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Abstract— This paper addresses an adaptive control for free-
floating space robots in the presence of model uncertainty.
Firstly, the operational space dynamics for a free-floating robot
is derived with a novel, computationally efficient formulation.
Then, by using the new formulation, we propose an adaptive
control for a free-floating space robot to compensate the
model uncertainty. For performance improvement, a composite
adaptive control by combination of the trajectory error and the
reaction force is further discussed. To verify the effectiveness of
the proposed methods, a three-dimensional realistic numerical
simulation is carried out.

Index Terms— Adaptive Control, Inverted Chain Approach,
Free-Floating Space Robot, Composite Adaptive Control

I. INTRODUCTION

The necessity of on-orbit servicing robots has been dis-
cussed because of the recent international interests in space
development and the curiosity to the commercial use on
orbit. On-orbit servicing space robots are expected to per-
form various tasks including capturing a target, constructing
a large structure and autonomous maintenance of on-orbit
systems.

In the free-floating dynamic scenario, one fundamental
task would be the tracking and the positioning of a tar-
get grasped by the space robot in operational space. This
work addresses the task of following a desired trajectory
in operational space while the space robot grasps a target
with unknown dynamic properties. This leads to a tracking
problem, where a given nominal trajectory has to be tracked,
while accounting for the parameter uncertainty.

In ground-based manipulator systems, the dynamic pa-
rameter uncertainty affects only dynamic equations. In free-
floating space robots, however, the parameter uncertainty ap-
pears not only in the dynamic equation but also in kinematics
mapping from the joint space to the Cartesian space due to
the absence of fixed base. Therefore, the model inaccuracies
lead to the deviation of operational space trajectory provided
by the kinematic mapping.

One method to deal with this issue can be found in an
adaptive control. Xu and Gu proposed an adaptive control
scheme for space robots in both joint space and operational
space [1], [2]. However, the adaptive control proposed in
[1] requires perfect attitude control and the adaptive control

Fig. 1: Chaser-robot and target scenario

in [2] proposes an normal augmentation approach based on
an under-actuated system, but demands large computational
consuming.

In this paper, we propose an adaptive control for a fully
free-floating space robot in operational space with a novel,
computational efficient formulation. This paper particularly
focuses on the uncertainty of kinematic mapping. To achieve
the desired input torque, it is assumed here that the velocity-
based closed-loop servo controller is used as noted in [3].

Since a free-floating space robot does not have any fixed
base, we can consider the system switched around and the
system can be modeled from the end-effector to the base-
satellite. This approach was introduced in [4] and was termed
the inverted chain approach. The inverted chain approach
has a computational advantage compared with the conven-
tional dynamic model for operational space and explicitly
explains coupled dynamics between the end-effector and the
robot arm. A proposed adaptive control for operational space
trajectory tracking is developed based on the inverted chain
approach. The control method is verified in simulation for a
realistic three-dimensional scenario (See Fig. 1).

The paper is organized as follows. Section II describes
the dynamic model of a space robot by the inverted chain
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approach. Section III discusses the operational space motion
control for space robots based on the passivity theorem. Sec-
tion IV proposes an adaptive control for trajectory tracking
in operational space against parameter uncertainties. Section
V derives an alternative adaptive control for performance
improvement. Section VI illustrates the simulation results
with a three-dimensional realistic model. The conclusions
are summarized in Section VII.

II. MODELING AND EQUATIONS OF MOTION

This section introduces the model of a space robot. Since
the focus of this research is on following a desired trajectory
in operational space, it is convenient to refer to operational
space schemes.

Due to the lack of a fixed base, one can model a free-
floating space robots with two approaches. The general
dynamic expressions of free-floating robots use linear and
angular velocities of the base and the motion rate of each
joint as generalized coordinates [5]. However, by considering
the system switched around, modeled from the end-effector
to the base, it can be represented by the motion of the end
effector and that of the joints in the same structure as in the
conventional expression. This scheme is termed the inverted
chain approach in [4].

The following subsections explain the dynamic equations
of the system in the inverted chain approach, for a serial
rigid-link manipulator attached to a floating base, as shown
in Fig. 2.

