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Resonance Frequencies and Damping of a Combustor
Acoustically Coupled to an Absorber
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The coupled acoustic system of a cylindrical combustor and an absorber cavity has been investigated
experimentally in hot-fire and cold-flow tests. The addition of an absorber volume to the combustor is shown to result
in eigenfrequencies of the coupled system systematically different from that of a pure cylindrical resonance volume.
The general behavior of the coupled system is explained based on an analytical one-dimensional analysis of the
problem. Numerical simulations in two dimensions result in very good agreement with experimental observations. A
three-dimensional simulation of a cylinder equipped with 40 absorbers demonstrates the relevance of the reported
phenomena for rocket engines equipped with absorber rings. Experimental data on the damping behavior of an
absorber are given and the damping of absorbers is discussed based on the numerically obtained acoustic eigenmodes

of the coupled system.

Nomenclature

section of cavity or chamber, m?
speed of sound, ms™!
frequency, s~

acoustic wave number, m~
length of cavity or chamber, m
acoustic pressure, Pa

radius of cavity or chamber, m
ratio of cavity cross sections
ratio of cavity lengths
acoustic velocity, ms™
abscissa of mth extremum of Bessel function of order n
full linewidth at half-height, s~

nondimensional admittance

density, kg m™>

angular frequency, s~!
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Subscripts

main cavity
damping cavity
absorber
combustor
quarter wave

QPN —
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Introduction

HE origin and control of high-frequency instability in liquid-
fueled rocket engines is still an open problem. The interaction of
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acoustic eigenmodes of combustion chambers with the combustion
processes can lead to severe anomalies of rocket motor performance
[1,2]. Various methods have been used to increase the dissipation
rate of acoustic disturbances in rocket engine combustion chambers
so as to increase the stability margin of the motor. Baffles protruding
into the combustor are applied to impose specific symmetries into the
acoustic system that are not compatible with the symmetry of the
eigenmode favored by the coupling mechanism. A prominent
example in which baffles were used to stabilize a combustion
chamber was the F-1 motor, the booster engine of the Saturn rocket
[3]. Tuning of the injector’s dynamic behavior is an elegant
technique to suppress injection-coupled responses [4,5]. Acoustic
cavities such as Helmholtz or quarter-wave resonators are used as
damping devices in combustion systems like gas turbines and rocket
combustors [6-8].

The design concept of a quarter-wave resonator is to tune its
eigenfrequency to the eigenfrequency of the combustor. The quarter-
wave cavity is behaving as a half-open resonator, its eigenfrequency
is tuned by adjusting its length L according to

c

ZE (1)

Ja
(corrections of the mass accelerated by the acoustic field outside the
resonator, as expressed by a correction AL of the cavity length are
neglected).

The eigenfrequencies of combustion chambers can be
approximated by the eigenmodes of cylinders, an approximation
which is good enough for the discussions and analysis presented in
this work. In the frame of linear acoustics, the eigenfrequencies of the
transverse eigenmodes of a cylinder of radius R are []]
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where «,,,, is the abscissa of the mth extremum of the Bessel function
of the first kind of order n. For a tuned cavity, f4, = f. and thus the
length of the “tuned” absorber is
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For the first tangential mode, o;; = 1.841, resulting in a tuned cavity
when
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When this criterion is used to tune a quarter-wave cavity to the
eigenfrequency of the combustion chamber, it is expected that the
cavity will have a maximal response with strong acoustic velocity
oscillations at the cavity inlet. These velocity oscillations dissipate
acoustic energy, both through viscous losses at the cavity walls and
also through vortex generation and turbulent dissipation at the cavity
exit. The absorber tube thus enhances the damping of the excited
eigenmode.

In practice, the tuning of absorbers is not as straightforward as the
preceding sketch, and the applications of A/4 cavities does not
always result in the expected performance. Several reasons are
usually put forward to explain these difficulties. In hot-fire
conditions, there is a temperature gradient along the absorber axis,
the sound velocity therefore is not constant. Because the temperature
profile in general is not known exactly, a priori, tuning of the
resonator to a specific frequency is difficult. Another difficulty
results from the transient conditions during engine startup. The gas
composition and temperature in the combustor, and also in the
absorber, evolve rapidly during this transient period and thus the
sound velocity, i.e., the resonance frequencies of the system, also
vary. It is therefore not surprising that deviations from the expected
resonance behavior are observed experimentally, and may be
explained by these thermal and transient conditions.

However, to identify the influence of the temperature and gas
composition, it is necessary to have an exact knowledge of the
resonance behavior of the acoustic system. In this paper, we show
that the presence of damping cavities can profoundly modify both the
structure and frequency of the acoustic modes of combustion
chambers. In particular, we will show that tuning an absorber
according to Eq. (3) does not result in an optimal matching of the
acoustic eigenfrequencies of the system, nor in optimal damping of
the eigenmodes, even for the simple case of constant composition
and temperature.

