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Abstract—In this paper, we propose a novel proxy caching
scheme for Video on Demand (VoD) services. Our approach is
based on the observation that streaming video users searching
for some specific content or scene pay most attention to the initial
delay, while a small shift of the starting point is acceptable. We
present results from subjective VoD tests that relate waiting time
and starting point deviation to user satisfaction. Based on this
relationship as well as the dynamically changing popularity of
video segments, we propose an efficient segment-based caching
algorithm, which maximizes the user satisfaction by trading off
between the initial delay and the deviation of starting point.
Our caching scheme supports interactive VCR functionalities
and enables cache replacement with a much finer granularity
compared to previously proposed segment-based approaches.
Our experimental results show a significantly improved user
satisfaction for our scheme compared to conventional caching
schemes.

Index Terms—Video on Demand, Video Streaming, Proxy
Caching, Early Playout, Segment-based Caching, Popularity-
aware Caching

I. INTRODUCTION

Video on Demand (VoD) systems allow users to select
and watch video over a network as part of an interactive
entertainment system. Most of the VoD systems “stream”
content, where video is consumed while being delivered,
allowing viewing in real time. After users select a movie
or television program, it is retrieved as quickly as possible
and played on the client device. One of the main benefits of
streaming video is that the users do not need to spend a long
time and large storage cost to download the whole video file
to the local disk.

Proxies are widely used in web browsing and can also be
employed to improve the performance of video streaming. By
deploying a proxy server close to the client, video playback
with low latency and reduced network traffic can be achieved.
In this work, we consider the scenario shown in Fig. 1, where a
streaming proxy is located close to the clients in a Local Area
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Digital Object Identifier

Network (LAN). We assume that the connection between the
clients and the proxy is characterized by high transmission rate
and low latency. If the requested video content has already
been accessed by one user and is cached on the proxy, the
initial delay for the second and later users is significantly
decreased compared to the case when content has to be loaded
from the remote server. Since the proxy has only finite storage
capacity, a dynamic cache management scheme has to be used
to decide which videos or which parts of a video to cache.
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Fig. 1. Server-Proxy-Client network structure

A number of studies have been performed to explore the
benefits of a proxy server for video streaming applications.
Caching algorithms are proposed to minimize the data traffic
between the server and the clients. For instance, Video staging
approaches [1]–[3] cache the video portions on the proxy that
exceed the given transmission rate so that a lower bandwidth
is required to serve the video over a Constant Bit Rate (CBR)
channel. In [4], both the characteristics of the video objects
and the quality of the connections between the servers and the
proxy are taken into account to determine the optimal video
portions for caching. Miao and Ortega propose in their work
[5] [6] caching strategies that consider an efficient control and
usage of the client buffers. Buffer underflow and overflow are
avoided with small initial delay. Both issues, the data traffic
and the client buffer control, have been discussed and possible
solutions are given by Oh and Song in [7] [8], where frames
are selectively cached so that the normalized client buffer size
is minimized. Furthermore, approaches for transcoding proxy
caching are presented in [9]–[11], where the proxy caches
different versions of the same video content to deal with
heterogeneous user requirements.

Several partial caching approaches have been developed to
decrease the initial delay experienced by a VoD user. Video
content can be temporally divided into small units and some of
these units are cached on the proxy to enable a fast playback.
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Prefix caching [12] [13] caches only the frames at the begin-
ning of popular video clips to minimize the average initial de-
lay. Segment-based approaches have been proposed to enable
the cache update with a finer granularity. Exponential Seg-
mentation [14] divides the video object such that succeeding
segments are double in size and the replacement always starts
from the largest segment. An extended version of it namely
Skyscraper Segmentation has been later introduced in [15]. The
Lazy Segmentation approach in [16] determines the segment
length of a new incoming video as late as possible according
to the user access record. The video is then divided into same
length segments according to the mean viewing length and
only the first several segments are cached when replacement
is performed to free cache space. Segmentation of video
objects can be in time domain but also in quality direction.
For instance, in [17] and [18], caching algorithms for multi-
layer (scalable) video are proposed. A real implementation of
the segment-based proxy caching infrastructure is reported by
Chen et al. in [19] to show the feasibility of this approach.
A combination of prefix and segment based approaches leads
to the chunk level cache replacement methods, which further
improve the flexibility of cache management. For instance,
[20] combines neighboring units to form chunks. Each chunk
consists of some prefix segments and some suffix segments.
Suffix segments are never cached and the dropping of prefix
segments starts from the tail of each prefix. The length of
the chunks is predetermined according to the popularity of
video objects, the higher the popularity, the larger the chunk
size. A dynamic chunk size scheme is proposed in [21], where
the chunk length in one video is fixed and is always an
integer multiple of currently cached units. A larger chunk
size is assigned to the videos with higher popularity and the
replacement always starts from the end of the chunk having the
smallest size. All above approaches assume that the playout
always starts from the beginning of the video towards the
end sequentially and random access to video content is not
considered. This issue is addressed in a recent work by Wang
and Yu [22], where a fragmental caching structure is proposed
to enable interactive VCR functionality.

Popularity is one of the most important factors that should
be considered during the design of an efficient caching strat-
egy. Long-term movie popularity models in VoD systems
have been derived in [23], which show how the popularity
of video objects changes with time. In [24], real access log
files show that for VoD services the popularity between video
objects follows a Zipf Distribution [25], which says that most
of the user requests are focused on a limited number of
video objects. Different ways of calculating popularity are
introduced and compared in [26]. Static counts the hitting
frequency of a daily or weekly log file. Accumulated takes the
history popularity into account and assigns different weights
according to their time distance. Dynamic uses a sliding
window to count the hitting rate in a short period of time.
Popularity difference exists not only between video objects,
but also inside one video. For instance, [27] reveals the internal
popularity distribution of a video object by studying the log file
of a commercial VoD system. Users start watching from the
beginning of a movie sequentially and stop somewhere if the

movie is uninteresting to them. In [28], the log files of a VoD
system in the university also shows the diversity of popularity
inside one video file. It reports that most of the users access
the video randomly rather than using sequential playout. High
access rates are always observed at the most attractive parts
of the movie. Because of the random access, two popularity
distributions should be considered, namely playing frequency
and seeking frequency. As shown in [28], the two distributions
are similar and the peaks are consistent.

