elab-
orated. Cpacs is based on Xml-Schema and Xml. These standards are shown. Tixi and
Tigl as the supporting libraries are outlined as well. For the Uml several approaches
for modeling in preliminary airplane design from the literature are introduced. On
the example of the airplane design language some details are elaborated further.

In chapter 4 an analysis from the information models is drawn. While the size and
abstraction of Step make it inappropriate for a use at the DLR the other models show
worthwhile approaches. On the one hand Uml offers the most advanced modeling
mechanisms and its usefulness for preliminary airplane design is shown in many
cases. On the other hand Xml is a wide spread and easy to understand language.
It guarantees accessibility and allows exchange with other formats. The author there-

6.2 Discussion 64

fore suggests a combination of these models for preliminary airplane design. The
metamodel should be created using the Uml or SysML. The SysML is a derivate of the
Uml and is specialized on Systems Engineering. Instances should be stored in Xml.
This also allows the continuous use of the already developed libraries.

This work introduces a scheme for a Cpacs to Step converter tool. The tool is created
using open source software. Using Eclipse as development framework enabled the use
of various plugins that are discussed in more detail. This way the code could be kept
small and simple. The converter tool can be used to process information from Cpacs

to Step. The geometry information can be accessed by standard Step tools.

6.2. Discussion

During the first three chapters of this work several definitions are given. It can be
seen at some points that terms used in the context of information modeling can not
be hard defined. This is most obvious for information. Several definitions quoted from
the literature are introduced in this work. Neither a precise description for the term is
available nor can a uniform classification be declared. This vagueness makes it hard
to define a holistic model. Even the requirement of a holistic information model is
overqualified. A really holistic product description can hardly be established. Hence
this work is focused on preliminary airplane design and the scope of technology inte-
gration at the DLR.

While examining the different information models it became obvious that in some
cases the responsible organizations try to use synergy effects.

⇀ Express is adopted as an OMG language

⇀ Step develops parts for systems engineering similar to SysML

⇀ exff maps Express to the Uml

⇀ Step can use Xml as a new file format

In the recommendation for a future information model at the DLR it is tried to create
a model that reflects these synergy effects and is similar to a future information model
that might evolve in the industry. The choice of Uml / SysML and Xml can therefore
also be justified by trends in information modeling.

The approach for a converter tool is outlined. A prototype is developed and the output
to Step geometry is established. A validation was carried out as well. Nevertheless,
the converter tool can be improved in future versions. More details are given in the
following section.

6.3 Outlook 65

6.3. Outlook

In this section a short outlook is given on information modeling in respect to Cpacs.
The Cpacs format is used more and more throughout the DLR. This is mostly be-
cause the related tools are generating benefits for distributed work and development.
However, this results in a rapidly growing metamodel that handles data from vari-
ous project horizons. Generally speaking, a growing metamodel is to be welcomed
and more projects working with Cpacs enable ongoing development. For the future
boundaries should be set up between different Cpacs subsets. The Evita project for
example handles extensive data on jet engines. The jet engine data should be stored
in a subset of Cpacs that is compatible to a subset for an airplane. The airplane subset
is again compatible to a subset that handles climate data and relies on many airplane
configurations. The technical possibilities for this are already given. The goal is to
keep the Cpacs data more lucid so that future projects can start easily with a subset of
Cpacs and not all information ever handled by Cpacs.

For the future a combination of a Uml metamodel with Xml is suggested. For a
possible implementation some questions are still to be answered. Use Uml or SysML
for the metamodel? Is a direct mapping from Uml to Xml possible? Or will there be
an intermediate step using a generated Xml-Schema?

The creation of Cpacs data is slow. The current geometry model of the DLR’s ATTAS
holds more than fifty fuselage ribs. Each rib consists of more than hundred points.
There is no automatic mechanism available to create this data yet. One possible ap-
proach for the creation of Cpacs models is the use of a rule based system.

Also mentioned during the analysis of the models, version control is a central require-
ment for information modeling. A future Cpacs maintenance could try to establish
a version control, that handles changes in Cpacs as well as changes in the involved
tools.