A. Equations of motion – Inverted chain approach

Let us consider the linear and angular velocities of the
end-effector, ẋe = (vT

e , ωT
e )T ∈ R6×1, and the motion rate

of the joints, φ̇ ∈ Rn×1 as the generalized coordinates. The
equations of motion are expressed in the following form:[

He Hem

HT
em Hm

] [
ẍe

φ̈

]
+

[
ce(xe, ẋe, φ, φ̇)
cm(xe, ẋe, φ, φ̇)

]

=
[ Fe

τ

]
+

[
JT

e

JT
m

]
Fb. (1)

The symbols used here are listed in Table I.
In the case that Fb is generated actively (e.g. jet thrusters

or reaction wheels etc.), the system is called a free-flying
robot. On the other hand, if no active actuators are applied
on the base, the system is termed a free-floating robot. In
this paper, we consider the free-floating robot.

B. Equations of motion in operational space

The upper part of (1) clearly describes the equation of
motion in operational space:

Heẍe + Hemφ̈ + ce = Fe + JT
e Fb (2)

In a free-floating space robot, only the joint motion can
be considered as a generalized coordinate.

Heẍe + ce = −Hemφ̈ + Fe + JT
e Fb

= Fi + Fe + JT
e Fb (3)
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Fig. 2: General model for a space robot

TABLE I: Main notations in dynamic equations

He(xe, φ) ∈ R6×6 : inertia matrix of the end-effector.
Hm(xe, φ) ∈ Rn×n : inertia matrix of the robot arm.
Hem(xe, φ) ∈ R6×n : coupling inertia matrix between

the end-effector and the arm.
ce ∈ R6×1 : non-linear velocity dependent

term on the end-effector.
cm ∈ Rn×1 : non-linear velocity dependent

term of the arm.
Fe ∈ R6×1 : force and moment exerted on the

end-effector.
Fb ∈ R6×1 : force and moment exerted on the

base.
τ ∈ Rn×1 : torque on the joints.

where Fi = −Hemφ̈ stands for a reaction force onto the
end-effector due to the robot arm motion.

Remark 1:Input command for the operational space dynam-
ics

The right-hand side in (3) apparently shows the reaction
or coupling effect due to the motion of the robot arm with
joint acceleration expression. The torque control input does
not appear explicitly in (3). Joint acceleration, however, can
be achieved by velocity-based closed-loop servo controller
straightforwardly as noted in [3]. Therefore, eq. (3) are
convenient formulation for constructing a control strategy.
Hereafter, φ̈ is considered as an input command to the
system and the appropriate joint acceleration for proper
control law is computed. Then, one can refer Fi = −Hemφ̈

as a reaction force due to the motion of the robot arm, which
can be used to analyze the influence of the parameter errors
in section IV.

Remark 2:Linearity in the Dynamics Parameters

The linearity of eq. (2) is one of the significant features in
the articulated-body system. This characteristic is used for
the following derivation of an adaptive control. Eq. (2) can



be described by the sum of the equation of motion of each
link as follows:

Fe =
d

dt
Le = Heẍe + Hemφ̈ + ce, (4)

Le =
n∑

i=0

[
miṙi

Iiωi + ri × miṙi

]
, (5)

where Ii, ωi, mi and ri stand for the inertia matrix,
angular velocity, mass and center of mass for the link
i, respectively. Eq. (5), an integral form of the dynamic
motion (4), expresses the total linear and angular momentum
of the system. Then, once eq. (5) can be linearized with
respect to a suitable set of dynamic parameters, the time-
derivative of (5), namely eq. (4) can be linear in terms of
the dynamic parameters since the dynamic parameters are
independent on the motion of the system. Through some
calculations, eq. (5) is linearized in terms of a set of the
dynamic parameters a.

Le = y(xe, ẋe, φ, φ̇)a. (6)

Since the set of the dynamic parameters a is constant and
is not affected by the motion of the arm, eq. (4) can also
be linear with respect to the dynamic parameters, and then
eq. (4) can be expressed as a function of a proper set of
dynamic parameters a.

Fe = Heẍe+Hemφ̈+ce = Y (xe, ẋe, ẍe, φ, φ̇, φ̈)a, (7)

where Y stands for the time-derivative of y, which is
a function of state values. This insight is significant to
derive an adaptive control in Section IV. The choice of
the regressor Y and the dynamic parameter vector a is
generally arbitrary. In this paper, we assume that only a
grasped target includes unknown dynamic parameters, and
then the dynamic parameter vector a is defined as an p-
dimensional vector containing the mass, center of mass,
moment of inertia and product of inertia of the target:

a = (m, rgx, rgy , rgz , Ixx, Iyy, Izz , Ixy, Iyz , Izx, )T (p = 10).

