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Stereo Processing by Semi-Global Matching
and Mutual Information

Heiko Hirschmiller

Abstract— It has been adapted for stereo matching [5], [6] and apprabech
This paper describes the Semi-Global Matching (SGM) stereo for faster computation [7].
method. It uses a pixelwise, Mutual Information based matchg Cost aggregation connects the matching costs within aigerta

cost for compensating radiometric differences of input imges. neighborhood. Often, costs are simply summed over a fixedisiz
Pixelwise matching is supported by a smoothness constraitiat

is usually expressed as a global cost function. SGM performs W'”‘?'C_’W at con§tant d'Spa't'ty [3]_’ [_5]’ (8, [_9]' Some me:th;od
a fast approximation by pathwise optimizations from all direc- additionally weight each pixel within the window accorditg
tions. The discussion also addresses occlusion detectiosyb- color similarity and proximity to the center pixel [10], [L1
pixel refinement and multi-baseline matching. Additionally, post- Another possibility is to select the neighborhood accagdin
processing steps for removi.ng outliers, recoverilng from gpoific segments of constant intensity or color [7], [12].

problems of structured environments and the interpolation of Disparity computation is done for local algorithms by séleg
gaps are presented. Finally, strategies for processing awst the disparity with the lowest matching cost [5], [8], [10]e.

arbitrarily large images and fusion of disparity images usn . ) ; .
Ortﬁogrgﬁhiciro}ect%n are proup(;sed. 'sparity images usng winner takes all. Global algorithms typically skip the casigre-

A comparison on standard stereo images shows that SGM is gation step and define a global energy function that incladteta
among the currently top-ranked algorithms and is best, if sbb- term and a smoothness term. The former sums pixelwise nmatchi
pixel accuracy is considered. The complexity is linear to ta costs, while the latter supports piecewise smooth digpagtec-
number of pixels and disparity range, which results in a runime  tjon Some methods use more terms for penalizing occlugjns
of just 1-2s on typical test images. An in depth evaluation of [13], alternatively treating visibility [11], [12], [L4]enforcing a

the Mutual Information based matching cost demonstrates a left/riaht tri ist bet : 5
tolerance against a wide range of radiometric transformatons. eft/right or symmetric consistency between images [7}][{12],

Finally, examples of reconstructions from huge aerial frane and _[14] or Weight the smoothnes_s term a_ccc_;rding to s_e_gmentatio
pushbroom images demonstrate that the presented ideas areinformation [14]. The strategies for finding the minimum of

working well on practical problems. the global energy function differ. Dynamic programming {DP
Index Terms— stereo, mutual information, global optimization, ~2PProaches [2], [15] perform the optimization in 1D for each
multi-baseline scanline individually, which commonly leads to streakirffgets.

This is avoided by tree based DP approaches [12], [16]. A two
dimensional optimization is reached by Graph Cuts [13] diBe
o . _Propagation [3], [11], [14]. Layered approaches [3], [91]
A CCURATE, dense stereo matching is an important requirgarform image segmentation and model planes in disparégesp
ment for many applications, like 3D reconstruction. MoSjhich are iteratively optimized.
difficult are often occlusions, object boundaries and fimeicst Disparity refinement is often done for removing peaks [17],
tures, which can appear blurred. Matching is also challendue checking the consistency [8], [11], [12], interpolatingpga17]
to low or repetitive textures, which are typical for struett envi- o, increasing the accuracy by sub-pixel interpolation [&],
ronments. Additional practical problems originate frornargling Almost all of the currently top-ranked algorithms [2], [3T],
and illumination differences. Furthermore, fast caldole are [9], [11]-[15] on the Tsukuba, Venus, Teddy and Cones data
often required, either because of real-time applicatiortsesause ggt [18] optimize a global energy function. The complexify o
of large images or many images that have to be process@gst top-ranked algorithms is usually high and can depend on
efficiently. _ o the scene complexity [9]. Consequently, most of these nustho
A comparison of current stereo algorithms is given on thgave runtimes of more than 20 seconds [3], [12] to more than a
the Middlebury Stereo Padeslt is based on the taxonomy of minute [9]-[11], [13], [14] on the test images.
Scharstein and Szeliski [1]. They distinguish between &taps This paper describes the Semi-Global Matching (SGM) method
that most stereo methods perform, i.e. matching cost caatipot [19], [20], which calculates the matching cost hierarctijca
cost aggregation, disparity computation/optimizatiod disparity by Mutual Information (Section II-A). Cost aggregation ierp
refinement. Matching cost computation is very often based @%med as approximation of a global energy function by pagbw
the absolute, squared or sampling insensitive differe@eo{l optimizations from all directions through the image (Setti
intensities or colors. Since these costs are sensitivediomeetric II-B). Disparity computation is done by winner takes all and
differences, costs based on image gradients are also uged §§pported by disparity refinements like consistency cimeckind
Mutual Information has been introduced in computer visiéh [ syp-pixel interpolation (Section 11-C). Multi-baselineathing is
for handling complex radiometric relationships betweemdes. handied by fusion of disparities (Section 1I-D). Furthesirity
H. Hirschmdller is with the Institute of Robotics and Metioaics at the refmemems mCIUde_peak fllt_erlng, |nte_nS|ty conS|sters_stpdr|ty
German Aerospace Center (DLR). selection and gap interpolation (Section II-E). Previgugh-
Lwww.middlebury.edu/stereo published is the extension for matching almost arbitrakdsge
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Fig. 1. Calculation of the Ml based matching cost. Valuessaaled linearly for visualization. Darker points have @rgalues than brighter points.