There are certainly many possible fields of improvement for information models. An-
other approach could lead to the modeling not only of information but knowledge.
This approach however will introduce a new field of research. Looking back at the
introduction where information was defined as data placed in context a future approach
needs to put both information and data into context.

Bibliography

Please note that a lot of research was made using the www. In this biblography
section only print literature is listed. All information from the www is indicated via
footnotes in the text. Footmarks are recurring, footnotes are set only once in the text.
The websites were accessible during July 2009.

[1] Oxford English Dictionary. Oxford University Press, 2006.

[2] STEP Application Handbook ISO 10303. SCRA, 2006.

[3] AFWAL /MLTC. Integrated Information Support System(IISS), Common Data
Model Subsystem, Part 4: Information Modeling Manual - IDEF1X. AFWAL-TR-
86-4006 5 (1985).

[4] Anderl, R., and Trippner, D., Eds. STEP- Eine Einführung in die Entwicklung,
Implementierung und industrielle Nutzung der Normenreihe ISO 10303. B.G. Teubner
Stuttgart, 2000.

[5] Arbeitskreis "CAD/CAM". Umfang und Qualität von CAD/CAM-Daten. VDA-
Empfehlung 4955/2, September 1999.

[6] Bachmann, A., Kunde, M., Litz, M., and Schreiber, A. A Dynamic Data Inte-
gration Approach to Build Scientific Workflow Systems. Grid and Pervasive Com-
puting Conference 0 (2009), 27–33.

[7] Batenburg, R., Helms, R., and Versendaal, J. PLM roadmap: stepwise PLM
implementation based on the concepts of maturity and alignment. Int. J. Product
Lifecycle Management 1, 4 (2006), 333–351.

[8] Bertino, E., and Martino, L. Object-oriented database management systems:
Concepts and issues. Computer 24, 4 (1991), 33–47.

[9] Boehnke, D., Reichwein, A., and Rudolph, S. Design Language for Airplane
Geometries using the Unified Modeling Language. In ASME Int. Design Engi-
neering Technical Conferences (IDETC) & Computers and Information in Engineering
Conference (CIE) (2009).

[10] Booch, G., Rumbaugh, J., and Jacobsen, I. The Unified Modeling Language User
Guide. Addison-Wesley, 1999.

[11] Brockhaus. Brockhaus Enzyklopädie in 30 Bänden, 21 ed. F.A. Brockhaus GmbH,
Leipzig, Bibliografisches Institut und F.A. Brockhaus AG, Mannheim, 2006.

Bibliography 67

[12] Burnette, E. Eclipse IDE - kurz &gut. O’Reilly, 2006.

[13] Chen, P. P.-S. The entity-relationship model - toward a unified view of data. ACM
Trans. Database Syst. 1, 1 (1976), 9–36.

[14] Choi, G., Mun, D., and Han, S. Exchange of CAD Part Models Based on the
Macro-Parametric Approach. Int. J. of CAD/CAM 1 (2002), 13–21.

[15] Codd, E. F. A relational model of data for large shared data banks. Commun.
ACM 13, 6 (1970), 377–387.

[16] Duckett, J., Griffitn, O., Mohr, S., Norton, F., Stokes-Rees, I., Williams, K.,
Cagle, K., Ozu, N., and Tennison, J. Professional XML Schemas. Wrox Press Ltd.,
2001.

[17] Falkman, P., Nielsen, J., Lennartson, B., and von Euler-Chelpin, A. Gener-
ation of STEP AP214 Models From Discrete Event Systems for Process Planning
and Control. IEEE Transactions on automation science and engineering 5 (2008), 113–
126.

[18] Feeney, A., and Price, D. FutureSTEP Project. Presentation, May 2009. 11th
NASA/ESA Workshop on Product Data Exchange.

[19] Fidel, R., and Green, M. The many faces of accessibility: engineers’ perception
of information sources. Information Processing and Management 40, 3 (2004), 563 –
581.

[20] Fowler, J. STEP for Data Management, Exchange and Sharing. Technology Ap-
praisals Ltd., 1995.

[21] Freeman, E., Freeman, E., Bates, B., and Sierra, K. Head First Design Patterns.
O’Reilly, October 2004.