III. TRAJECTORY CONTROL IN OPERATIONAL SPACE

This section shows the trajectory controller in operational
space for a free-floating space robot. The control law shown
in this section is derived based on the passivity theorem [6].

A. Passivity based trajectory tracking control

Let us define a reference output velocity and a reference
output acceleration as follows:

η = ẋd
e + Kvx̃e,

η̇ = ẍd
e + Kv

˙̃xe,

where x̃e = xe − xd
e , in which xe ∈ R6×1 and xd

e ∈ R6×1

depict the output vector and the desired output, respectively.
Kv ∈ R6×6 is a strictly positive definite matrix. The

reference error s between the reference output η and the
actual velocity ẋe can be described by:

s = η − ẋe = ˙̃xe + Kvx̃e. (8)

In the case without any parameter errors, the trajectory
tracking control law can be determined by means of the
feedback linearization as follows:

φ̈
u

= −H+
em(Heη̇ + ce(xe, η, φ, φ̇) + Λs), (9)

where Λ ∈ R66 denotes a positive definite symmetric con-
stant matrix. {·}u stands for the input command. Note that
the control law (9) can be achieved under the condition when
Hem is nonsingular. Since several researches have already
been proposed the treatment of the singularity problem [7]–
[9], it is out of focus in this paper.

B. Stability analysis

The stability of the control law (9) can be analyzed by
means of the Lyapunov direct method. Here, the following
reference error energy is considered as a Lyapunov function:

E(t) =
1
2
sT Hes. (10)

The time-derivative of E is given as:

Ė(t) = sT (Heṡ +
1
2
Ḣes) (11)

= sT (Heη̇ − Heẍe +
1
2
Ḣes)

= sT (Heη̇ + Hemφ̈ + ce(xe, ẋe, φ, φ̇) +
1
2
Ḣes),

Since the control command is expressed in eq. (9), φ̈ = φ̈
u

,
(see. Remark 1 in Sec. II), the derivation of E(t) results in:

Ė(t) = −sTΛs ≤ 0, (12)

Accordingly, the result of Ė holds always semi-negative
and the closed-loop system (2) with (9) is guaranteed to
be asymptotically stable. The inequality (12) implies that
the steady-state reference error s converges asymptotically
to zero, which leads to the steady-state position error also
converges to zero.

IV. ADAPTIVE CONTROL

The previous section explained the trajectory control for
a free-floating space robot based on the inverted chain
approach on the assumption of no dynamic parameter errors.
In practical situations, however, the robot arm handles vari-
ous components whose dynamic properties are not known
in advance. Those model inaccuracies may lead to the
degradation of the control performance and the deviation
of the trajectory tracking from the desired one.

This section proposes an adaptive control for a free-
floating space robot against the parameter uncertainties.



A. Influence of the dynamic parameter errors

In the presence of dynamic parameter inaccuracies, the
dynamic model in operational space can be described as
follows:

Ĥeẍe + ĉe = −Ĥemφ̈ = F̂i, (13)

where {̂·} stands for the matrix including dynamic parameter
errors. In analogy with (9), the control law derived from the
dynamic model (13) becomes:

φ̈
u

= −Ĥ
+

em(Ĥeη̇ + ĉe(xe, η, φ, φ̇) + Λs). (14)

The implementation of the input acceleration (14) to the
dynamic system (2), the reaction force due to the motion of
the robot arm Fi and the corresponding expected reaction
force F̂i has error F̃i:

F̃i = Fi − F̂i

= −Hemφ̈
u

+ Ĥemφ̈
u

= −H̃emφ̈
u
, (15)

where {̃·} stands for the error matrix. With the input accel-
eration (14), the reaction force Fi can be described by the
corresponding expected force F̂i and the error F̃i as follows:

Fi = F̂i + F̃i

= Ĥeη̇ + ĉe + Λs − H̃emφ̈
u
. (16)

Let us analyze here the stability of the system by means of
the Lyapunov function (10). In the closed-loop system (2)
with the controller (14), the time-derivative of the Lyapunov
function (10) is given by:

Ė(t) = sT (Heη̇ + Hemφ̈ + ce +
1
2
Ḣes)

= sT (H̃eη̇ + c̃e + H̃emφ̈
u − Λs). (17)

where Remark 1 is used, namely φ̈ = φ̈
u

. As mentioned in
Remark 2, the dynamic system is able to be linearized with
the vector of dynamic parameters a and the regressor Y .
Then, the above time-derivative can be rewritten by:

Ė(t) = sT (Y ã − Λs), (18)

where ã = a − â denotes the parameter estimation error
vector. a is an p-dimensional vector containing the unknown
dynamic parameters and â is its estimate. The above equality
indicates that each component Λi in the gain matrix Λ needs
to meet the following condition in order to obtain the robust
system against the model inaccuracies:

Λi ≥ Y ã + µi, ( i = 1 · · · p ) (19)

where the constant µi is strictly positive. As long as the
above condition holds, the controller (14) is robust against
the parameter inaccuracies and the tracking error converges
to zero.