images (Section II-F) and the fusion of several disparitadges two images (i.e. their information content) as well as theint

using orthographic projection (Section 1I-G). Section $hhows entropy.

results on standard test images as well as previously uispebl

extensive evaluations of the Mutual Information based tiatc

cost. Finally, two examples of 3D reconstructions from haggal

frame and pushbroom images are given. The entropies are calculated from the probability distitins
P of intensities of the associated images.

MIy, j, = Hp +Hyp, — Hyp, (1)

II. SEMI-GLOBAL MATCHING

The Semi-Global Matching (SGM) method is based on the idea g, = — /1 Py (i) log Py (i)di %)

of pixelwise matching of Mutual Information and approximnat 01 L

a global, 2D smoothness constraint by combining many 1D _ o N e

cor?straints. The algorithm is describedy in distinctg pretm‘)}/s fn.n = /o / Pr.1a(i1,%2) log Pry 1, (1, f2)dia iz~ (3)

steps. Some of them are optional, depending on the applicati  For well registered images the joint entropy, , is low, be-

cause one image can be predicted by the other, which corrdspo

to low information. This increases their Mutual Information

the case of stereo matching, one image needs to be warped
Input images are assumed to have a known epipolar geomelyeording to the disparity image for matching the other image,

but it is not required that they are rectified as this may n@{ch that corresponding pixels are at the same location in bo

always be possible. This is the case with pushbroom imag@gages, i.el; = I, and I = fp(Im).

A linear movement causes epipolar lines to be hyperbolak [21 Equation (1) operates on full images and requires the digpar

due to parallel projection in the direction of movement anfinage a priori. Both prevent the use of MI as pixelwise matghi

perspective projection orthogonally to it. Non-linear rements, cost. Kim et al. [6] transformed the calculation of the jaémitropy

as unavoidable in aerial imaging, causes epipolar lineseto fpr;  into a sum over pixels using Taylor expansion. It is referred

A. Pixelwise Matching Cost Calculation

general curves and images that cannot be rectified [22]. to their paper for details of the derivation. As result, to@ng
The matching cost is calculated for a base image pixEbm  entropy is calculated as a sum of data terms that depend on
its intensity I, and the suspected correspondefigg With a = corresponding intensities of a pixpl

eym (P, d) Of the match image. The functian,, (p, d) symbolizes
the epipolar line in the match image for the base image pixel

with the line parameted. For rectified images, with the match Hy, 1, =Y hiy 1, (Tip, Top) 4)
image on the right of the base imags,,, (p, d) = [pz — d, py]T p
with d as disparity. The data termhy, 1, is calculated from the joint probability

An important aspect is the size and shape of the area thadistribution Py, ;, of corresponding intensities. The number of
considered for matching. The robustness of matching i®aszd corresponding pixels is:. Convolution with a 2D Gaussian
with large areas. However, the implicit assumption of canst (indicated by®g(i, k)) effectively performs Parzen estimation [6].
disparity inside the area is violated at discontinuitiedjick
leads to blurred object borders and fine structures. Cestapes . 1 . ) .
and techniques can be used to reduce blurring, but it canmot b 112 (k) = —-108(Pr, 1, (i, k) @ 9(i, k) ® g (1, k) ®)
avoided [8]. Therefore, the assumption of constant digparin The probability dlstrlbutlon of corresponding intensitiés

the vicinity of p is discarded. This means that only the intensitiegefined with the operatof[], which is 1 if its argument is true
Iy, and In,q itself can be used for calculating the matching coshng o otherwise.