[22] Gao, J., and Aziz, H. Application of Product Data Management Technologies
for Enterprise Integration. Int. J. of Computer Integrated Manufacturing 16 (2003),
491–500.

[23] Geissen, M. Einen STEP vorraus. Digital Engineering Magazin 2 (2005), 36–37.

[24] Goh, A., Hui, S., and Song, B. An integrated enviroment for product develop-
ment using Step / Express. Computers in Industry 31 (1996), 305–313.

[25] Hoofman, J., Mulyar, N., and Posta, L. Coupling Simulink and UML Mod-
els. Formal Methods for Automation and Safety in Railway and Automotive Systems 1
(2004), 304–311.

[26] Hunter, D., Watt, A., Rafter, J., Duckett, J., Ayers, D., Chase, N., Fawcett, J.,
Gaven, T., and Patterson, B. Beginning XML. Wiley Publishing Inc., 2004.

[27] IGES/PDES Organization. Initial Graphics Exchange Specification 5.3. 1996.

[28] International Organization for Standardization. Industrial automation

Bibliography 68

systems and integration — Product data representation and exchange, Part 214:
Application protocol: Core data for automotive mechanical design processes. ISO
10303-214, 12 2003. Second edition.

[29] Jarke, M., Mylopoulos, J., Schmidt, J. W., and Vassiliou, Y. DAIDA: an en-
vironment for evolving information systems. ACM Trans. Inf. Syst. 10, 1 (1992),
1–50.

[30] Jaroš, M. Integration des STEP-Produktmodells in den Getriebeentwicklungsprozess.
PhD thesis, 2006.

[31] Katzenbach, A. Informationstechnik und Wissensverarbeitung in der Produk-
tentwicklung. Lecture notes at Stuttgart University, 11 2008.

[32] Kersken, H.-P., Litz, M., Cornelsen, H., and Schreiber, A. A Software Envi-
ronment for multi-disciplinary Simulation in Aircraft Predesign. to be published.

[33] Kimber, W. XML Representation Methods for EXPRESS-Driven Data. U.S. De-
partment of Commerce, National Institute of Standards and Technology, 1999.
NIST GCR 99-781.

[34] Klein, L. A Component oriented Software Architecture for Cross STEP-AP Im-
plementations. Presentation, 2008. 10th NASA-ESA Workshop on Product Data
Exchange.

[35] Klein, L. Linking ISO 10303 with the Semantic Web. Presentation, 2008. 10th
NASA-ESA Workshop on Product Data Exchange.

[36] Lee, Y. T. Information Modeling from Design to Implementation. Manufactur-
ing Systems Integration Division, National Institute of Standards and Technology
(NIST).

[37] Litz, M., Cornelsen, H., and Kersken, H. Software Tools and Data Formats for
Data Exchange in Airplane Predesign. Conference, 2008. PDE 2008.

[38] Lu, Z. Data Management in an Object-Oriented Distributed Aircraft conceptual Design
Enviroment. PhD thesis, School of Aerospace Engineering, Georgia Institute of
Technology, 2007.

[39] Meier, A. CAD-Datenaustausch - sicher und ohne Blindleistungsverluste. Kon-
struktion 2 (2009), 27–28.

[40] Michaelis, S., and Schmiesing, W. JAXB 2.0: Ein Programmiertutorial für die Java
Architecture for XML Binding. Hanser, 2006.

[41] Mun, D., Han, S., Kim, J., and Oh, Y. A set of standard modeling commands for
the history-based parametric approach. Computer Aided Design 35 (2003), 1171–
1179.

[42] Mylopoulos, J. Information Modeling in the Time of the Revolution. Information

Bibliography 69

Systems 3-4 (1998).

[43] Nijssen, G., and Halpin, T. Conceptual Schema and Relational Database Design: A
Fact Oriented Approach. Prentice Hall, 1989.

[44] Oestereich, B. Analyse und Design mit UML 2.0 - Objektorientierte Softwareentwick-
lung. Oldenburg, 2005.

[45] Oh, Y., Han, S., and Suh, H. Mapping product structures between CAD and
PDM systems using UML. Computer Aided Design 33 (2001), 521–529.