Popularity-aware caching strategies, as described for in-
stance in [4] [13] [26], use the popularity of served videos to
decrease the initial delay and to improve the caching efficiency.
Videos with high popularity are more likely to be cached and
those with low popularity are not cached or only a small
part is cached. Segment-based partial caching with explicit
consideration of video popularity can significantly improve the
performance of VoD systems as shown in [14]–[21]. However,
most of the proxy caching algorithms assume that video files
are always played from the beginning and continuously to-
wards the end. Therefore, they put emphasis on the beginning
of video files, while the rest receives less attention. Generally,
this assumption does not always hold in practice. For instance,
the log files of a real VoD system reported in [28] show that
most of the video content in their system is randomly accessed
instead of being played sequentially. Although [22] enables
random access, only video level popularity is considered,
which prevents a further improvement of caching efficiency.������ ������	�
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Fig. 2. Fast playback with prefix caching

In our previous work [29], a Popularity-Aware Partial
cAching (PAPA) algorithm has been proposed. This approach
is based on the results of an online subjective test, which
has shown that VoD users prefer immediate feedback from
the system even if the video does not start playing at exactly
the desired starting point. Therefore, in PAPA, video files are
divided into fixed-length segments (similar to the “chunks”
in [20] and “fragments” in [22]), consisting of a prefix and
a suffix. The prefix length in number of Groups of Pictures
(GOPs) is determined by the network condition (round-trip-
time, transmission rate, delay, jitter, etc.) between the proxy
and the server where the requested video is stored and is cho-
sen such that it is big enough to ensure continuous playback
at the client. As every GOP is independently decodeable, the
GOP size determines the granularity for random access. How-
ever, the playout in PAPA always starts from the beginning of
a segment that a user request falls in. This leads to a small
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deviation of the starting point (we call it “early start” in this
paper), but as long as the prefix of the segment is completely
available in the cache, the playback can start immediately.
As shown in Fig. 2, when a request arrives at the proxy,
the prefix of the segment where the requested GOP belongs
to is forwarded to the user immediately if it is cached on
the proxy. Meanwhile, a request is sent to the content server
for missing video content. Downloaded frames are forwarded
to the user when the whole prefix has already been sent.
Furthermore, instead of evaluating the popularity of the whole
video file, the popularity of every segment is evaluated, which
leads to a more accurate popularity analysis and more flexible
cache updates. When more cache space is required, PAPA
drops all suffix frames before dropping any prefix frame to
avoid waiting time for the client. Although the initial waiting
time is minimized as long as all prefix frames are available,
each segment has the same expected early start time without
considering the large difference in their popularity. This limits
the performance of PAPA.

In this work, we first introduce our improved subjective test
environment and present more representative results, which
further support the conclusion from our preliminary tests in
[29] that users prefer a starting point deviation compared
to initial delay. We give a mathematical expression for the
relation between the initial delay and the early start time
with respect to user satisfaction. Based on this observation,
a Dynamic sEgment-based Caching Algorithm (DECA) is
proposed. DECA inherits the concepts of “segment-prefix
structure”, “internal popularity of video” and “early start” from
PAPA and further improves them. In DECA, instead of using
a fixed chunk/segment size as in [22] and [29], the size of
each segment is variable and changes as a function of the
dynamically updated popularity. The individual segment size is
determined by the estimated weighted user satisfaction, which
is calculated from the popularity, the initial delay and the early
start time of all GOPs belonging to this segment. Furthermore,
DECA considers both the contribution of initial delay and
early start, and makes a trade-off between them to achieve
a highest averaged user satisfaction. To further improve the
performance of a proxy caching system, the proxy cache is
proposed to be divided into two parts, namely Level one (L1)
cache and Level two (L2) cache. All newly incoming video
fragments are temporally cached in the L1 cache following
some traditional cache management schemes, e.g., LRU (Least
Recently Used). The L2 cache is periodically managed with
some segment-prefix based caching management schemes,
e.g., DECA in this paper. Video fragments in the L1 cache
that are frequently requested is then fetched to the L2 cache
to replace those with decreasing popularity.

The remainder of this paper is organized as follows. In
Section II, we present our subjective test platform as well as
the obtained results. Based on the subjective test results, we
describe the proposed DECA approach in detail in Section III.
Simulation results are shown in Section IV and conclusions
are drawn in Section V.

II. SUBJECTIVE TEST

Based on the results from our initial subjective tests in
[29], we have drawn the conclusion that users prefer early
start to initial delay. PAPA makes use of this observation
and allows for early start to minimize the waiting time under
the assumption that the segment length is fixed and small.
However, using short segment lengths also means that more
content needs to be cached, which decreases the caching
efficiency. In this section, we present new subjective tests
that allow us to determine the expected user satisfaction as
a function of initial delay and early start time. Equipped with
this functional relationship, the proxy is able to serve a user
request with the mode which leads to higher satisfaction.
Furthermore, in the initial tests we have shown the test videos
to the subjects explicitly with the expected starting point and
the real starting point, which is somewhat unfair to the early
start mode. In the new test, we improve the interactivity with
the system by adding the functionality of random access using
a slide bar.

A. Test Setup

To develop a media player with full functionality and
friendly user interface, the open source Video LAN/VLC .Net
bindings [30] is used as a core player and C# is used to
develop the interface. Our media player, shown in Fig. 3, is
called “TUMPlayer”, which has the functionalities of Play,
Pause, Stop, Fast Forward/Rewind, and controllers for Volume,
Thumbnail View and Full Screen.

Fig. 3. User interface of the TUMplayer

Three videos with different characteristics have been in-
cluded in the tests: News, Sport and Movie. The News is freshly
captured from CNN TV news. The football match in the Sport
category is the final of “Copa Libertadores 2007”. Finally, the
film “Shrek-I” is used to represent the Movie category. All
three video clips are encoded using MPEG-1 with CIF@25fps.
More properties of the test videos are shown in Table I.