One choice of pixelwise cost calculation is the samplin@ins
sitive measure of Birchfield and Tomasi [2]. The ca4%1(p, d)

is calculated as the absolute minimum difference of intezssiat Pr, 1, (i, k) ZT (i,k) = (I1p, I2p)] (6)
p andq = ey, (p, d) in the range of half a pixel in each direction
along the epipolar line. The calculation is V|sual|zed in Fig. 1. The match image

Alternatively, the matching cost calculation can be based d@s warped according to the initial disparity image This can be
Mutual Information (MI) [4], which is insensitive to recdrdy implemented by a simple lookup in imade, with ey, (p, Dp)
and illumination changes. It is defined from the entrafyof for all pixels p. However, care should to be taken to avoid
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possible double mappings due to occlusionsl,in Calculation

would involve the implementation of two different stereothaals.

of P according to (6) is done by counting the number of pixeldltilizing a single method appears more elegant.

of all combinations of intensities, divided by the numberatif
correspondences. Next, according to (5), Gaussian snmgpthi
applied by convolution. It has been found that using a sneatél

Therefore, a hierarchical calculation is suggested, whesh
cursively uses the (up-scaled) disparity image, that han be
calculated at half resolution, as initial disparity. If tlerall

(i.e. 7x 7) gives practically the same results as larger kernels, bewmplexity of the algorithm iO(W H D) (i.e., width x height

is calculated faster. The logarithm is computed for eachmetd
of the result. Since the logarithm of 0 is undefined, all 0 eleta

x disparity range), then the runtime at half resolution isuresdi
by factor 23 = 8. Starting with a random disparity image at a

are replaced by a very small number. Another Gaussian singothresolution of11—6th and initially calculating 3 iterations increases

effectively leads to a lookup table for the tedm, r,.
Kim et al. argued that the entrops{;, is constant and{y,

is almost constant as the disparity image merely rediggtou
the intensities ofly. Thus, hy, 1,(I1p, I2p) Serves as cost for

matching two intensities. However, if occlusions are cdesed

then some intensities dfi and I, do not have a correspondenceOMI would be just 14% slower than that 6fgp

These intensities should not be included in the calculatidrich
results in non-constant entropiéf;, and Hy,. Apart from this
theoretical justification, it has been found that includithgse
entropies in the cost calculation slightly improves objeatders.
Therefore, it is suggested to calculate these entropie®agna
the joint entropy.

Hp=> hi(Ip) (7a)

P

ha(i) = —= log(Py(i) @ g(0)) @ (1) (7o)

the overall runtime by the factor,

1 1 1

1
I+t gt tiE~lid (10)
Thus, the theoretical runtime of the hierarchically cadted
ignoring the

overhead of MI calculation and image scaling. It is notetwprt
that the disparity image of the lower resolution level is dise
only for estimating the probability distributio® and calculating
the costsC),; of the higher resolution level. Everything else is
calculated from scratch to avoid passing errors from loveer t
higher resolution levels.

An implementation of the hierarchical Ml computation (HMI)
would collect all alleged correspondences defined by amainit
disparity (i.e. up-scaled from previous hierarchical lese ran-
dom in the beginning). From the correspondences the priitlyabi
distribution P is calculated according to (6). The size &f

The probability distribution?; must not be calculated overiS the square of the number of intensities, which is constant
the whole images; and I, but only over the corresponding (e.g.256 x 256). The subsequent operations consist of Gaussian

parts (otherwise occlusions would be ignored d@hg and Hy,

convolutions of P and calculating the logarithm. The complexity

would be almost constant). That is easily done by just sugmif€Pends only on the collection of alleged correspondencedal
the corresponding rows and columns of the joint probabilidf€ constant size oP. Thus, O(W H) with W' as image width

distribution, i.e.Py, (i) = 3", Py, 1, (i, k). The resulting definition and  as image height.