Results obtained during experimental investigations into the
mechanisms leading to high-frequency combustion instabilities of
0, /ethanol-spray combustion [9] motivated a study to address the
physics of the coupling of an absorber cavity to a combustor volume
in more detail. In these hot-fire tests, it was observed that the
resonance frequencies of the combustor were detuned when a
secondary lateral nozzle was added to the cylindrical combustion
chamber, see Fig. 1. Although, in these experiments, the additional
volume was added to the combustor to allow siren-wheel acoustic
excitation, the basic acoustical problem appeared to be very similar
to that of a quarter-wave cavity coupled to a combustion chamber.
The sonic throat of the secondary nozzle behaves like a closed end of
aresonator tube, and thus the resonance conditions are similar to that
of a A /4 cavity. For this reason, the findings in the experiments with
siren excitation has motivated an extended investigation of the
acoustics of resonance tubes coupled to cylindrical volumes.

injector

pressure
sensor

Fig. 1 Cross sections of the CRC.

In this paper, we show that the presence of cavities at the periphery
of a combustion chamber profoundly modify the acoustic mode
structure and resonance frequencies of a combustion chamber. The
specific characteristics of the eigenmodes of the coupled acoustic
system are discussed in terms of their resonance frequencies, their
symmetry properties, and their damping behavior. The key
parameter in this investigation is the length of the absorber L which is
varied over a large range, including the specific cases L =0 (a
cylinder with no absorber) and L/R = 7/ (2«,,,) (a cylinder with an
absorber tuned to be quarter-wave resonant at the frequency of one of
the transverse modes).

We start with a simple example of a cylindrical combustion
chamber equipped with a single lateral cavity to demonstrate this
behavior experimentally in hot-fire and cold-flow tests. The results
show that the system is no longer resonant on the eigenmodes of the
cylindrical chamber but has its own acoustic modes and, in general,
these modes are quite different from those of the individual
components.

To gain qualitative understanding, we then consider an idealized
geometry of two rectangular cavities and calculate its eigenmodes
analytically. This simple calculation provides insight into the general
trends of the effect of a lateral cavity.

We then model the experimental cavity numerically, and show
how the eigenfrequencies and mode shapes evolve with the geometry
of the damping cavity. Finally, we show that the absorber
admittances can be evaluated from the numerically predicted
eigenmodes, and that these admittances can be used to predict
damping efficiency and optimal tuning of cavities. These predictions
are then compared with experimentally determined damping
behavior of individual modes.

Test Setup
Common Research Chamber

For experiments with two types of propellants, O,/ethanol and
LOX/H2, two combustion chambers of similar design are used in
our laboratories. This common research chamber (CRC) has a
cylindrical shape with a radius of R = 10 cm. The frequencies of the
tangential eigenmodes in hot-fire tests are in a range (1T ~ 4 kHz)
representative of full-scale engines. The length of the chamber is
4 cm and, as a consequence, the longitudinal modes have
eigenfrequencies far above the frequencies of the tangential modes of
interest in these experiments.

The chamber is shown in Fig. 1. Sixteen ports in the cylindrical
wall of the combustor can be equipped with various sensors or
specific hardware. In one port, a coaxial injector head for ethanol/O,
or for LOX/H2 can be mounted. In the latter case, the injector head is
cooled with liquid N, to guarantee stationary thermal conditions
during the transient injection startup of LOX. In respect to the
disklike combustor volume and the radial injection of the propelants,
the concept of the setup is similar to that used by Heidmann [10].

The exhaust gases are released through a main nozzle in the axial
direction. Using nozzles with different throat diameters, and
adjusting the mass flows, tests can be done at pressures between 1.5
and 10 bar. In one of the ports, a secondary nozzle can be mounted
with a throat of 2 mm diameter. Depending on the main nozzle
diameter, the ratio of throat area of the main nozzle to the secondary
nozzle varies between 6 and 25. Pressures are measured with both
static and dynamic pressure sensors. The number of available ports
make it easy to place the pressure sensors in the required positions
with respect to the symmetry of the acoustic mode of interest.

Hot-Fire Tests

The hot-fire tests in the CRC discussed in this report were done
using liquid ethanol and gaseous oxygen as substitute fluids. The
propellants were injected using a single coaxial injector with no
recess. The internal and external diameters of the liquid post were 1.2
and 1.8 mm, respectively. The external diameter of the gas annulus
was 2.5 or 3.0 mm. To avoid soot formation, the combustion
chamber was run under lean to stoichiometric conditions. The mass
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Fig. 2 Sketch of a) secondary nozzle and siren wheel used for acoustic
excitation of the combustion chamber, and b) a quarter-wave cavity.

Fig. 3 Position of microphone and loudspeaker in the cold-flow tests.

flow rate of ethanol was in the range of 1.0-2.5 g/s, and that of
oxygen was 4.8-7.0 g/s. The range of stoichiometry was 0.3-1.0.
The injection velocity of the liquid ethanol was in the range of
2.5-6.3 m/s, and that of gaseous oxygen was 100-330 m/s.