[46] Pahl, G., Beitz, W., Feldhausen, J., and Grote, K. Engineering Design. Springer
Berlin, 2006.

[47] Peak, R. S., Lubell, J., Srinivasan, V., and Waterbury, S. C. STEP, XML, and
UML: Complementary Technologies. Journal of Computing and Information Science
in Engineering 4, 4 (2004), 379–390.

[48] Reichwein, A., and Hertkorn, P. On a model driven approach to engineering
design. International Conference on Engineering Design (2007).

[49] Ritter, J. Historisches Wörterbuch der Philosophie : 13 Bände ; 1971 - 2007. Schwabe,
Basel, 1971. CD-ROM.

[50] Rudolph, S. A Methodology for the Systematic Evaluation of Engineering Design Ob-
jects. PhD thesis, Stuttgart University, 1994.

[51] Sachers, M. White Paper for PDM-Integration of OEM and Supplier in the Au-
tomotive Industry. White Paper, 5 2003.

[52] Schenk, D., and Wilson, P. Information Modeling: The EXPRESS Way. Oxford
University Press, Inc., 1994.

[53] Sierra, K., and Bates, B. Head First Java, 2nd Edition. O’Reilly Media, February
2005.

[54] Smith, G. Utilization of STEP AP 210 at the Boeing Company. Computer-Aided
Design 34 (2002), 1055–1062.

[55] Stark, J. Product Lifecycle Management , 21st Century Paradigm for Product Realisa-
tion. Springer London, 2005.

[56] Sung, C., and Park, S. A component-based product data management system.
Int. J. for Advanced Manufacturing Technology 33 (2007), 614–626.

[57] Tamburini, D., and Peak, R. Overview of Information Modeling Using STEP
EXPRESS, EXPRESS-G, and Part 21 Models. COA/CS/ME 6754, 2002. Georiga
Tech.

[58] Tsichritzis, D., and Klug, A. C. The ANSI/X3/SPARC DBMS Framework Re-
port of the Study Group on Dabatase Management Systems. Inf. Syst. 3, 3 (1978),
173–191.

Bibliography 70

[59] van der Laan, T. Knowledge based engineering support for aircraft component design.
PhD thesis, 2008.

[60] van der Vlist, E. XML Schema: The W3C’s Object-Oriented Descriptions for XML.
O’Reilly, 2002.

[61] Weber, C., Deubel, T., Köhler, C., Wanke, S., and Conrad, J. Comparison
of Knowledge Representation in PDM and by Semantic Networks. Int. Conf. on
Engineering Design (2007).

[62] Weber, C., Werner, H., and Deubel, T. A different view on Product Data Man-
agement/Product Life-Cycle Management and its future potentials. Journal of
Engineering Design 14 (2003), 447–464.

[63] Ziethen, D. R. CATIA V5 Makroprogrammierung mit Visual Basic script. Hanser
Fachbuchverlag, Berlin, 2006.