Robot Plant

Controller

Heẍe + ce = −Hemφ̈

η̇ = ẍd
e + Kv

˙̃xe φ̈ = −Ĥ
+

em(Ĥeη̇ + ĉe + Λs)

˙̃a = −Γ−1Y T s

ẋexe ,

xd
e ẋd

e ẍd
e, ,

Fig. 3: Control diagram for adaptive trajectory tracking
control in operational space

B. Adaptive controller design

Equation (17) suggests two solutions to compensate the
parameter uncertainty in the system. One is the improvement
of the robustness in the control law (14) with proper design
of the gain matrix as shown in (19). The other is to adjust
the dynamic parameter itself during the operation, which is
called an adaptive control [10] [11].

This section proposes an adaptive control in the case with-
out any knowledge of the dynamic parameter in advance,
such that the space robot grasps a target whose dynamic
parameters is unknown.

Let us consider the following Lyapunov function de-
scribed with the sum of the reference error energy of the
system (10) and the potential energy due to the model
uncertainties:

V (t) = E(t) +
1
2
ãTΓ−1ã, (20)

where Γ ∈ Rp×p is a positive definite matrix. The time-
derivative of (20) becomes:

V̇ (t) = −sT Λs + ãT (Y T s + Γ ˙̃a). (21)

This suggests the following condition should be met to
guarantee the system stability,

Y T s + Γ ˙̃a = 0. (22)

Then, the following adaptive control law is derived:

˙̃a = −Γ−1Y T s, (23)

where ã = a − â and the parameter vector a is constant.
Consequently, the time-derivative of the Lyapunov func-

tion results in:

V̇ (t) = −sTΛs ≤ 0. (24)

The inequality (24) indicates the reference error s converges
asymptotically to zero if and only if ˙̃xe → 0 and x̃e → 0.
Accordingly, the control law for the trajectory tracking in
operational space (14) and the adaptation law (23) yield a
stable adaptive controller. Fig. 3 shows the control diagram
for the proposed adaptive control.



V. COMPOSITE ADAPTIVE CONTROL

The adaptive controller developed in the previous section
uses the tracking error to extract the parameter informa-
tion. To obtain the parameter information, however, one
can find various candidates [12]. One possible candidate is
the prediction error, which is generally used for parameter
estimation. In this section, an alternative adaptive control
law is presented, which is developed with the combination
of the tracking error and the reaction force as the prediction
error. Here the reaction forces due to the motion of the robot-
arm is supposed to be measured by the force/torque sensor
attached on the end-effector, to which the target is attached.
The measurement values are used for parameter adaptation
together with the nominal adaptive control law (23).

In analogy with Section II, the reaction forces on the end-
effector is able to be linearized with a proper set of the
dynamic parameters a as FF/T

e = Wa and its prediction
error can be described as F̃F/T

e = Wã, where W stands for
the regressor. The detail derivation is omitted in this paper.

Then, the adaptive control law (23) is extended to the
following expression combined with the tracking error and
the predicted reaction force error:

˙̃a = −Γ−1{Y T s + W T RF̃F/T
e } , (25)

where R ∈ R6×6 is a uniformly weighting matrix. Eq. (25)
can be rewritten as:

˙̃a + Γ−1W T RWã = −ΓY T s, (26)

which indicates a time-varying low-pass filter and that
parameter and tracking error convergence in composite adap-
tive control can be smoother and faster than the nominal
adaptive control only.

To analyze the stability of the system applied the above
composite adaptive control law and the trajectory tracking
control, the Lyapunov function (20) is considered again. The
time-derivative of (20) is derived as (21). Since the adaptive
control law is determined by (25), substitution of (25) into
(21) leads to the following inequality:

V̇ (t) = −sTΛs − ãT W T RWã ≤ 0, (27)

which describes that the reference error s and the predic-
tion error asymptotically converge to zero if the desired
trajectories are bounded. If the trajectories are persistently
exciting and uniformly continuous, the estimated parameters
converge asymptotically to the real ones.