A secondary nozzle, with a throat small compared to that of the
main nozzle, could be placed in one of the access ports of the CRC, as
shown in Figure 1. For some measurements, the CRC was
acoustically excited by modulating the exhaust flow through the
throat of this secondary nozzle, using a rotating toothed wheel placed
immediately downstream, as sketched in Fig. 2a. The flow through
the throat was periodically blocked by successive teeth, leading to
acoustic excitation of the CRC. The speed of rotation of the disk
could be controlled so as to excite the CRC at the desired resonant
frequency. In general, the frequency was ramped at a low rate so as to
sweep through the linewidth of the chosen resonance. The inlet of the
secondary nozzle forms a lateral cavity with an internal diameter of
32 mm. The design allows the variation of the cavity length. The
sonic throat of the secondary nozzle behaves like the closed end of a
resonator, and thus the resonance conditions are similar to that of a
quarter-wave cavity, as sketched in Fig. 2b.

Cold-Flow Tests

In hot-fire tests, there is interaction of the combustion process with
the acoustic field and the species and temperature distributions in the
combustor are not homogeneous. To allow acoustic measurements at
well-defined conditions, the eigenfrequencies and damping coeffi-
cients of modes have been measured under cold-flow conditions. For
this purpose, the CRC was filled with ambient air. A loudspeaker and
a microphone were mounted in the front plate for acoustic excitation
and for detecting the acoustic pressure oscillations in the chamber,
respectively. If not stated otherwise, the loudspeaker and the
microphone were positioned on a line at an angle of o = 0deg
relative to the symmetry axis of the absorber, as shown in Fig. 3a. For
specific objectives the angle o can be adjusted (see Fig. 3b).

Acoustic oscillations in the chamber have been excited in two
different ways. In the first case, a white noise signal is sent to the loud
speaker, and all resonances of the acoustic system are excited
simultaneously, with the exception of modes having a pressure nodal
line on the axis of the loudspeaker. In the second case, the chamber is
excited with a preset single frequency using a frequency generator.
For both methods, it has been proved that the measured resonance
frequency and the damping characteristics of a given mode are the
same. The white noise method yields a faster global analysis,
whereas the single line excitation provides a much better signal-to-
noise ratio.

To introduce the desired acoustic excitation in the CRC, the
loudspeaker is switched on. The acoustic amplitude in the chamber
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Fig. 4 Acoustic pressure during excitation of 1T resonance and decay
of signal after shutoff of loudspeaker.
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Fig. 5 Fourier transform of decaying acoustic pressure.

first increases and then saturates at some constant amplitude. The
loudspeaker is then switched off and the decay of the acoustic
excitation is recorded (see Fig. 4).

The differential equation

p'+Tp +wip =0 6]

describes the temporal evolution of a damped harmonic pressure
oscillation. For small damping, the solution is [11]

T
P (1) = phcos(en) exp(— . r) ©)

The power spectrum /(w) of the decaying pressure signal has a
Lorentzian profile centered at the resonance frequency w, [12]:
1

I(CU) X P62 (CU— a)(])z + (F/z)z

(7

The full width I' at half-maximum of the Lorentzian line profile
corresponds to the damping constant of the acoustic power. The
decaying acoustic signal recorded with the microphone is analyzed
by a fast Fourier transform, and the resonances identified in the
power spectrum are analyzed in respect to their line centers w, and
full widths at half-maximum I (see Fig. 5).

Experimental Results

Experimental Data from Hot-Fire Tests in the Common Research
Chamber

Figure 6a shows a spectrogram of the acoustic response of the
CRC to excitation by combustion noise. In this experiment, the
combustion chamber was cylindrical, with no lateral cavity. The
figure shows the spectrogram of the signal from a pressure probe
placed at 180 deg with respect to the injector. The global equivalence
ratio was 0.55 and the mean chamber pressure was 5 bar. The first
second of the run is perturbed by the ignition transient. The low-
frequency noise below 250 Hz is nonresonant turbulence-induced



OSCHWALD ET AL. 527

Frequency [Hz]

a)

Frequency [Hz]

Time [sec]

b)
Fig. 6 Spectrogram of combustion noise: a) in CRC with no lateral

cavity; b) with a lateral cavity placed at 135 deg with respect to the
injector.

combustion noise. Three resonances are clearly visible. They
correspond to the first, second, and third transverse modes (1T, 2T,
3T) of the cylindrical chamber. The theoretical frequencies of these
modes are indicated for an assumed mean sound speed of 657 m/s. A
weaker fourth resonance is also visible, just below the 3T resonance.
Its frequency is that of the first radial mode of the chamber (1R).

When one of the CRC ports was replaced by the secondary nozzle,
forming a lateral cavity as shown in Fig. 1, it was found that the mode
frequencies changed substantially, with the appearance of extra
resonances. Figure 6b shows a spectrogram taken under similar
operating conditions, but with a lateral cavity of length L = 82 mm.
The pressure sensor used here was placed adjacent to the cavity
(o =22.5deg). In place of the 1T resonance, there are now three
resonances. The center resonance has the same frequency as the 1T
mode of the CRC with no cavity. In anticipation of the analysis
presented next, it is labeled 1Tx. Its frequency is independent of the
cavity length, but its amplitude goes to zero when the measurement
position is placed diametrically opposite to the cavity (o« = 180 deg).
The two adjacent resonances are labeled 1To and 2To. Their
frequencies decrease as the cavity length is increased. It will be seen
later that their frequencies tend to those of the 1T and 2T cylindrical
modes as the length of the cavity tends to zero.