of Mutual Information is,

B. Cost Aggregation

MIy, g, = Zmih 1 (Ip, I2p) (8a) Pixelwise cost calculation is generally ambiguous and gron
' P ' matches can easily have a lower cost than correct ones, due
mig, 1, (i, k) = hr, (i) + hr, (k) — by, 1, (6, k). (8b) to noise, etc. Therefore, an additional constraint is adthed
_ ' o ' ) supports smoothness by penalizing changes of neighboisig d
This leads to the definition of the MI matching cost. parities. The pixelwise cost and the smoothness constraire
expressed by defining the enerdy(D) that depends on the
. disparity imageD.
Cmr(p,d) = —mig, r1(1,.)Ubps Imq) (%9a) partty imag
q = epn(p; d) (9b)
. _ S D)= (C(p.Dp) + Y PiT(Dp~ Dg| =1]
The remaining problem is that the disparity image is reglire p a€N 1)
for warping I,,, beforemi() can be calculated. Kim et al. sug- + Z Py T(|Dp — Dql > 1)

gested an iterative solution, which starts with a randorpatity

image for calculating the cost,,;;. This cost is then used for

qaeN,

matching both images and calculating a new disparity image'The first term is the sum of all pixel matching costs for the
which serves as the base of the next iteration. The numberdigparities of D. The second term adds a constant pendtty
iterations is rather low (e.g. 3), because even wrong digparfor all pixels q in the neighborhoodVy of p, for which the
images (e.g. random) allow a good estimation of the prolbabil disparity changes a little bit (i.e. 1 pixel). The third temudds
distribution P, due to a high number of pixels. This solutiond larger constant penalty, for all larger disparity changes.
is well suited for iterative stereo algorithms like Grapht€u Using a lower penalty for small changes permits an adaptatio

[6], but it would increase the runtime of non-iterative aigfums
unnecessarily.
Since a rough estimate of the initial disparity is sufficiéort

to slanted or curved surfaces. The constant penalty foreder
changes (i.e. independent of their size) preserves discitits
[23]. Discontinuities are often visible as intensity chasgThis

estimatingP, a fast correlation base method could be used in ti exploited by adapting? to the intensity gradient, i.eP =

first iterations. In this case, only the last iteration wobkldone

llbpf?lb‘ for neighboring pixelsp and q in the base imagé,.

by a more accurate and time consuming method. However, thiswever, it has always to be ensured tliat> P;.
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The problem of stereo matching can now be formulated as

finding the disparity imageé> that minimizes the energ¥ (D). Le(p,d) =C(p, d) + min(Ls (p — r,d)
Unfortunately, such a global minimization, i.e., in 2D, iPN ’ . (7 d—1)+ P e
riP—T, - 1,

complete for many discontinuity preserving energies [28]. (13)
contrast, the minimization along individual image rows.,i.in Le(p—r,d+1) + Py,
1D, can be performed efficiently in polynomial time using Dy- min Le(p — r,%) + P») — min Ly (p — 1, k)

i k

namic Programming [2], [15]. However, Dynamic Programming

solutions easily suffer from streaking [1], due to the difftg of This modification does not change the actual path through

relating the 1D optimizations of individual image rows tocka disparity space, since the subtracted value is constantlfor

other in a 2D image. The problem is, that very strong consiai disparities of a pixelp. Thus, the position of the minimum

in one direction, i.e., along image rows, are combined withen does not change. However, the upper limit can now be given

or much weaker constraints in the other direction, i.e.ng@lo asL < Cmaz + Po.

image columns. The costsL, are summed over paths in all directionsThe
This leads to the new idea of aggregating matching costs JHMPer of paths must be at least 8 and should be 16 for prayidin

1D from all directions equally. The aggregated (smoothed) codt900d coverage of the 2D image. In the latter case, paths that

S(p, d) for a pixel p and disparityd is calculated by summing &€ not honzgntal, vertical or diagonal are |mplementelogbmg

the costs of all 1D minimum cost paths that end in piseat ©N€ step horizontal or vertical followed by one step diagigna

disparity d, as shown in Fig. 2. These paths through disparity
space are projected as straight lines into the base imag&sbu S(p,d) = Z Le(p,d) (14)
non-straight lines into the corresponding match imagegraiicg "

to disparity changes along the paths. It is noteworthy thmdy o

the cost of the path is required and not the path itself. The upper limit for$ is easily determined as < 16(Cinaz +

P,), for 16 paths.