The subjective test is conducted as follows. When a vol-
unteer starts the test, two frames selected from two popular
scenes are popped up on the left side of the player as shown
in Fig. 3. The test person is told to access the popular scene
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(a) News
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(b) Sport
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(c) Movie

Fig. 4. Results of the subjective VoD performance evaluation test

TABLE I
PROPERTIES OF TEST VIDEOS

Video Name Total number of frames Duration
News 39,504 00:26:20
Sport 72,441 00:48:17
Movie 131,976 01:27:59

by clicking on the pop-up thumbnail frames. After clicking,
according to our specification, the system serves randomly
with one of the following modes:

1) The playout of the video starts after an initial delay of
1, 3, 4, 5 or 7 seconds (modes 1 to 5) exactly at the
selected scene. In addition, a “Buffering...” text message
is displayed in a panel at the bottom of the player.

2) The playout starts immediately without any initial delay
but with a shift of 2, 4, 6, 9 or 12 seconds prior to the
selected frame (modes 6 to 10).

The test person is asked to wait until the scene he/she clicked
on appears in order to make sure that the early start becomes
noticeable. After watching the given scenes, the test person is
also asked to access the video clip randomly using the slide
bar at the bottom of the player to get an additional impression
about the interactivity of the system. Finally, a score is given
by the test person for one video sequence under one operation
mode, which represents his/her satisfaction with the system.

B. Results

Fig. 4 shows the obtained results of our subjective tests. The
X-axis represents the initial waiting time or the early start time
in seconds. The Y-axis shows the user satisfaction on a scale
from 1 to 10, where 1 indicates the worst user experience and
10 is the best. All points on the curves are derived by averaging
the scores from 28 test persons. The dashed curve represents
the client satisfaction as a function of the initial delay and
shows that the satisfaction of the user declines rapidly with
increasing waiting time. The dotted curve illustrates the user
satisfaction as a function of the early start time and shows a
much slower degradation of user satisfaction. Hence, we can
draw the conclusion that the users are more comfortable with
the early start than the initial delay. In other words, when
clients are searching for some particular content, they pay
more attention to the initial delay and a small shift of the
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Fig. 5. Averaged user score and approximated user satisfaction model

starting point is more tolerable. Please note that the duration
of the movie and the slide bar navigation play an important
role in the tests. In our tests, following the design of real VoD
systems [28], long videos are employed. As the size of the
slide bar in the player is fixed, the shift of the slider for the
same playout duration varies according to the length of the
video. A very small movement is observed in our case, which
makes the early start unnoticeable during slide bar interaction.
On the contrary, clips with very short duration will show a
large movement of the slider on the track bar, which is then
annoying as early start becomes observable when searching
with the slide bar. In this case, we can offer coarser access
granularity on the segment level by disabling the requests to
later GOPs in the segment.

Another observation we can make in Fig. 4 is that different
types of videos lead to similar results. This encourages us to
derive a universal user satisfaction model that is independent
of the video type. We average the results for the News, Sport
and Movie videos and obtain the new user satisfaction curves
shown in Fig. 5. We approximate the curves in the following
with two linear functions:

GWT = max(0,−0.653 · tWT + 8) (1)
GES = max(0,−0.137 · tES + 8) (2)

where tWT and tES represent the initial delay and the early
start time in seconds, respectively. GWT and GES denote the
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user satisfaction score for the two different serving modes,
respectively. For zero waiting time or zero early start time, a
score of 8 is obtained in (1) or (2). This reflects that during
the subjective test, the test persons were too conservative to
give the full points. Therefore, in the following, we assume 8
to be the highest score.

III. CACHING ALGORITHM WITH DYNAMIC SEGMENT
STRUCTURE

In this section, we first present the variable segment struc-
ture and some important definitions for the Dynamic sEgment-
based Caching Algorithm (DECA), followed with a detailed
description of the algorithm. A two-level caching framework is
then introduced, where the proposed DECA can be employed
to achieve even higher user satisfaction.

A. Segment-Prefix Structure

As shown in [22], more cache resources should be assigned
to the video fragments with high popularity. Therefore, instead
of using a fixed-segment structure as in [29], a more flexible
segment-prefix structure is proposed, so that video fragments
with higher popularity can have smaller segment size to enable
small or even no initial delay and early start. On the other
hand, larger segments are mostly used for those video parts
with low popularity. This is different to the proposal in [20],
where the popular videos have larger chunk size. Furthermore,
the smallest replacement unit is defined as one GOP in our
work rather than “any multiple of disk block size” in [20].
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Fig. 6. Variable size segment structure

Fig. 6 shows the segment structure with variable segment
size. As illustrated, there are N videos altogether, namely V1 to
VN , each of them has Nv

S (v = 1 . . . N ) segments. Generally
speaking, different videos may have different segment size,
and the segment size within the same video may also vary
significantly. Each segment consists of two parts: a prefix and
a suffix. The length of the prefix or suffix is expressed as the
number of GOPs it contains. Take the N -th video in Fig. 6 as
an example. The second segment of VN consists of 1 prefix
GOP and 2 suffix GOPs, while the last segment comprises 1
prefix GOP and 3 suffix GOPs. The length of the prefix (LP )
is determined by the network condition between the server and
the proxy. For a certain video file, we assume that it will be
retrieved from only one content server and hence, the same
network condition applies to all segments of a video. As a

result, they have identical prefix length. For simplicity but
without loss of generality, we assume that all videos have the
same prefix length in this work. The minimum segment size is
equal to the prefix length, which is also the finest achievable
random seek granularity for an immediate playout unless we
have LP successive GOPs from the requested point cached on
the proxy.

The variable size segment structure empowers the replace-
ment algorithm to keep up with the changing popularity
distribution and also provides a way to adjust the granularity
of random access. Video fragments with high popularity have
smaller segment size, therefore finer granularity and vice versa.
With this flexible structure, we can also ensure that all prefix
GOPs are cached by adjusting the size of individual segments.
Therefore, if the early start mode is selected by the system,
no additional waiting time will be experienced by the user.
Otherwise, if the initial delay mode is more favorable, the
playback will start exactly at the requested point.

B. Serving Mode Selection

As mentioned in the last section, different modes (i.e., initial
delay or early start) can be selected to serve the user requests.
In this section, we introduce how the waiting time and early
start time can be calculated for the user request to a particular
GOP. Based on that, we determine the optimal serving mode.