A. Section Volumes ATTAS VFW 614

Section TIGL Catia ∆ Section TIGL Catia ∆
10

-1 m3
10

-1 m3 % 10
-1 m3

10
-1 m3 %

1 1,43 1,35 -6,02 26 32,05 29,86 -7,33

2 5,83 5,74 -1,54 27 31,74 29,85 -6,32

3 9,85 9,69 -1,69 28 31,25 29,67 -5,31

4 14,56 14,32 -1,66 29 29,35 28,75 -2,09

5 19,32 19,02 -1,58 30 28,56 28,59 0,12

6 22,86 22,51 -1,54 31 27,54 27,11 -1,59

7 24,82 24,45 -1,50 32 25,59 25,98 1,52

8 25,39 24,99 -1,59 33 23,24 24,59 5,47

9 25,41 25,00 -1,65 34 21,49 23,05 6,77

10 25,41 25,00 -1,65 35 19,83 21,48 7,66

11 25,41 25,00 -1,65 36 18,14 19,87 8,73

12 25,41 25,00 -1,65 37 16,40 18,16 9,71

13 25,41 24,99 -1,69 38 14,53 16,37 11,25

14 25,41 25,00 -1,65 39 12,73 14,55 12,49

15 25,41 25,00 -1,65 40 10,97 12,75 13,97

16 25,37 25,10 -1,07 41 9,36 10,22 8,39

17 26,09 25,67 -1,63 42 7,82 7,84 0,26

18 27,96 26,55 -5,30 43 6,45 6,46 0,17

19 29,59 28,02 -5,60 44 5,22 5,22 0,04

20 30,35 28,42 -6,81 45 4,13 4,13 -0,04

21 30,98 28,99 -6,87 46 3,20 3,19 -0,36

22 31,86 28,99 -9,91 47 2,39 2,39 0,25

23 32,39 28,99 -11,72 48 1,72 1,73 0,18

24 32,61 29,42 -10,84 49 1,16 1,19 2,43

25 32,47 29,71 -9,29 50 0,45 0,47 5,43

Total 986,91 970,45 -1,70

Table A.1.: Section Volumes

Note that the average root mean square (RMS) of the delta value is 5,81. The following
figure A.1 shows the delta value per section. It can be seen that the delta is big at
sections where the cross section changes. This can be seen at the front and aft of the
fairing as well as at the nose and tail of the fuselage section. These deltas are due to

Bibliography 72

different volume body creations. The testing method is based on polylines without
guides and therefore implies variances.

Figure A.1.: Delta per Section

Figure A.2.: Volume Measuring in Catia

B. Setup for Development Framework

As already mentioned in chapter 5.1 the development environment is based on the
Eclipse framework. Eclipse is available in various versions and can be configured via
numerous plugins. For the work carried out the standard Java version is chosen. See
fig. B.1. The software can be downloaded from www.eclipse.org.

Figure B.1.: Eclipse for Java

Several plugins for the visualization and validation of Xml are available for Eclipse.
During the current development XmlBuddy is used. The plugin can be found on the
Eclipse webpage as well and is downloadable from the plugin section.

For further work with Xml the Xjc plugin from the Jaxb project is used. The plu-
gin can be found on the web at jaxb-workshop.dev.java.net/plugins/eclipse/-

xjc-plugin.html. The downloaded files need to be extracted to the plugins folder of
the Eclipse installation. Further information is given on the homepage.

The work with Express and the Step is carried out under Jsdai. This plugin is available
as a direct download via Eclipse. In the help section of Eclipse a software update
register is available. As a new address eclipse.jsdai.net needs to be added. The
Jsdai can then be integrated into Eclipse. The final build path is shown in fig B.2.

Figure B.2.: Libraries in Converter Project

C. Java Code for Point Entities

The following sections show Java code generated from Eclipse plugins. Similar to the
structure in the text the point entity is used as an example. The first section shows the
Java code generated by the Xjc plugin. The interpreted entity comes from the Cpacs

Xml-Schema in version 0.9b. In the second example the various classes and interfaces
generated by Jsdai from a cartesian point in Express are shown.

Generated by XJC from XML-Schema

1 /**
2 * Point type, containing an xyz data triplet
3 *
4 * <p>Java class for pointType complex type.
5 *
6 * <p>The following schema fragment specifies the expected content'
7 contained within this class.
8 *
9 * <pre>

10 * <complexType name="pointType">
11 * <complexContent>
12 * <extension base="{}complexBaseType">
13 * <sequence>
14 * <element name="x" type="{}doubleBaseType" minOccurs="0"/>
15 * <element name="y" type="{}doubleBaseType" minOccurs="0"/>
16 * <element name="z" type="{}doubleBaseType" minOccurs="0"/>
17 * </sequence>
18 * <attribute name="uID" type="{http://www.w3.org/2001/XMLSchema}'
19 string" />
20 * </extension>
21 * </complexContent>
22 * </complexType>
23 * </pre>
24 *
25 *
26 */

Bibliography 75

27 @XmlAccessorType(XmlAccessType.FIELD)

28 @XmlType(name = "pointType", propOrder = {

29 "x",

30 "y",

31 "z"

32 })

33 public class PointType

34 extends ComplexBaseType

35 {

36

37 protected DoubleBaseType x;

38 protected DoubleBaseType y;

