STATISTICAL CHARACTERISATION OF THE MAXIMUM EIGENVALUE OF A
WISHART DISTRIBUTION WITH APPLICATION TO MULTI-CHANNEL SAR SYSTEM

E. Erten'?, R. Zandona-Schneider?, and A. Reigber”

YComputer Vision and Remote Sensing, Technical University of Berlin, 10587, Berlin, Germany
2Microwaves and Radar Institute, German Aerospace Centre (DLR), 82234 Oberpfaffenhofen, Germany.

ABSTRACT

Multi-channel SAR system characterise the target with
multicomponent Gaussian circular vector whose number
of components m is equal to the number of polarimetric
and/or interferometric channels of the system. In the case
of the multivariate (multi-channel) Gaussian system, the
second order statistics known as covariance matrix con-
tains all the necessary information to characterise the tar-
get vector. In this framework, the eigendecomposition of
the covariance matrix have demonstrated as a important
analysis in the physical parameter estimation and target
detection. Especially, the maximum eigenvalue related
to the first eigenvector of the covariance matrix is the
most interesting parameter in a wide selection of appli-
cation, i.e. polarimetry, GMTI (ground moving target in-
dication) and interferometric phase filtering. Related to
this, the cornerstone study considering the statistical de-
scription of the covariance matrix eigendecomposition in
polarimetry has been carried out in [1]. However, the
majority of the analysis in [1] was performed on the ba-
sis of numerical methods. In this paper we support the
results of [1] by addressing analytical solutions. Specif-
ically, we derive new exact closed form expressions for
Probability Density Function (PDF), for Cumulative Dis-
tribution Function (CDF) and for the Moment Generating
Function (MGF) of the multi channel SAR system covari-
ance matrix maximum eigenvalue, thus enabling the ex-
act evaluation of the performance analysis of the estima-
tion and the detection problem considering the number of
averaged samples and different correlation scenario. Our
results are analysed by means of simulated data.

Key words: multi-baseline (MB), multi-channel SAR
systems, ground moving target indication (GMTI), po-
larimetric matching filtering (PMF).

1. STATISTICAL CHARACTERISTICS OF THE
SAMPLE MAXIMUM EIGENVALUE

Multi-channel SAR images are characterised by target
vector k including m identically distributed complex
zero-mean Gaussian random vectors. The m dimen-

sional target vector follows a complex multivariate nor-
mal distribution with mean 0 and covariance matrix X,
ie, NY(0,%) [2]. In practical applications the covari-
ance matrix X is not known, and hence covariance ma-
trix is estimated by the maximum likelihood technique
(MLE) from n samples, known as incoherent averaging
by looks. The n-look estimated/sample covariance ma-

trix Z = % 2;21 k; kzj follows a complex Wishart PDF

W (n, ) with degrees of freedom n and true covariance
matrix X defined by [2]
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The target decomposition theorem of the sample covari-
ance matrix allows to create a set of orthonormal (in-
dependent) group, whereas the corresponding eigenvalue
express the individual contribution of decomposed group.
Since the true covariance matrix > has not known, the
target decomposition theorem of the sample covariance
matrix can provide a significant improvement in physical
parameter estimation.

The decomposition of true covariance matrix and its es-

m m
timated one are & = Z li(eiej) and Z = Z )\i(e;ef)
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respectively with their eigenvalues /;, \;, and their eigen-
vectors e;, e, ¢ = 1,..m . Then, the following theo-
rems present PDF, CDF and MGF of the maximum sam-
ple eigenvalue of multi-channel covariance matrix. These
will be used for deriving the detection and estimation
properties of the parameters regarding SAR images pro-
jected on the first eigenvector of covariance matrices.

Theorem 1: Let k N'©(0,%) am x n vector and ¥ has
Iy < ... <1y eigenvalues with the assumption of m <
n. Then the CDF of the maximum eigenvalue \,,,, of
the sample covariance matrix (k'k),, is given by
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with constant term S [1]
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[3, eq. 2.42]. See [4] for proof.