The expected waiting time for a particular request is the time
needed to download LP successive GOPs from the requested
starting point if any of them are not cached on the proxy.
Only when they are all available, the playout can be started.
These LP GOPs might go across the segment boundary and
include some prefix GOPs of the next segment, which should
always be cached according to the design of the prefix-segment
structure. Therefore, only the loading time for missing suffix
GOPs has to be considered. We obtain the waiting time for a
request to the i-th GOP of segment j in video v as

t
(v,j,i)
WT =

min(L
(v,j)
S ,i+LP−1)∑

n=max(LP +1,i)

S
(v,j,n)
G

Rv
, (3)

where S
(v,j,n)
G is the size of the n-th GOP in the j-th segment

of video v. L
(v,j)
S is the length of segment j in number of

GOPs and LP is the length of prefix in number of GOPs.
Rv is the transmission rate between the proxy and the server
where video v is stored.

The early start time is determined by the distance between
the requested GOP and the first GOP in the segment. It can
be calculated as

t
(v,j,i)
ES =

LG

rf
· (i− 1), (4)

where LG is the length of one GOP in number of frames and
rf is the frame rate of the video sequence. The ratio LG/rf

converts the early start time in number of GOPs to the early
start time in seconds.

In DECA, the playout does not necessarily start from the
beginning of a segment. For large segments, if the desired
starting point is too far away from the beginning of the
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segment, the waiting mode might be selected as the serving
mode. This is because in this case, early start will lead to
a low user satisfaction, which might be even lower than the
user satisfaction obtained for downloading of the requested
part from the remote server. Let’s assume that the early start
time would be 12 seconds and alternatively the waiting time
would be 1 second. In this example(compare Fig. 5), users
would prefer waiting for 1 second rather than encountering
a starting point deviation of 12 seconds. On the other side,
when the requested GOP is not far away from the beginning
of the segment it belongs to, the early start mode is typically
preferred. Once the early start time and the waiting time for
the requested GOP is obtained from (3) and (4), we can
calculate the scores for the two modes by evaluating the score
functions (1) and (2). The two scores are compared and the
mode leading to higher user satisfaction is finally selected,
which is presented as

G(v,j,i) = max(G(v,j,i)
ES , G

(v,j,i)
WT ). (5)

C. GOP Level Popularity

As a lot of video content is randomly accessed by VoD
users [28], different parts of a video may have very different
popularity [27]. For example, fragments with goals in a
football match are usually visited more frequently than other
fragments. Suppose we have two videos V1 and V2 cached
on the proxy. Let’s further assume that the overall popularity
of V1 is higher than the popularity of V2. However, the most
popular fragment of V2 has a popularity exceeding most parts
of V1. If a cache replacement algorithm works with video level
popularity, video frames in V2 will always be removed before
V1 because it has a lower overall popularity, even the most
popular part of it might not survive in this process. Obviously,
a more efficient algorithm should delete those parts in V1

with a lower popularity rather than the most popular part in
V2. As GOPs are independently decodeable, they define the
finest access granularity. Therefore, instead of evaluating the
popularity for the entire video as in [4] [26] [13], we measure
the popularity for every GOP during a predefined time interval.

D. Cost Calculation

Before we explain our proposed cache management scheme,
we introduce an important metric called “cost”, which is used
during the subsequent merging process to build up the variable
segment structure shown in Fig. 6. The “cost” mentioned
above represents the price we have to pay for one byte of free
cache space if two neighboring segments are merged together,
of course the cheaper the better. The pairwise cost is a function
of three different parameters. Popularity is the first parameter.
We want to keep more popular video fragments, hence, the
higher the popularity, the bigger the cost should be. The second
aspect to consider is the user satisfaction. When two segments
are merged, user satisfaction degrades because of the deletion
of the second segment and therefore larger early start or more
waiting time is experienced. We hope this degradation to be
as small as possible, therefore, the bigger the decrease of the
satisfaction score is, the larger the cost should be. The last

issue is the released cache space. The larger the free space
created after a merger, the smaller the cost should be. By
the merger of two neighboring segments, the waiting time
of the last LP GOPs in the first segment increases because
the prefix of the second segment is now missing. Meanwhile,
both the waiting time and the early start time for the GOPs
in the second segment might also differ. Therefore, the user
satisfaction degradation of GOPs in both segments should be
considered. Based on the above arguments, we define the cost
for segment pair j of video v as:

C(v,j) =

∑j+1
s=j

∑L
(v,s)
S

i=1 (p(v,s,i) ·∆G(v,s,i))

∆B(v,j)
, (6)

where p(v,s,i) is the popularity of GOP i in segment s.
∆G(v,s,i) denotes the decrease of the user satisfaction score for
the i-th GOP in segment s if we merge the pair together. The
summation of this weighted user satisfaction degradation gives
the total price of this merger. ∆B(v,j) is the corresponding
increase in free cache space. A large cost value means the pair
may have a high popularity or the user satisfaction declines
severely or only limited free cache space is generated after the
merger. We tend to keep such a pair on the proxy.

S(1,2) S(1,3)

G(1,3,1)

V1

(a) Before merging

S(1,2)

G(1,3,1) (G(1,2,3))
~

V1

(b) After merging

Fig. 7. Example of cost evaluation for segment merging

The increase in free space ∆B is easy to obtain. It is
simply the size of the prefix of segment S(1,3) of video V1

in the example shown in Fig. 7(a). To get the decrease in user
satisfaction ∆G of GOP i in S(1,3), we need to calculate the
user satisfaction score of GOP i before and after the merger,
which is G(1,3,i) and G̃(1,3,i) in Fig. 7, respectively. Please
note, G̃(1,3,i), when i=1, can also be presented as G(1,2,3)

in Fig. 7(b), the third GOP of S(1,2) after merger. It can
be obtained by using (3)(4)(5) and considering the merged
segment S(1,2) in Fig. 7(b). Finally, the decrease of user
satisfaction for GOP i by this merger can be calculated by:

∆G(1,3,i) = G(1,3,i) − G̃(1,3,i). (7)

Suppose we would like to calculate the user satisfaction
degradation of the first GOP in S(1,3). Before the merger, it
is the first GOP of the segment and belongs to the prefix.
Therefore, it can be played without delay and starting point
deviation, which achieves a user satisfaction score of 8. After
the merger, it becomes the third GOP in segment S(1,2) in
Fig. 7(b). When it is requested, the proxy can either download
the missing part from the remote server and then deliver it to
the user, or send the prefix to the user instead and meanwhile
download the missing GOPs. The former option results in 1
second initial delay on average while the latter option leads
to an early start of 2 seconds but no initial delay. We assume
in this example that the frame rate in Hz equals to the GOP
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length in number of frames and the transmission rate between
the server and the proxy equals to the mean rate of the video
stream. According to (1) and (2), the user satisfaction score
for 1 second waiting time is 7.347 and the score for 2 seconds
early start is 7.726. Hence, the early start mode will be chosen
to serve the request to this GOP, which results in a score of
7.726. The score degradation ∆G(1,3,1) can then be calculated
with (7) and it equals to 0.274. The score degradation for the
rest GOPs can be obtained in the same way.