An efficient implementation would pre-calculate the pixisiev
Minimum Cost Path |(p, d) 16 Paths from all Directions matching costsC(p, d), down-scaled to 11 bit integer values,
X i.e., Cmaz < 2'', by a factors if necessary as in case of Ml
values. Scaling to 11 bit guarantees that the aggregated cos
in subsequent calculations do not exceed the 16 bit limit. Al
costs are stored in a 16 bit arr&y{] of sizeW x H x D. Thus,
C[p,d] = sC(p,d). A second 16 bit integer array|] of the same
size is used for storing the aggregated cost values. Thyg &ra
initialized by 0 values. The calculation starts for eactediionr
at all pixelsb of the image border witlLr(b,d) = C[b,d]. The
path is traversed in forward direction according to (13). &ach
visited pixelp along the path, the cosis (p, d) are added to the
valuesS|b, d] for all disparitiesd.

The costL.(p, d) along a path traversed in the directiorof The calculation of (13) require®(D) steps at each pixel,
the pixelp at disparityd is defined recursively as, since the minimum cost of the previous pixel, engin;, L (p —

r, k), is constant for all disparities of a pixel and can be pre-
calculated. Each pixel is visited exactly 16 times, whichutts

in a total complexity ofO(W HD). The regular structure and
simple operations, i.e., additions and comparisons, peranallel

=
e
i\

|
d |
|

|
|
Xy p

Fig. 2. Aggregation of costs in disparity space.

Ly(p,d) =C(p,d) + min(Ly(p — 1, d),

Le(p—r,d—1)+ P, calculations using integer based SIfBssembler instructions.
’ (12)

Ly(p—r,d+1)+ Py,

min Ly(p —r,i) + Py). C. Disparity Computation

The disparity imageD, that corresponds to the base image
is determined as in local stereo methods by selecting foh eac

The pixelwise matching cost can be eithe€g7 or Cp;;. The . . . o .
remainzler of the equatign adds the lowest J:’i,gst ofl\tﬁe previo%'xeI p the disparityd that corresponds to the minimum cost, I.e.
pixel of the path, including the appropriate penalty fomind S[p, d]. For sub-pixel estimation, a quadratic curve is fitted

p-r ,

discontinuities. This implements the behavior of (11) glan E}Iri];(;)l;?i?ythaengiﬁehbp(:)rlsri]tgi]ogog;st,hle.efﬁii;r::ﬁnniesxtzgllgl:zze?j?%"s
arbitrary 1D path. This cost does not enforce thgibility or !

. . . uadratic curve is theoretically justified only for coatén
ordering constraint, because both concepts cannot be realized E%rq v y

paths that are not identical to epipolar lines. Thus, thecaih a mr%;ihn?a;lcj)w ;Jes?:?r:idsﬁﬁ?iﬁycifs'C;gmg\t/gr’] |tT|hs| usiﬁsas a
is more similar toScanline Optimization1] than traditional P plcity - TNIPR

Dynamic Programming solutions fast computation.
y 9 9 ’ The disparity imageD,,, that corresponds to the match image

The values ofL" permanently increase along the path, which, can be determined from the same costs, by traversing the

may lead to very large values. However, (12) can be modified Bpipolar line, that corresponds to the pixgl of the match
subtracting the minimum path cost of the previous pixel fithe

whole term. 2Single Instruction, Multiple Data
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Section I-A I-A 1I-B 11-B I-C 1-C I-A
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Fig. 3. Summary of processing steps of Sections II-A, |I-Bl &RC.

image. Again, the disparityl is selected, which correspondssible outliers are discarded by considering only thoseatitips
to the minimum cost, i.eming Sle,,,(q,d),d]. However, the that are within a 1 pixel interval around the median of alpdisty
cost aggregation step does not treat the base and matchsmagdues for a certain pixel.