Experimental Data from Cold-Flow Tests in the Common Research
Chamber

The spectral resolution that can be obtained in cold-flow tests with
excitation by a loudspeaker with a well-controlled signal is superior
to that from hot-fire tests. Therefore, the basic phenomenology of the
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Fig. 7 Resonances of the CRC: a) without absorber, b) with absorber of
length L/R = 0.85 and « = 0 deg, and c¢) with absorber of length L/R =
0.85 and o = 22.5deg.

acoustic resonances found in the CRC equipped with a secondary
nozzle and excitation by combustion noise or siren wheel has been
reproduced in cold-flow tests with excitation by a loudspeaker for
quantitative analysis. The secondary nozzle has been replaced by a
lateral cavity resembling a quarter-wave absorber in these tests.

Resonance spectra obtained with white noise excitation of the
CRC without and with an absorber are shown in Figs. 7. As shown in
Fig. 7a, without absorber, the measured resonance frequencies are in
excellent agreement with the frequencies calculated for a cylindrical
resonator.

Mounting a quarter-wave tube tuned to the 1T resonance
(L/R = 0.853) changes the spectrum in a characteristic way. As can
be seen in Fig. 7b, instead of the 1T resonance peak, two peaks appear
with one peak at a frequency slightly below, and the other peak
slightly above, the 1T resonance frequency. For this measurement,
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the microphone was mounted on the symmetry line, as sketched in
Fig. 3a. When the microphone position is rotated by o = 22.5 deg
relative to the symmetry axis, a third resonance peak appears at
exactly the 1T resonance frequency (see Fig. 7c). The
phenomenology is similar to that observed in the hot-fire tests
reported in the preceding section, in which the CRC with a secondary
nozzle is excited by combustion noise (see Fig. 6b). The resonances
of a cylindrical chamber are changed in a characteristic way when a
secondary cavity is coupled to the main chamber, even though the
relative volume (0.82%) and cross section of the cavity are small.

In the next section, we will show that the basic phenomenology
can be understood by studying two coupled resonators with a simple
analytical model. However, quantitative prediction of the
eigenfrequencies of coupled acoustic systems with complex
geometries requires a numerical modal analysis.

Analysis of Eigenmodes and Eigenfrequencies
Analytical One-Dimensional Model of Coupled Resonators

To gain physical insight into the behavior of coupled resonators,
we first present an analytical calculation of the resonant frequencies
of two cavities with a common section. To make the calculation
analytically tractable, we use a two-dimensional rectangular
geometry in place of the cylindrical geometry of the CRC. We will
also use a quasi-one-dimensional approximation, imposing that both
pressure and the one-dimensional mass flux are continuous between
the two cavities. The results of this analysis will not be quantitatively
correct for the CRC, but we will expect that they are qualitatively
correct and can serve as a guideline for understanding.

Formulation of the Problem

Consider two acoustic cavities of lengths L; and L,, having cross
sections A, and A,, respectively. For convenience, we will suppose
A; > A,. The two cavities are coupled through a common face
located at x = 0 (see Fig. 8). In each cavity, we suppose that there are
two one-dimensional acoustic waves, one propagating to the right
and the other to the left. The boundary conditions will then allow us
to find the conditions of acoustic resonance.

Neglecting damping, we can write

P12 = (a ™ + by e ) (®)

1 ) ) )
Upp=—— (a, e — bl,zeﬂkx)e'wt &)
pc

where p, , are the acoustic pressures, u, , are the acoustic velocities
in cavities 1 and 2, respectively, k is the wave number, w is the
angular frequency, c is the speed of sound ¢ = w/k, and p is the
mean density. The four constants to be determined are a, , and b ».

Boundary Conditions

The cavities are closed, and so the gas velocity is zero at the two
extremities:

ae* i — p etk = (10)

ayetikla — p,e7ikla — () (11)
The pressure is continuous at the junction of the two cavities:
a+b=a,+b, (12)

and we suppose that the one-dimensional mass flux is conserved at
the junction:

Ai(a; = by) = Ay(a, — by) (13)

The constants a, and a, can be eliminated in Eq. (12) with the help
of Egs. (10) and (11)

Ly Lo

Surface A4 Ay
X= -L1 x=0 X= L2

Fig. 8 Two acoustic cavities coupled at x = 0.

b —2ikLy | |
R 6_74_ (14)
b2 e+21kL| + 1
Similarly, a; and a, can be eliminated in Eq. (13):
b A —2ikL, __ 1
o2l (15)

b, A, et

Solution

We will now look for the wave numbers that satisfy the boundary
conditions. This is done by noticing that the right-hand side of
Eqgs. (14) and (15) must be equal. Rearranging yields

A
tan(kL,) = —A—ztan(kLz) (16)
1

To simplify the notation, we will consider that the first cavity is the
main cavity (combustion chamber) and that the second is a secondary
cavity which perturbs the first cavity. We then renormalize using the
following change of variables:

S=A/JA, 0<S<1

T=1L,/L, (unconditionally)

F=kL,/m (normalized frequency)

F is now the global resonant frequency, normalized by the resonant
frequency of the unperturbed main chamber, 7 is the relative length
of the secondary cavity, and S is the ratio of the cross section of the
secondary cavity to the main cavity. In the absence of the secondary
cavity, the resonant frequencies are thus given by F =1,2,3,....
The condition of resonance for the two coupled cavities can then be
written

F= %tan’l [-Stan(xTF)] (17)

Analysis of the Quasi-One-Dimensional Solution

Figure 9 shows the solutions to Eq. (17) as a function of the length
ratio 7', and for two ratios of cross section S. The value S = 0.2 is
close to the effective value appropriate for the CRC and its lateral
cavity.