E. Cache Replacement Algorithm DECA

In this section, we show how the variable size of each
segment is determined by recursively merging of neighboring
segments. After the algorithm is employed to create the
variable segment structure, the proxy cache is updated accord-
ingly by removing all suffix GOPs and prefetching all prefix
GOPs. The updated cached content achieves an improved user
satisfaction score according to the long term accumulated
popularity. Therefore, we call this procedure “cache update”
in the following.

The cache update algorithm is invoked for regular mainte-
nance of the proxy cache. With the current segment structure
and the popularity distribution available to it, the replacement
algorithm works as follows. It first browses through all videos,
checks the neighboring segments in a video pairwise, calcu-
lates the merging cost in (6) for each pair and saves it to
an array. After all the segment pairs have been checked, the
algorithm sorts all cost values in ascending order and starts
merging from the first pair, i.e., the one with the smallest
cost. Merging a segment pair means to join the two segments
together and make one bigger segment out of them. All GOPs
of the second segment in this pair become suffix GOPs and
are completely removed to release cache space.

S(1,1) S(1,2) S(1,4)S(1,3)

P(1,1)

P(1,2)

P(1,3)

V1

(a) Before merging

S(1,1) S(1,2) S(1,3)

P(1,1)

P(1,2)

V1

(b) After merging

Fig. 8. Example of pair information update for segment merging

Every time the DECA algorithm is called, it runs iteratively
and the pair with the lowest cost is merged in each loop. As the
two segments in this pair are now replaced by a new segment,
the cost information of the pairs with neighboring segments
has to be updated. For example, as shown in Fig. 8(a), when
pair P (1,2) is selected and merged, a new segment (i.e., S(1,2)

in Fig. 8(b)) is created. The pairs P (1,2) and P (1,3) before the
merger consist of segments S(1,2) and S(1,3), which no longer
exist afterwards. Therefore, their cost has to be recalculated.
Please note, pair P (1,3) in Fig. 8(a) becomes the second pair
P (1,2) in Fig. 8(b). After updating the information of related

pairs in the cost array, the next loop starts. This procedure
continues until all remaining content can be stored in the
cache.

When DECA is run for the first time, an initial segment
structure is built up, where all the GOPs are intact and every
LP of them are grouped together to form one initial segment.
The merging operation starts from such an initial segment
structure and stops when a target cache size is reached. As the
merging operation goes on, there will be fewer segments in the
cache. The final segment structure resulting from the merging
operation comprises segments of different lengths. They all
have the same prefix length whereas their suffix length differs.
After running DECA using the initial segment structure, all
suffix parts currently cached will be deleted. If the new prefix
GOPs are not cached, they have to be reloaded from the remote
server.

Generally speaking, the cache replacement algorithm can
use the output of the last round and perform further combi-
nations or updates based on that. If the popularity distribution
between two successive updates stays similar, none or only
partial update of the cache is needed. In this case, we keep
most of the segment pairs unchanged and only work on
the fragments which have large changes in their popularity.
For those having a decreased popularity, segment pairs will
be merged to leave some space. Meanwhile, segments with
increasing popularity can also be splitted into two small
segments (e.g., evenly), recursively. In our experiments, for the
sake of simplicity, the replacement algorithm always takes an
initial segment structure as its input. However, we found from
our experiments that these two (the normal and the simplified)
approaches lead to similar results.

F. Performance Evaluation Metric

In this section, we introduce the metric that will be used
to evaluate the performance of DECA. We first calculate the
mean early start time and the mean waiting time of the system.
Based on that, we obtain the final score according to (1) and
(2), which reflects the user satisfaction for the VoD system.

In Section III-B, we have shown how the optimal mode
can be determined for a particular user request. As for every
request, only one mode is selected, either the waiting time or
the early start time is zero. Hence, we define a threshold T v ,
which represents the switching point between the two modes
for video v. When the requested GOP has an index inside
a segment larger than T v , the waiting mode leads to higher
user satisfaction and the early start time is zero. Otherwise,
the early start mode is preferred and the waiting time becomes
zero. It can be obtained from (1) and (2) as

T v = 4.77 · Lv
P · Sv

G · rf

LG ·Rv
, (8)

where Sv
G is the average GOP size of video v, which is used

here as an approximation. We then rewrite (3) and (4) as

t
(v,j,i)
WT =

{
0 if i ≤ T v

∑min(L
(v,j)
S ,i+LP−1)

n=max(LP +1,i)

S
(v,j,n)
G

Rv if i > T v
(9)
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and

t
(v,j,i)
ES =

{ LG

rf
· (i− 1) if i ≤ T v

0 if i > T v (10)

Based on (1) and (9), the mean waiting time of the whole
system can be determined by

EWT =
NV∑
v=1

Nv
S∑

j=1

L
(v,j)
S∑

i=1

t
(v,j,i)
WT · p(v,j,i), (11)

where p(v,j,i) represents the normalized access frequency of
GOP i in the j-th segment of video v. Similarly, based on (2)
and (10) the averaged early start time of the whole system is

EES =
NV∑
v=1

Nv
S∑

j=1

L
(v,j)
S∑

i=1

t
(v,j,i)
ES · p(v,j,i). (12)

The mean waiting time and the mean early start time are
important performance parameters of the system. However,
with any one of the two, we can not give a comprehensive
evaluation of the system. Instead, both aspects have to be taken
into account simultaneously. Therefore, the user satisfaction
score in (5) is adopted and the overall performance of the
VoD system is calculated as

G =
NV∑
v=1

Nv
S∑

j=1

L
(v,j)
S∑

i=1

G(v,j,i) · p(v,j,i). (13)

G. Two Level Caching Structure

In many conventional VoD cache management schemes, the
whole cache is managed by a single algorithm and hence might
lead to unnecessary or improper replacement. To improve the
efficiency of cache management, a two-level cache structure
can be employed. As shown in Fig. 9, the entire cache is
divided into two parts, namely L1 cache and L2 cache, which
can properly manage the caching of videos with short-term
popularity and long-term popularity. The L1 cache is used to
cache those videos which have a very high request frequency
in a very short time period. The L2 cache is reserved for
video content that has high popularity over a longer time and
the proposed DECA approach is a good candidate to manage
it.