) where
Here, + is the incomplete Gamma function

Theorem 2: Let k N'©(0,%) am x n vector and ¥ has
lm < .... < [y eigenvalues with the assumption of m <
n. Then the PDF of the maximum eigenvalue A, of
the sample covariance matrix (k'k),, is given by

Prmas (Amaac) = S|\I/(>\ma.'c)‘t’r (\IJ(/\max)ilg()\mam()??)

where Q(Ayq2) is an m X m matrix with (7, j)th element
QAmaz )iy = exp ( A,m> A"~ and W (Apmaz) and
S are defined in Theorem 1.

Proof: Eq. (3) is obtained by differentiating (2) with re-
spect to (z) using the formula of [5, eq. 9]
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Theorem 3: Let k N'©(0, %) be am x n vector and Y. has
lm < .... < [y eigenvalues with the assumption of m <
n. Then for any positive integers s, the sth moment of
the maximum eigenvalue )\, of the sample covariance
matrix (k'k),, is given by
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Here, the sum is computed over (m — 1)! permutations
7 of the numbers {k = 1,2,...,m}. S,, denotes the
set of all m! permutations of the set S = {1,2,...,m},
and sgn(ms,p) denotes the signature of the permutation

, . +1if my is an even permutation and —1 if it is odd.
See [4] for proof.

We solve the moments of the sample maximum eigen-
value regarding its PDF. For larger m dimensional sys-
tems, such an approach may become complicated due to
the need for a large number of calculation of cofactors.
However, for applications where only a few eigenvalues,
like polarimetry (m = 3) and interferometry (m = 2) are
of interest, the numerical calculations are quite rapid and
stable for removing the bias.

2. APPLICATION TO MULTI-CHANNEL SAR
SYSTEMS

This section focuses on the validation of the theorems
including as well a statistical analysis of the maximum
sample eigenvalue. In order to completely describe the
behaviour of the maximum sample eigenvalue (or any
other eigenvalues), an entire function, namely the PDF
(estimation analysis) and the CDF (detection analysis),
must be given as in the previous section.

2.1. Estimation Theory

In order to validate Theorem 2, and hence Theorem 1,
Figure 1(a) shows the comparison of our exact theoretical
(analytical) expressions with simulations. As expected,
the theoretical PDF curves based on (3) are clearly agree
with the simulated PDFs. As it is well-known [1], and it
may also easily be verified that increasing the number of
samples improves the signal to noise ratio (A4 — 1),
which implies a better parameter estimation.

Since in quantitative remote sensing, we are interested
in physical parameters summarising the nature of the ob-
ject, the expectation value of the parameters that it can
be used in the removal of the bias of physical parameters
can be interesting to know. As numerically already found
in [1], it appears that the estimate of eigenvalues are bi-
ased towards higher values and/or small number of looks.
Here, the analysis of the bias is discussed also regarding
the correlation scenario between channels; Figure 1(b).
Even with very low number of samples high correlated
channels have a very little biased eigenvalue estimator.

Figure 2 shows the bias of the sample maximum eigen-
value, E[Amaz] — lmax, regarding different correlation
scenario versus different number of samples. We see that
the number of samples and high correlation decreases the
bias through whole combinations of correlation and the
number of samples scenario. However, for high corre-
lated channels, there is no significant decrease in the bias
with increasing the number of look.
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Figure 1. (a) Comparison between the theoretical PDFs
of the maximum sample eigenvalue and the histograms
of the maximum sample eigenvalues obtained from simu-
lated data with the standard deviations of o, = ok, =
oy, = 1 and correlation parameters pi,, = 0, P ks =
0.8 and pr,k, = 0. When n — 00, Aoz = 11 = 1.8
(b) Effects of the correlation between channels on the
expected value of the maximum sample eigenvalue with
n=3andm = 2.

\0'})0 D

(a) n=3 (b) n=16

Figure 2. The bias, E[Amaz] — lmax, of the sample max-
imum eigenvalue with the number of samples 3 and 16 in
various correlated channels having a standard deviation
OfO']Cl =Oky = 1.

2.2. Detection Theory

Detection theory is a means to quantify the ability to dis-
criminate the parameter and its noise, and has applica-
tions in many fields such as presence of signal in a noise
environment, i.e., change detection, polarimetric param-
eter estimation, noise reduction and etc. The concept is
similar to the signal to noise ratio used in the literature,
where it is important in presence of noise. Having the
closed form of the PDF (3) and/or CDF (2), the proba-
bilities of detection (pp) and of false alarm (pg4) can
be computed which allows a complete detection problem
analysis. These analysis can be important especially in
the application area of GMTI, target detection, change
detection and filtering.