When the length of the secondary cavity is equal to zero, we obtain
the resonant frequencies F = 1,2, 3, ... of the classical nA /2 modes
of the main chamber. As T increases, the frequencies of the
fundamental mode and the harmonics decrease, but the decrease in
frequency is not linear with the length of the secondary cavity. The
nonlinearity depends on the area ratio. When the ratio of cross
sections is very small, we find that the resonances of the main
chamberat F' =1, 2, 3, ... are only weakly perturbed, with short fast
transitions linking the main resonances. When the ratio of cross
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Analytical solution
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Fig. 9 Resonant frequencies of the double cavity as a function of
damping cavity length, for two ratios of cross sections, S = 0.1 and
§=0.2.
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a function of 7'.

sections is close to unity, the solutions tend toward those of a single
cavity of length L + L,.

When T = 0.5, in other words, when the length of the secondary
cavity is such that the frequency of its (isolated) A /4 mode is equal to
the fundamental frequency of the main chamber, we see that the
coupled system has a pair of resonant frequencies placed,
respectively, above and below the unperturbed resonant frequency 1.
The lowest frequency stems from the fundamental mode of the main
chamber, and the second resonance stems from the first harmonic of
the main chamber. The frequencies of these two resonances become
closer as the cross section of the damping cavity is decreased. This
“double” resonance, centered at the fundamental frequency of the
combustion chamber, is in qualitative agreement with our
observations on the CRC.

When the acoustic lengths of the two cavities are equal, 7 = 1, the
first two resonances of the coupled system have normalized
frequencies F' = 0.5 and F = 1. The first resonance is thus a mode
with a half-wavelength in the double cavity, A/2 =L, + L,. The
next resonance, at F = 1, is a mode with a half-wavelength in each
cavity. The frequency of the “double A/2” mode is relatively
insensitive to the length of the secondary cavity when the ratio of
sections is small.

We have neglected the damping of the system, and we have
supposed that the gas flow is quasi-one-dimensional, even in the
region of the change in section. In this approximation, we cannot
calculate the shape of the resonance curves; however, we can obtain
an indication of the relative amplitudes of the acoustic modes in each
subcavity. To do this, we calculate the ratio of the acoustic pressure at
the two extremities, p,(x = L,)/p,(x = —L,):

pax=Ly) _ cos(nF)
pi(x=—L,)  cos(xTF)

(18)

b)

Fig. 11 Pressure distribution of eigenmodes: a) two degenerate 1T
eigenmodes for a cylindrical resonator, and b) 1To and 1Tz mode for a
cylindrical resonator with an absorber cavity of length L/R = 0.85.

This pressure ratio is plotted in Fig. 10 for a cross section ratio
S = 0.2. The pressure ratio is calculated for the first two resonances,
F, and F,. It can be seen that the acoustic pressure in the cavity is
always greater than the acoustic pressure in the main chamber. The
strongest excitation of the lateral cavity does not occur when the
cavity length is A /4 (T = 0.5). For mode 1, the strongest excitation
occurs for 7 = 1. We can infer that optimal mode 1 cavity damping
will occur when the damping cavity is close to this length. For
mode 2, the strongest excitation occurs for 7 = 0.33. Again, we
expect that mode 2 damping will be most efficient for a cavity close to
this length.

In the quasi-one-dimensional approximation, there is a simple
analytical solution for the mode structure of two coupled rectangular
cavities. The presence of a damping cavity has a strong effect on the
mode structure in the main cavity. The resonant frequencies of the
coupled system are different to those of the main chamber, and
depend on both the length and diameter of the damping cavity. If the
ratio of cross sections is small, the eigenfrequencies of the system
vary very nonlinearly with the length of the damping cavity. The fast-
changing frequencies occur when the length of the damping cavity is
ni/4 at the frequency of one of the resonances of the isolated main
chamber. These analytical predictions are in qualitative agreement
with the observation on our cylindrical combustion chamber. This
analysis also suggests that the strongest damping will not be obtained
when the damping cavity is tuned to this length. We now turn to
numerical modeling to analyze the acoustics of more realistic
geometries.

Numerical Modeling

Although the one-dimensional model explains the presence of the
two peaks near the 1T resonance frequency when an absorber is
coupled to the cylindrical combustor (see Fig. 7b), the appearance of
the third component when the microphone is mounted at o =
22.5 deg (see Fig. 7c) can only be understood with a modal analysis
that takes into account the full symmetry of the resonance volume,
which can not represented in one dimension. The software FlexPDE
has been used for two- and three-dimensional modal analysis of the
problem. The eigenfrequencies and pressure fields of the eigenmodes
have been determined for a cylindrical combustor of radius R
equipped with an absorber of length L.