L2

(DECA)

L1

(LRU) DataData

Req Req

Server Proxy Client

Fig. 9. Two-level cache structure

When a user request arrives at the proxy, the proxy checks
the L1 cache and L2 cache as a whole. If there is a cache hit,
the proxy starts forwarding the requested content immediately
to the client. If the result is a cache miss, the proxy has two

options. It can either wait for the loading of the missing part
from the server or start from the closest cached prefix. For the
first option, the missing GOPs are requested from the remote
server and delivered to the client after some delay. For the
second option, the closest prefix that is completely available
before the intended starting point is sent to the client right
away. In both cases, missing frames in the requested segment
and successive segments are retrieved from the remote server
to achieve a continuous playback. All received video content
passes through and is cached in the L1 cache before being
delivered to the client. As only missing video content needs
to be downloaded, it will not be duplicated in the L1 cache and
the L2 cache. Once the L1 cache is full, classic caching update
algorithms (e.g., LRU) can be used to release some space for
newly downloaded content. The L2 cache is regularly managed
using DECA described in the previous sections. Unpopular
fragments in the L2 cache are either exchanged with popular
ones in the L1 cache or replaced by popular video content
fetched from the content server. The update period of the L2
cache is normally much longer than that of the L1 cache, and
could for instance be daily or weekly. When the distributions
of popularity at two successive update time points are very
similar, the update of L2 cache can be even skipped.

With the two level caching structure, the proxy cache can
be managed in a more efficient way. For instance, when a
video fragment is requested for the first time, it will be fully
loaded from the remote server and temporally cached in the L1
cache. If it is popular, the frequent user requests will prevent it
from being replaced, although the accumulated hitting rate of
this fragment is still low. As most of the frequently requested
video content between two updating points is either cached in
the L2 cache as prefixes or temporally cached in the L1 cache
when the L2 cache is updated using DECA, little additional
traffic between the proxy and server will be generated. On the
contrary, if the requested video fragment is of low popularity
and is just occasionally visited, it will be replaced soon after
being temporally cached in the L1 cache and it has no chance
to enter the L2 cache. This ensures that the cached content in
the L2 cache will not be replaced by those fragments which
are rarely requested.

When the two-level cache structure is employed, both the
mode selection and evaluation metrics should also be modified.
If the suffix GOPs of a segment have been accessed recently
and are cached in the L1 cache on the proxy, the waiting time
for loading these already cached GOPs should be subtracted,
which leads to a shorter initial waiting time.

IV. SIMULATION RESULTS

In this section, we first evaluate the performance of our
proposed DECA approach for different parameter setups.
Then, we compare the performance of DECA to comparison
schemes.

A. Simulation Setup

In this work, we use online video trace files [31] instead
of real video sequences. Necessary information about all the
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TABLE II
PROPERTIES OF THE VIDEOS USED IN THE SIMULATION

Video Name GOP length #B frames QP Resolution Frame rate Length(min) Size(MB) Bitrate(kbps)
Silence of the Lambs 16 3 28 CIF 30 30 159 144

Star Wars IV 16 3 28 CIF 30 30 161 156
NBC 12 News 16 3 28 CIF 30 30 612 439

Tokyo Olympics 16 3 28 CIF 30 74 902 306
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Fig. 10. Example of video and GOP level access frequency, which are used as popularity distributions in our experiments

videos hosted on the remote server is included in the trace
files. We use four sequences in our simulation, however, a
larger number of test sequences can be easily added and they
achieve similar results. The videos used in the simulation are
encoded with the H.264/AVC codec and Table II shows the
major properties of them.

The second issue is how to obtain the request events to
represent the user behavior. We assume that the user request
frequency for video objects follows a Zipf distribution [25],
and the user request frequency for object i is calculated as

fi =
1

iα ·∑m
j=1 j−α

, (14)

where m is the number of distinct objects. α is the parameter
to adjust the skewness of the Zipf distribution, which is larger
than 0 and less than or equal to 1.0. The larger the α, the
bigger the difference of popularity between objects. According
to [27], the internal popularity of a video (i.e., the access
frequencies of all GOPs) follows a K-Transformed Zipf dis-
tribution. Therefore, a Zipf RNG (random number generator)
and corresponding transformations with two positive constants
Kx = 10 and Ky = 400 are employed to generate the requests
to the GOPs in all videos. We assume that the GOP in the
middle of a video object has the highest access frequency
and it decreases monotonically towards the beginning and the
end of the video object. We mark the α for the video level
Zipf-distribution as αV and for the GOP level K-Transformed
Zipf distribution as αG. The access frequency with different α
values for both distributions is shown in Fig. 10, taking 10000
units as an example. In our experiments, without specification,
both α are set to be 0.8 [22]. Please note that real user request
log files can also be adopted into our algorithms and should
achieve similar results.

B. Performance of DECA

In this section, we investigate the performance of the DECA
approach for different scenarios. In Fig. 11, we present differ-
ent performance metrics as a function of the percentage of total
video content that can be cached on the proxy. DECA M in
the figure represents the DECA algorithm with a prefix length
of M GOPs.