39 protected DoubleBaseType z;

40 @XmlAttribute(name = "uID")

41 protected String uid;

42

43 /**
44 * Gets the value of the x property.
45 *
46 * @return
47 * possible object is
48 * {@link DoubleBaseType }
49 *
50 */
51 public DoubleBaseType getX() {

52 return x;

53 }

54

55 /**
56 * Sets the value of the x property.
57 *
58 * @param value
59 * allowed object is
60 * {@link DoubleBaseType }
61 *
62 */
63 public void setX(DoubleBaseType value) {

64 this.x = value;

65 }

66

67 /**

Bibliography 76

68 * Gets the value of the y property.
69 *
70 * @return
71 * possible object is
72 * {@link DoubleBaseType }
73 *
74 */
75 public DoubleBaseType getY() {

76 return y;

77 }

78

79 /**
80 * Sets the value of the y property.
81 *
82 * @param value
83 * allowed object is
84 * {@link DoubleBaseType }
85 *
86 */
87 public void setY(DoubleBaseType value) {

88 this.y = value;

89 }

90

91 /**
92 * Gets the value of the z property.
93 *
94 * @return
95 * possible object is
96 * {@link DoubleBaseType }
97 *
98 */
99 public DoubleBaseType getZ() {

100 return z;

101 }

102

103 /**
104 * Sets the value of the z property.
105 *
106 * @param value
107 * allowed object is
108 * {@link DoubleBaseType }

Bibliography 77

109 *
110 */
111 public void setZ(DoubleBaseType value) {

112 this.z = value;

113 }

114

115 /**
116 * Gets the value of the uid property.
117 *
118 * @return
119 * possible object is
120 * {@link String }
121 *
122 */
123 public String getUID() {

124 return uid;

125 }

126

127 /**
128 * Sets the value of the uid property.
129 *
130 * @param value
131 * allowed object is
132 * {@link String }
133 *
134 */
135 public void setUID(String value) {

136 this.uid = value;

137 }

138

139 }

Generated by JSDAI from EXPRESS

1 public interface ECartesian_point extends EPoint {

2

3 // generateExplicitAttributeMethodDeclarations: 1
4 // methods for attribute: coordinates, base type: LIST OF REAL
5 public boolean testCoordinates(ECartesian_point type) throws'
6 SdaiException;

Bibliography 78

7 public A_double getCoordinates(ECartesian_point type) throws'
8 SdaiException;

9 public A_double createCoordinates(ECartesian_point type) throws'
10 SdaiException;

11 public void unsetCoordinates(ECartesian_point type) throws'
12 SdaiException;

13 }

14

15

16 public class ACartesian_point extends AEntity {

17 public ECartesian_point getByIndex(int index) throws SdaiException {

18 return (ECartesian_point)getByIndexEntity(index);

19 }

20 public ECartesian_point getCurrentMember(SdaiIterator iter) throws'
21 SdaiException {

22 return (ECartesian_point)getCurrentMemberObject(iter);

23 }

24 }

25

26

27 public class CCartesian_point extends CPoint implements ECartesian_point {

28 public static final jsdai.dictionary.CEntity_definition definition ='

29 initEntityDefinition(CCartesian_point.class, SAp214dummy.ss);

30

31 /*----------------------------- Attributes -----------*/
32

33 /*
34 // name: protected String a0; name - java inheritance - STRING
35 protected A_double a1; // coordinates - current entity - LIST OF REAL
36 protected static final jsdai.dictionary.CExplicit_attribute a1$ ='
37 CEntity.initExplicitAttribute(definition, 1);
38 */
39

40 /*----------------------------- Attributes (new version) -----------*/
41

42 // name - explicit - java inheritance
43 // protected static final jsdai.dictionary.CExplicit_attribute a0$ ='
44 CEntity.initExplicitAttribute(definition, 0);
45 // protected String a0;
46 // coordinates - explicit - current entity
47 protected static final jsdai.dictionary.CExplicit_attribute a1$ ='

48 CEntity.initExplicitAttribute(definition, 1);

49 protected A_double a1;

50

51 public jsdai.dictionary.EEntity_definition getInstanceType() {

52 return definition;