For the case of a pure cylindrical geometry, this modal analysis
delivers two degenerate but independent solutions for each tangential
eigenmode. For example, there are two 1T modes with identical
eigenfrequency, whose pressure nodal lines are perpendicular to
each other (see Fig. 11a). Because of the rotational symmetry of the
resonance volume, there is no preferred orientation of the pressure
nodes.
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Fig. 12 Eigenmode 2To for a cylindrical resonator a) without and with
an absorber cavity of lengths b) L/R = 0.43 and ¢) L/R = 0.64.

Fig. 13 Eigenmodes 2To and 2T for a cylindrical resonator with an
absorber cavity of length L/R = 0.85.

When an absorber cavity is coupled to the cylinder, the rotational
symmetry is broken. The resonance volume is now symmetric with
respect to reflection about the symmetry line defined by the axis of
the absorber, as shown in Fig. 11b. As a result of the reduced
symmetry, the tangential modes are no longer degenerate and the
orientation of the nodal line is now controlled by the orientation of
the absorber. The modes having 1T symmetry change into the modes
shown in Fig. 11b. One component now has its pressure nodal line
perpendicular to the symmetry axis and the other component has its
nodal line along the symmetry axis. The two modes now have
different symmetry properties: one mode is symmetric with respect
to reflection at the symmetry line, the other mode is antisymmetric.
The labels o (symmetric) and 7 (antisymmetric) are used to reflect
this symmetry property.

The addition of an absorber also fixes the orientation of the nodal
lines of the 2T (and higher) modes. Similar to the case of the 1T
modes, the 2T modes splitinto o and 7w components. Figure 12 shows
the pressure distribution of the 2To modes for several values of L/R.
Although the basic symmetry of the 1T modes are conserved when an
absorber is attached to the cylinder, such is not the case for the 2T
mode. In contrast to the 1To mode, the symmetry of the 2To mode
changes significantly when an absorber is added, as can be seen in
Fig. 12. The two nodal lines of the 2T mode, which cross each other
(Fig. 12a), become separated for the 2To mode (Figs. 12b and 12c¢).
With increasing absorber length, the symmetry of the 2To mode in
the cylinder resembles that of a 1T mode, as can be seen in Fig. 13.
Note that there is a peculiar difference at the absorber inlet, which is
important in respect to the absorber performance: the 2To mode can
have anodal line in the vicinity of the absorber inlet, whereas the 1 To
mode does not.

The evolution of the eigenfrequencies of the CRC equipped with
an absorber of increasing length L is shown in Fig. 14. In general, the
two-dimensional modal analysis shows a similar behavior, for the
dependence of the eigenfrequencies on absorber length, to that found
in the one-dimensional model (see Fig. 9). However, the one-
dimensional model cannot predict the existence of the 1Tz mode.
For this mode, the pressure nodal line is in the absorber cavity, and
hence the mode does not induce any significant fluid motion in the
cavity. The 1Tx resonance frequency is thus almost independent of
the cavity length for realistic absorber diameters. The numerical
predictions for eigenfrequencies of the CRC and cavity are in
excellent agreement with the experimental data, such as shown later.

The experimental results in Figs. 7b and 7c can now be understood
with the help of Fig. 14. For an absorber length of L/R = 0.85, three
resonances are found near to the 1T frequency. They belong to the
1To, 1Tz, and 2To modes. When the loudspeaker and microphone
are mounted on the symmetry axis (¢ = 0), the 1T mode can neither
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Fig. 14 Eigenfrequencies for a cylindrical resonator with an absorber
cavity as function of the absorber length.

Fig. 15 Mesh for the modal analysis of a rocket combustor with a ring
of 40 absorbers.

be excited nor detected because the loudspeaker and microphone are
located on its pressure nodal line. Thus, in Fig. 7b, only the 1To and
2To modes are observed. When « = 22.5 deg, all three modes are
excited and the 1To, 1T, and 2T resonances are seen in Fig. 7c.

For values of L/R as high as 0.85, the classification of modes
according to the symmetries of the modes in the limit L/R — 0
becomes questionable. The 2To mode no longer has the 2T
symmetry, as discussed earlier (see Fig. 13). In fact, for L/R ~ 0.85,
the 2To mode has 1T symmetry in the cylinder, and its resonance
frequency is near to the 1T frequency. In this situation, the notation
1T~ and 1T for the 1To and to the 2To modes, which have their
frequencies slightly below and above the 1T resonance frequency,
respectively, may be better suited to indicate the main characteristics
of these modes.

The analysis of a cylindrical resonator with an absorber tube has
shown that the eigenfrequency of the coupled acoustic system
deviates substantially from that of the cylindrical volume alone. In
respect to the application of absorber rings to rocket chambers, we
may ask whether a complete absorber ring detunes the system in a
similar way to the simple system described earlier. We have
performed a preliminary three-dimensional modal analysis of the
eigenfrequencies of a volume representative of a rocket combustion
chamber equipped with an absorber ring of 40 cavities. A sketch of
the mesh is shown in Fig. 15. For this analysis, it has been assumed
that the chamber is filled with ambient air. The nozzle is treated as
acoustically closed. The results for the lowest eigenmodes are shown
in Fig. 16. The dotted lines show the A /4 resonant frequency of an
isolated cavity, and also the length at which this A /4 frequency is
equal to 1T frequency of the main chamber. The eigenmodes with
symmetries 1T, 2T, 3T, 4T, and 1R in the L — 0O limit and the 1L
mode have been analyzed. These modes all have a resonant
frequency which decrease with increasing absorber length. Thus, an
absorber ring detunes the spectrum of a rocket combustor
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Fig. 16 Eigenfrequencies of the lowest eigenmodes of a rocket
combustor with absorber ring.

significantly and its eigenspectrum differs from that of a cylindrical
volume.