Fig. 11(a) shows the mean waiting time for different prefix
lengths, which corresponds to different network conditions
between the proxy and the server(s) as mentioned in Sec-
tion III-A. When the cache percentage is 0%, i.e., no video
content is cached, any requested video content needs to be
loaded from the remote server. This leads to a larger initial
delay for DECA 10 because it has more data as prefix that
needs to be loaded from the remote server compared to DECA
with smaller prefix size. Thanks to the dynamic segment
structure of DECA, all prefix GOPs can be cached, which
leads to a significant decrease of waiting time when the cache
percentage increases. When the caching rate is very small,
e.g., smaller than 10%, although the prefixes are all available,
the segments are too long so that “wait for loading” is more
preferable than a large deviation of starting point. Therefore,
some initial waiting time is observed for the requests to some
middle- to unpopular parts. However, zero initial delay can be
achieved as soon as about 60% of the video content is cached.

Fig. 11(b) illustrates the expected early start time as a
function of the caching percentage when DECA is employed
to manage the cache. The early start time decreases when
the cache percentage increases, as caching more content on
the proxy results in fewer segment mergers and thus smaller
segment size on average. Please note, a cache percentage of
0% is a special case, where nothing is cached and the early
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(b) Early Start (αV =0.8, αG=0.8)
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(c) Final Score (αV =0.8, αG=0.8)
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(d) Final Score (LP =10, αG=0.8)
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Fig. 11. Performance of DECA as a function of cache percentage

start is disabled. DECA with smaller prefix size needs less
cache size for each segment and therefore has more segments
at the same caching percentage. This leads to an overall
smaller segment size throughout the video and thus smaller
expected early start time.

We show the final score of DECA for different prefix lengths
in Fig. 11(c). The final score of DECA can be obtained using
(13), where the optimal serving mode has been determined
by comparing the achievable scores of waiting time and early
start time. DECA 1 has the smallest waiting time and the
shortest early start time, therefore, achieves the highest final
score at all caching percentages. When more content is cached
(i.e., larger than 50%), always the same mode will be selected,
which leads to a very close performance between all the curves
in Fig. 11(c). When the caching percentage is zero, i.e., all
requested content needs to be downloaded from the server,
DECA 1 still performs the best because of its smallest prefix
size and therefore least amount of data to cache before the
playback starts.

Fig. 11(d) and Fig. 11(e) illustrate the user satisfaction
score for the (K-Transformed) Zipf distribution with different
α values when the prefix length LP is equal to 10 GOPs.
The user satisfaction shows only a small change when αV

varies, because the limited number of videos involved in the
simulation and thus the change of popularity among videos
is not dramatic. When we fix αV , a lower user satisfaction
score is clearly observed when αG decreases. This is because
the difference of popularity between video GOPs is not so
dramatic for small αG values. Therefore, caching the most
popular video parts contributes less to the overall performance
than when αG = 1.0. Nevertheless, DECA shows a consistent

performance independent of the selection of α for the assumed
request distribution. In the following simulations, when we
investigate the influence of α to the final score of all schemes,
we will set αV to be 0.8 and consider only αG.
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Fig. 12. User satisfaction as a function of the available transmission rate at
a cache percentage of 10%. (αV =0.8, αG=0.8)

In the above simulations, we have assumed that the trans-
mission rate between the proxy and content server is equal to
the mean rate of the video stream. However, if the available
transmission rate is larger than the mean rate, the waiting time
to load the same amount of data decreases. As the early start
time has no relation with the transmission rate, the “initial
waiting” mode becomes more attractive and will be selected
more frequently. With a faster connection to the server, the
overall performance of the system improves.

Fig. 12 illustrates the achievable user satisfaction score
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of DECA M as a function of the available transmission
rate between the server and the proxy. The X-axis shows
the normalized transmission rate, which is the ratio of the
available transmission rate over the mean rate of the bitstream.
Naturally, the larger the transmission rate is, the higher the
achievable user satisfaction. As can be observed from Fig. 12,
the increase of transmission rate is most helpful to the segment
structures with a larger prefix size, where DECA 10 shows
the biggest improvement. This is because a larger absolute
time saving for loading the missing GOPs is achieved for
DECA 10, which results in a remarkable improvement of user
satisfaction according to (1). Because of the limited space,
we only show the results when αG equals 0.8. When smaller
αG values are used, similar results are observed, however,
the improvement by increasing the rate is even larger. This
is because in DECA, segments with high popularity are of
very short length (i.e., the segment only consists of a prefix)
and requests to them can be served with neither initial delay
nor early start. Therefore, when αG becomes smaller, more
requests benefit from the higher transmission rate resulting in
smaller waiting time, which leads to an improvement of the
overall user satisfaction.

According to Section III-G, the whole cache is divided into
two levels. DECA is employed to manage the L2 cache, while
the L1 cache uses the LRU algorithm for the updating. We
have shown in the above the performance of DECA, when it
controls the whole cache for different simulation setups. The
influence of the L1 cache is not shown here because no real
access log files are available to us and the Zipf distribution can
only give us a statistic hitting rate without the information of
request order. However, the performance improvement when
including L1 cache is obvious when the popularity changes
significantly. For example, if there is a new video published by
the server after the last run of DECA, by assigning 20% of the
cache as L1 cache, this popular video might be fully cached
on the proxy. It leads to some degradation from the DECA
perspective because of the decreased caching size. However, a
significant gain can be obtained by employing the L1 cache,
which leads to high user satisfaction for this popular video.
On the contrary, if the popularity change is very small and no
new video comes in during the two updating points, letting
DECA work for the whole cache leads to better results.

C. Performance of PAPA

In this section, we show the performance of the PAPA
approach in [29], on which DECA builds. As mentioned in
the introduction, PAPA is a cache management scheme that
uses a fixed segment-prefix structure. We use PAPA as one of
the comparison schemes in the next section.

SuffixPrefix

Extended prefix

Fig. 13. One complete suffix GOP is cached

Here, we implement an improved version of PAPA com-

pared to the original description in [29]. Instead of always
starting the playout from the beginning of one segment, a
closer starting point can be considered if some suffix frames
are also cached to form an extended prefix as shown in Fig. 13.
In this case, the playout can be started from a GOP which has a
distance of LP GOPs to the first unavailable suffix. By serving
the client from a closer point to the desired starting point, the
expected early start time is decreased. In the extreme case, if
all video content is cached on the proxy, no early start will be
experienced. For example, to respond to a user request to the
fourth GOP in Fig. 13, instead of starting with the first GOP
in this segment, the playout can start with the second GOP,
which together with the third GOP act as the prefix for this
request. This leads to again no waiting time, but smaller shift
from the desired starting point.