53 }

Bibliography 79

54

55 /* *** old implementation ***
56

57 protected void changeReferences(InverseEntity old, InverseEntity newer)'
58 throws SdaiException {
59 super.changeReferences(old, newer);
60 }
61 */
62

63

64 protected void changeReferences(InverseEntity old, InverseEntity newer)'

65 throws SdaiException {

66 super.changeReferences(old, newer);

67 }

68

69 /*----------- Methods for attribute access -----------*/
70

71

72 /*----------- Methods for attribute access (new)-----------*/
73

74 //going through all the attributes: #2635=EXPLICIT_ATTRIBUTE(’name’,'
75 #2633,0,#2677,$,.F.);
76 //<01> generating methods for consolidated attribute: name
77 //<01-1> supertype, java inheritance
78 //<01-1-0> explicit - generateExplicitSupertypeJavaInheritedMethodsX()
79 //going through all the attributes: #2504=EXPLICIT_ATTRIBUTE('
80 ’coordinates’,#2502,0,#2719,$,.F.);
81 //<01> generating methods for consolidated attribute: coordinates
82 //<01-0> current entity
83 //<01-0-0> explicit attribute - generateExplicitCurrentEntityMethodsX()
84 // methods for attribute: coordinates, base type: LIST OF REAL
85 public boolean testCoordinates(ECartesian_point type) throws'
86 SdaiException {

87 return test_aggregate(a1);

88 }

89 public A_double getCoordinates(ECartesian_point type) throws'
90 SdaiException {

91 return (A_double)get_aggregate(a1);

92 }

93 public A_double createCoordinates(ECartesian_point type) throws'
94 SdaiException {

95 a1 = create_aggregate_double(a1, a1$, 0);

96 return a1;

97 }

98 public void unsetCoordinates(ECartesian_point type) throws'
99 SdaiException {

100 unset_aggregate(a1);

Bibliography 80

101 a1 = null;

102 }

103 public static jsdai.dictionary.EAttribute attributeCoordinates('

104 ECartesian_point type) throws SdaiException {

105 return a1$;

106 }

107

108

109 /*---------------------- setAll() --------------------*/
110

111 /* *** old implementation ***
112 protected void setAll(ComplexEntityValue av) throws SdaiException {
113 if (av == null) {
114 a0 = null;
115 return;
116 }
117 a1 = av.entityValues[0].getDoubleAggregate(0, a1$, this);
118 a0 = av.entityValues[3].getString(0);
119 }
120 */
121

122 protected void setAll(ComplexEntityValue av) throws SdaiException {

123 if (av == null) {

124 a0 = null;

125 return;
126 }

127 a1 = av.entityValues[0].getDoubleAggregate(0, a1$, this);
128 a0 = av.entityValues[3].getString(0);

129 }

130

131 /*---------------------- getAll() --------------------*/
132

133 /* *** old implementation ***
134 protected void getAll(ComplexEntityValue av) throws SdaiException {
135 // partial entity: cartesian_point
136 av.entityValues[0].setDoubleAggregate(0, a1);
137 // partial entity: geometric_representation_item
138 // partial entity: point
139 // partial entity: representation_item
140 av.entityValues[3].setString(0, a0);
141 }
142 */
143

144 protected void getAll(ComplexEntityValue av) throws SdaiException {

145 // partial entity: cartesian_point
146 av.entityValues[0].setDoubleAggregate(0, a1);

147 // partial entity: geometric_representation_item

Bibliography 81

148 // partial entity: point
149 // partial entity: representation_item
150 av.entityValues[3].setString(0, a0);

151 }

152 }

	Introduction
	Research Motivation
	Introduction to Information Models
	Research Outline

	Information in Airplane Design
	Information Classification
	Information Objects

	Requirements for Information Models
	Important Aspects
	Abstraction Methods

	Information Models
	ISO 10303
	CPACS
	UML
	Analysis/Comparison

	Converter for Information Models
	Development Tools
	Converter Structure
	Validation

	Summary
	Results
	Discussion
	Outlook

	Biblography
	Section Volumes ATTAS VFW 614
	Setup for Development Framework
	Java Code for Point Entities