Damping of Acoustic Excitations
Experimental Data

The damping coefficients of the CRC with one absorber are
obtained from the measurement of the linewidth I' as explained
earlier. The absorber used had a diameter of 12.4 mm. The data are
plotted as a function of the absorber length for the 1T, 2T, and 1R
modes in Fig. 17. The accuracy of the damping coefficients was
about 1% for the CRC without absorber. For absorber lengths where
high damping values were obtained, the signals become small and
the uncertainty may increase up to more than 20%.

The quarter-wave resonance frequency fqw = c/4L of the
absorber is plotted in Figs. 17a—17c as dashed lines. Apparently, high
damping is observed for the individual modes when the absorber
length is such that the eigenfrequencies of the coupled acoustic
system have a resonance frequency close to the quarter-wave
resonance of the absorber.

The dash-dotted lines in Fig. 17 mark the lengths where a quarter-
wave resonator would be tuned to the frequency of one of the
cylinder modes [see Eq. (3)]. For the 1T, 2T, and 1R modes, the
values of L/R are 0.85,0.51, and 0.37, respectively. Figure 17 shows
that maximum damping is obtained near, but not exactly at, these
lengths. Maximum damping is measured for the 1T and 1R modes for
an absorber length about 10% longer than predicted by simple
quarter-wave theory. For the 2T mode, two maxima are observed,
with the highest damping value obtained for an absorber whose
length is 40% larger than predicted by quarter-wave theory.

Itis interesting to evaluate the length range over which an absorber
shows good damping. This should give an indication of the
sensitivity of damping behavior to cavity length adjustment. For the
1T mode, a variation of L/R from 0.86 to 1.01 does not result in a
decrease of the damping below 90% of its maximum value. For the
2T mode, maximum damping occurs for L /R = 0.71. But, again, the
damping is high for a range of absorber lengths and does not fall
below 85% of its maximum value for L /R ranging from 0.44 to 0.75.

Numerical Modeling

Numerical modal analysis was performed to obtain the
eigenfrequencies of the coupled acoustic system of combustor and
absorber. It provides not only the frequencies, but also the pressure
distribution P(r) and the velocity field u(r) = (i/ pw)V(P) of the
eigenmodes. The damping processes by which the absorber
contributes to the overall damping of the system are related to the
velocity field. The objective here is to use this information for a
qualitative discussion on how the absorber length influences the
damping behavior. The approach does not aim to provide a
quantitative estimation of damping constants, nor to replace a
detailed investigation of basic physical processes, such as, for
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Fig. 17 Damping coefficient and resonance frequency as function of the
resonator length for a) 1To resonance, b) 2To resonance, and c¢) 1R
resonance.

example, viscous and thermal dissipation in the boundary layers or
vortex shedding at the absorber inlet.

The discussion is based on eigenmodes obtained from a two-
dimensional analysis of the problem. The computational domain is a
cylindrical combustor of area A, = 7R? and a rectangular absorber,
as sketched, for example, in Fig. 13.

When streamlines of the acoustic velocity field enter the absorber,
the flow is accelerated. A zoom of this region is shown in Fig. 18 for
illustration. The acoustic boundary condition at the rear end of the
absorber requires zero velocity, thus it can be assumed that the major
contribution to the damping processes originates from the absorber
inlet region. For this reason, the following analysis takes into account
only the velocity at the absorber inlet. First, we define a quantity ¢
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Fig. 18 Flowfield at the absorber inlet.
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Fig. 19 Damping/period and admittance p, as function of the resonator
length a) for 1T resonance, b) for 2T resonance, and c) for 1R resonance.

which, for a given eigenmode, is proportional to the mean value of
the velocity in the absorber inlet area A; (see Fig. 18):

C
q=—[ VP dA/A, (19)
w Ay

Next, the mean pressure level p of the eigenmode is determined in
the computational domain representing the main combustor with the
area Ac:

pe= / |P'|dA/Ac (20)

Finally, the quantity ¢ is normalized by the value of the acoustic
excitation p. in the combustor:

Ve = 4 (21)

_Pc

By this definition, y, represents the mean velocity at the absorber
inlet when a mean acoustic excitation p. is given in the combustor
for the mode under investigation. The quantity ) is nondimensional
and is defined in analogy to an absorber admittance.

The dependence of y on the absorber length, for the eigenmodes
1T, 2T, and IR, is shown in Fig. 19. For comparison, the
experimentally determined nondimensional damping constants I'/ @
are also shown. The scales for y- and T'/w in Figs. 19a—19¢ have
been adjusted in the same way for all three modes. The origins are
shifted so that y- = 0 corresponds to the experimental damping
value I'/w for a combustor without absorber (L/R = 0).