Fig. 14 shows the performance of PAPA as a function of
the percentage of cached content. The dash-dotted curves and
the solid curves in the figure represent the original PAPA
approach (PAPA Ori ) proposed in [29] and the improved
version of PAPA (PAPA Imp) introduced above, respectively.
In Fig. 14(a), the score increases for the improved PAPA
approach when the cache percentage exceeds 50% because
we set the suffix length equal to the prefix length in this
experiment. When more than 50% of the video content can
be cached, all prefix GOPs are cached and some of the suffix
GOPs are also cached, which enables a closer starting point.
This decreased early start time achieved by the improved
PAPA approach leads to a significant improvement of user
experience. Fig. 14(b) shows the influence of suffix length to
the performance of PAPA. PAPA M N denotes the segment
structure with M prefix GOPs and N suffix GOPs. All the
curves in the figure have the same prefix length of 5 GOPs.
Small segment size leads to better performance at low cache
percentage because of the significantly smaller early start time.
A reasonable larger segment size is better when the cache
percentage increases to the medium range due to the fast
decline of waiting time and early start time. At high caching
percentage, waiting time becomes zero for all suffix lengths as
all prefixes are cached. Among all curves, PAPA Imp 5 5 has
the smallest early start time on average and therefore performs
the best.

D. Performance Comparison
In this section, we compare the performance of DECA with

selected reference schemes. As the user satisfaction score is
the most representative metric to evaluate the performance of
the system, we will compare the different schemes according
to their achievable final user satisfaction score.

As shown in the last section, the improved PAPA cache
management scheme always performs the same or better
than the original PAPA approach in [29]. Therefore, we use
the improved PAPA scheme for comparison. Furthermore,
as different segment structures (i.e., different suffix lengths)
achieve the highest final score for different percentages of
cached content, we pick the highest score at each percentage
in the comparison, which forms an upper bound of PAPA.

We also compare DECA with cache management schemes
which have no segment-prefix structure. In this case, each GOP
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Fig. 14. Performance of PAPA as a function of the percentage of cached content. (αV =0.8, α=0.8)

is a possible starting point. Two approaches, on the frame
level and on the GOP level will be compared. The End-GOP
(EGOP) approach works on the frame level and drops frames
evenly from the GOP with the lowest popularity towards the
one with the highest popularity until the remaining part can
be cached. Only when the last frames of all GOPs have been
deleted, the second last frame in the GOP with the lowest pop-
ularity will be dropped. The Whole-GOP (WGOP) approach
always deletes the whole GOP with the lowest popularity when
not enough cache is available until all remaining GOPs can
be held in the cache. These two strategies lead to the finest
granularity but some initial delay unless the LP successive
GOPs from the requested point are available on the proxy.
Early playout does not apply to these schemes. Similar as the
segment-based schemes [14]–[16] introduced in Section I, the
WGOP scheme also caches the video portions with the highest
popularity, but with a much finer granularity. It supports both
viewing modes, playing sequentially from the beginning or
random access to video content. Obviously, WGOP should
outperform the traditional segment-based approaches in [14]–
[16]. Therefore, we use WGOP as one of the comparison
schemes in this work.
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Fig. 15. User satisfaction for DECA and comparison schemes as a function
of cache percentage. (αV =0.8, αG=0.8)

Fig. 15 shows the final user satisfaction score for the three
comparison schemes. PAPA M represents the upper bound
of the improved PAPA. WGOP M and EGOP M denote the
two no segment structure approaches, respectively. When the
network condition between server and proxy is good (i.e.,
M=1), the four approaches achieve very similar performance
as the initial delay for loading the unavailable requested data
is very small, and most likely, “waiting” is the better mode.
When the network condition is unfavorable (i.e., M=10),
the performance gap between the different schemes becomes
obvious. DECA 10 performs the best at all cache percentages.
The performance gain compared with WGOP 10 is not so
significant because for αG=0.8 in the K-Transformed Zipf
distribution, it gives strong emphasis to some GOPs and
WGOP 10 purely follows the popularity. Therefore, it pays
high attention to popular GOPs by fully victimizing the GOPs
with medium to low popularity. This is why at low cache
percentage, it even performs better than PAPA. However,
PAPA 10 performs better than WGOP 10 at middle to high
cache percentage by enabling early start instead of pure wait-
ing in WGOP. The EGOP 10 approach considers the extreme
fairness between GOPs, which wastes too much resources for
the video content with low popularity. Without the help of
early start, EGOP 10 leads to the lowest overall performance.
Please note, PAPA 10 leads to the lowest user satisfaction
score when nothing is cached (i.e., cache percentage is 0%).
This is because that besides the same initial waiting time
experienced by all approaches, PAPA has an additional early
start according to its design which says that the playout should
always start from the beginning of a segment.

Fig. 16(a), (b), (c) show the final score for DECA and the
comparison schemes as a function of α at a cache percentage
of 10%, 20% and 30%, respectively. DECA performs again the
best for all cache percentages and all αG values and achieves
an even larger performance gain compared with Fig. 15
when αG is small. The performance of WGOP decreases
dramatically with the decrease of αG because the difference
of popularity between fragments is much smaller and a purely
popularity oriented approach becomes less efficient. The per-
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Fig. 16. User satisfaction of DECA and comparison schemes as a function of αG in the Zipf distribution.(αV =0.8, LP =10)

formance of PAPA improves significantly when the cache
percentage increases, as the early start mode makes up the
score loss caused by the even distribution of prefixes.

V. CONCLUSION

In this work we have presented our subjective tests for VoD
services. We have observed that users prefer a small shift of
the playout starting point rather than experiencing a noticeable
initial delay. From the subjective test scores, we have derived
mathematical models, which show the influence of waiting
time and early start time on the user satisfaction. Based on
that, a prefix-segment based partial caching algorithm DECA
is proposed. It introduces a variable size segment structure
and flexible serving modes and is able to approach the real
popularity distribution and dynamically adjust the segment size
according to the current situations. A two level proxy-caching
framework is also introduced, where, the proposed DECA
algorithm can be employed to improve the caching efficiency.
Simulation results show significant performance improvements
compared to related approaches.
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