Apart from parameter estimation and change detection,
here one example in the context of polarimetric filtering
will be given. As mentioned in [6], [7], sample maximum
eigenvalue can be also used in recognition of targets in
clutter environment. Before analysing the performance
of target detection, we shortly review the target detec-
tion concept in the case of Polarimetric Matching Filter
(PMF). As shown in [6, eq. 59], the optimum weight vec-

tor, denoted h, is given by the quadratic form

m

y = > _IMk>>Tp k= [k kg, ....km] (6)

i=1

where observed target vector kK is a ¢ = 1,2,...,m di-
mensional vector and we seek the best linear weight vec-
tor y = h'k providing maximum target detection in the
presence of clutter. As it is well known and indicated in
[8, Theorem 1.4.1], y has a chi-square distribution in the
case of Gaussian assumption of k. It means that to deter-
mine the detection performance we need only compute
(|hTk|?). Mathematically, the procedure can be repre-
sented as

|Wk> > Tp
Wktkh > Tp
Wxh > Tp.

Regarding Rayleigh quotient [9, Theorem 15.91], for any
m X 1 complex vector x and a given m x m Hermi-
tian matrix A, 2T Az < ||2]|* Xz, Where Aq. is the
maximum eigenvalue of A. Note that the equality is
valid if z is along the direction of the eigenvector U, 4,
([Umaz|| = 1) corresponding to Ay,q.. Therefore, the
performance of detection for a given value of the constant
multiplier o = ||||? that does not effect the performance
of the detection is'

TD = a>\maw . (7)

Hence A, > 0 with probability 1, the probability den-
sity function of Tp can be easily calculated and the per-
formance analysis of detection can be performed as in the
following.

Using the rule of change of variable, the PDF of Tp is
given in closed form by

T
p(Tp) = apx,.. (O’?) ®
Then, the probability of detection performance for given
threshold Tp can be found directly from CDF function
as

75
p(Tp < 1rp,) = Fi,.. (ZD)

Figure 3 shows the probability of the detection problem
regarding different number of look and correlation sce-
narios. We see that the number of look increases the
probability of detection. Moreover, increasing correla-
tion between channels also improves the target detection
performance Figure 3(b).

Here it is worth noting that the aim is to show how the proposed
theorems can be implemented in multidimensional SAR application ar-
eas. The way to understand the constant parameters and the filtering
procedure, the reader is invited to look at [6], [7].
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Figure 3. The filtering algorithm performance versus the
number of look (a) and the correlation (b). The standard
deviation of the channels are oy, = o, = 1.

Compared to the formulation in [6], it has been show that
it easy to make a performance analysis with proposed the-
orems.

3. CONCLUSION

In this paper, we presented in a depth statistical anal-
ysis of the maximum eigenvalue of the eigendecompo-
sition of the sample covariance matrix. The proposed
theorems and analysis are supported by simulation re-
sults via several examples. Our results are based on a
exact closed-form expressions of PDF, CDF and MGF.
In this study, we extended and/or implemented existing
density functions of the sample maximum eigenvalue into
multi-channel SAR system in order to obtain a simple ex-
pression of the sample eigenvalues giving a way to fruit-
ful applications. From these closed-form expressions, it
has been possible to develop new algorithms to unbiased
calculations of parameters extracted form multi-channel
SAR covariance matrix. In addition to these implementa-
tions, we developed closed-form expressions for MGF of
the sample maximum eigenvalue, which can be critical
in the area of removing bias and detection performance
analysis. This new closed-form expression of MGF can
be also interesting for other application areas like, MIMO
systems (multiple-input multiple-output). Apart from es-
timation theory analysis including PDF and MGF, the de-
tection problem of the sample maximum eigenvalue has
been also discussed.

The main contribution to the literature to be extracted

form the study presented in this paper is that there are
new statistical closed-form expressions including PDF,
CDF and MGF of the sample maximum eigenvalue ex-
tracted from the multi-channel SAR covariance matrix.
Investigating the new algorithms using these new expres-
sions to calculate the unbiased physical parameter and to
improve the performance of the detection problem are fu-
ture works of this study.
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