Taking into account the simplicity of the model used to define the
admittance Y, the similarity with the measured data is surprisingly
good for all modes investigated. The admittance y predicts the
increase of damping with increasing absorber length very well. For
small values of L/R, the evolution of Y and I'/w with increasing
absorber length are almost identical. For the 2T and 1R modes, the
lengths at which maximum damping is obtained is also predicted
reasonably. There is a general qualitative agreement concerning the
absorber lengths where damping increases and decreases.

However, there are significant differences demonstrating the
limitations of the concept of y. For absorber lengths where the
experimental damping is high, the agreement between y- and I'/w is
not good. In this region, there is no mode for which y- predicts the
dependence of T'/w on absorber length well. Also, for large values of
L/R, the good agreement between y and I'/w observed for small
values of L /R is not found.

Summary and Conclusions

In combustion experiments and in combustors filled with ambient
air, it has been shown that the presence of an absorber cavity has
significant influence on the acoustic eigenmodes of the coupled
acoustic system composed of the combustor and cavity. The
eigenmodes of the coupled system are not identical to the
eigenmodes of the combustor without absorber. The resonance
frequencies of all modes are shifted to lower values with increasing
absorber length. Also, due to the loss of rotational symmetry in the
presence of an absorber, the degeneracy of the tangential modes is
broken. Thus, new resonances appear in the spectrum of
eigenfrequencies. A profound change in the symmetry properties
of the modes is associated with the change of the resonance
frequencies. The general phenomenology can be well understood by
studying a simplified analytical model for the coupled acoustic
system of an absorber and a combustor. However, the quantitative
prediction of resonance frequencies necessitates the use of numerical
modal analysis, which can take into account the full complex
geometry of the problem.

The contribution of an absorber to the damping of acoustic
excitations has been determined experimentally. Maximum damping
is found to occur at larger absorber lengths than that predicted by
simple quarter-wave theory. A qualitative discussion of the damping
behavior, based on the acoustic velocity field of the eigenmodes,



OSCHWALD ET AL. 533

shows partial agreement with experimental data. This gives an
indication of the potential to extract information on the damping
behavior in resonators of complex geometries based on the acoustic
velocity fields of the eigenmodes.

From the results of the work presented here, which focuses on a
single absorber coupled to a combustion chamber, it is concluded
that the analysis should be extended to investigate the performance of
absorber rings in rocket combustion chambers, a task which has been
only superficially addressed in this paper.

References

[1] Harrje, D., and Reardon, F., “Liquid Propellant Rocket Combustion
Instability,” NASA SP-194, 1972.

[2] Yang, V., and Anderson, W. (eds.), Liquid Rocket Engine Combustion
Instability, Progress in Astronautics and Aeronautics, AIAA,
Washington, D.C., Vol. 169, 1995.

[3] Oefelein, J., and Yang, V., “Comprehensive Review of Liquid-
Propellant Combustion Instabilities in F-1 Engines,” Journal of
Propulsion and Power, Vol. 9, No. 5, 1993, pp. 657-677.

[4] Bazarov, V., and Yang, V., “Liquid-Propellant Rocket Engine Injector
Dynamics,” Journal of Propulsion and Power, Vol. 14, No. 5, 1998,
pp- 797-806.

[5] Cavitt, R., Frederick, R., and Bazarov, V., “Experimental Methodology
for Measuring Combustion and Injection-Coupled Responses,” 42nd

Joint Propulsion Conference and Exhibit, AIAA Paper 2006-4527,

2006.

Oberg, C., Wong, T., and Ford, W., “Evaluation of Acoustic Cavities

for Combustion Stabilization,” NASA CR 115087, 1971.

Laudien, E., Pongratz, R., Pierro, R., and Preclik, D., “Experimental

Procedures Aiding the Design of Acoustic Cavities,” Liquid Rocket

Engine Combustion Instability, edited by V. Yang and W. Anderson,

Progress in Astronautics and Aeronautics, Vol. 169, AIAA,

Washington, D.C., 1995, pp. 377-399.

Richards, G., Straub, D. L., and Robey, E., “Passive Control of

Combustion Instabilities in Stationary Gas Turbines,” Combustion

Instabilities in Gas Turbine Engines, edited by T. Liuwen and V. Yang,

Progress in Astronautics and Aeronautics, Vol. 210, ATAA, Reston,

VA, 2005.

Cheuret, F., “Instabilités Thermo-Acoustiques de Combustion Haute-

Fréquence dans les Moteurs Fusées,” Ph.D. Thesis, Univ. de Provence,

Marseille, France, Oct. 2005, http://tel.archives-ouvertes.fr/tel-

00011656.

[10] Heidmann, M., “Oscillatory Combustion of a Liquid-Oxygen Jet with
Gaseous Hydrogen,” NASA TN-D-2753, 1965.

[11] Alonso, M., and Finn, E., Fundamental University Physics, Addison-
Wesley, Reading, MA, Vol. 1, 1967.

[12] Demtroder, W., Laser Spectroscopy, Springer, New York, 1996.

[6

—

[7

—

[8

[t

[9

—

D. Talley
Associate Editor