VI. SIMULATION STUDY

This section presents the numerical simulation results of
a realistic three-dimensional model as shown in Fig. 1.
In this simulation, the chaser-robot is assumed to track a
given trajectory while it grasps firmly a target including
unknown dynamic properties. The initial total linear and
angular momentum for whole system are supposed to be zero
in the simulation. The chaser robot has a 7 DOF manipulator

TABLE II: Dynamic parameters for a chaser-robot

mass [kg] Ixx[kgm2] Iyy[kgm2] Izz[kgm2]

Base 140 18.0 20.0 22.0

mass [kg] I [kgm2]

Each Link 3.3 0.0056

TABLE III: Dynamic parameters for a target

mass [kg] Ixx[kgm2] Iyy[kgm2] Izz [kgm2]

87.5 11.25 12.5 12.5

mounted on the base satellite, whose dynamic parameters are
shown in Table II. The robot arm has one redundancy with
respect to the end-effector motion, then the null-space can
be used for an additional task. In the simulation examples,
the target parameters of the planned motion are supposed to
be zero, while those of the controlled motion in Table III,
giving the extent of uncertainty introduced in the system.

The adaptation gain Γ in eq. (23) is determined by:

Γ = diag([ 5 × 103, 10, 10, 10, 5 × 102, 5 × 102,

5 × 102, 5 × 10−4, 5 × 10−4, 5 × 10−4 ]).

The control gains Λ and Kv in eq. (14) are set to be:

Λ = diag([ 20, 20, 20, 3000, 3000, 3000 ]),

Kv = diag([ 10, 10, 10, 1000, 1000, 1000 ]).

The weighing matrix R in the composite adaptive con-
trol (25) is determined as:

R = diag([ 0.5, 0.5, 0.5, 0.5, 0.5, 0.5 ]).

Figures 4 and 5 illustrate the desired and actual trajectories
in Cartesian space. Fig. 4 shows the case with parameter
deviations but without adaptive control. Fig. 5 shows the
case with adaptive control (21). The left graphs depict
the trajectory in xy plane and the right graphs show the
trajectory in xz plane in Cartesian space. In the graphs,
the solid line depicts the desired trajectory and the dashed
line depicts the actual trajectory, respectively. It is clearly
observed that the end effector follows the trajectory when
the adaptive control is activated, even though the parameter
deviations exist, while in the case without adaptive control
law, the end effector deviates the desired trajectory, due to
the model errors. Fig. 6 depicts the typical examples for the
parameter adaptation process when the adaptive control law
is applied. Note here that the adjusted dynamic parameters
do not have to converge to the real ones since the demanded
task is to follow a given trajectory. If one would like to
identify real values, the persistent excitation of the input
command is required.

Furthermore, the composite adaptive control (25) is veri-
fied in the same condition. The actual trajectory follows the
desired one as well as the normal adaptive control (23). How-
ever, the tracking error is improved since more information
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Fig. 5: Trajectory with adaptive control

of the parameters are utilized. Here we evaluate the tracking
error with the root mean square error (RMS) in Table IV.
In the table, “w/o AC”, “with AC” and “with CAC” stand
for the case without adaptive control, with adaptive control
and the case with composite adaptive control, respectively.
The simulations verify that the proposed adaptive controls
are effective to achieve the trajectory tracking against the
parameter uncertainties with parameter adaptation control.

VII. CONCLUSIONS

In this paper, we proposed an adaptive control for a
free-floating space robot by using the inverted chain ap-
proach, which is a unique formulation for space robots
compared with that for ground-based manipulator systems.
This gives the advantage of linearity with respect to the
inertial parameters for the operational space formulation and
has computational efficiency.

In a free-floating space robot, the dynamic parameters
affect not only its dynamics but also its kinematics. By
paying attention to the internal dynamics between the end-
effector motion and the joint motion, we developed an
adaptive control for operational space trajectory tracking in
the presence of model uncertainties. To improve the adaptive
control performance, a composite adaptive control by using
the information of the tracking error and the reaction force is
further discussed. The proposed control methods are verified
by realistic numerical simulations. The simulation results
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Fig. 6: Adaptation process of the parameters

TABLE IV: Root Mean Square error for tracking error
w/o AC with AC with CAC

RMS error 0.0388 0.0046 0.0032

clearly show that the proposed adaptive controls are effective
against the dynamic parameter errors.
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