symmetrically. Slightly better results can be expectedpif is

calculated from scratch, i.e. by performing pixelwise rhaig > kev. Dip

and aggregation again, but with, as base and, as match Dyp = Zipt (16a)
image. It depends on the application whether or not an isecta FEVS T

runtime is acceptable for slightly better object borderstli@rs Vp = {k| Dip med Dip < l} (16b)

are filtered fromD;, and Dy,, using a median filter with a small bk ot ik

window, i.e.3 x 3. This solution increases robustness due to the median as well

The calculation ofD, as well asD,, permits the determination as accuracy due to the weighted mean. Additionally, if ehoug
of occlusions and false matches by performing a consistentyatch images are available, a certain minimum size of the set
check. Each disparity of;, is compared to its correspondinglp can be enforced for increasing the reliability of the rasglt
disparity of D,,. The disparity is set to invalidi{;,.,) if both disparities. Pixel that do not fulfill the criteria are setitwalid.
differ. If hierarchical computation is performed for Ml based maigh

then the presented fusion of disparity images is performigaiw

Dyp  if |Dop — Dmal < 1. each hierarchical level for computing the disparity imadehe

Dp = (15a) next level.
Din, oOtherwise. An implementation would pairwise match the base image
d = epm (P, Dyp) (15b) against allk match images and combine them by visiting each
m k)

pixel once. Thus, the overall complexity of all steps thag ar
The consistency check enforces tieiqueness constrainby necessary for multi-baseline matchingd$K W H D) with K as
permitting one to one mappings only. The disparity comportat the number of match images.
and consistency check require visiting each pixel at easedity
a cqnstant number of times. Thus, the complexity of this &ep Disparity Refinement
againO(WHD,). . . - . . oo
A summary of all processing steps of the core SGM methhohe resulting disparity image can still contain c_ertamdsn
including hierarchical calculation of mutual informatids given of errors. Furthermore, there are generally areas of :m\x&ll_ues
in Fig. 3. that need to be recovered. Both can be handled by post piogess

of the disparity image.

D. Multi-Baseline Matching A R T

The algorithm could be extended for multi-baseline matghir & "
by calculating a combined pixelwise matching cost of cgpoes =2«
dences between the base image and all match images. Howes - . . - &
the occlusion problem would have to be solved on the pix&wis |
matching level, i.e. before aggregation, which is very abk.
Therefore, multi-baseline matching is performed by paiewi ||
matching between the base and all match images individugily :
consistency check (Section 1I-C) is used after pairwisectin Fig. 4. Possible errors in disparity images (black is imali
for eliminating wrong matches at occlusions and many other
mismatches. Finally, the resulting disparity images asedy by 1) Removal of PeaksDisparity images can contain outliers,
considering individual scalings. i.e., completely wrong disparities, due to low texture,aetibns,

Let the disparityD,, be the result of matching the base imag@aoise, etc. They usually show up as small patches of digphet
I, against a match imagg,,,. The disparities of the image3,,  is very different to the surrounding disparities, i.e. peals shown
are scaled differently, according to some factpr This factor in Fig. 4. It depends on the scene, what sizes of small diypari
is linear to the length of the baseline betwebnand I,,, if patches can also represent valid structures. Often, ahtbicesan
all images are rectified against each other, i.e., if all iesagre be predefined on their size, such that smaller patches aieiynl
projected onto a common plane that has the same distanck ta@kepresent valid scene structure.
optical centers. Thus, disparities are normalizedggy. For identifying peaks, the disparity image is segmented, [24

Fusion of disparity values is performed by calculating thby allowing neighboring disparities within one segmentaonby
weighted mean of disparities using the factgras weights. Pos- one pixel, considering a 4-connected image grid. The disgsr

Untextured
background
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of all segments below a certain size are set to invalid [17¢bject but also correct disparities of the background, ag &s the
This kind of simple segmentation and peak filtering can Heackground surface contains some texture, i.e. assumptidhis
implemented inO(W H) steps. leads to the realization that some disparities within eagment
2) Intensity Consistent Disparity Selectiom structured in- S; should be correct. Thus, several hypotheses for the correct
door environments it often happens that foreground obpetsn disparity of S; can be identified by segmenting the disparity
front of a low or untextured background, e.g. wall, as showwithin each segmeng;. This is done by simple segmentation,
in Fig. 4. The energy functior&(D) as shown in (11) does as also discussed in Section II-E.1, i.e. by allowing nedginy
not include a preference on the location of a disparity stegisparities within one segment to vary by one pixel. Thig fas
Thus, E(D) does not differentiate between placing a disparitgegmentation results in several segmesifs for each segment
step correctly just next to a foreground object or a bit ferth S;.
away within an untextured background. Section II-B sugegst Next, the surface hypotheséy, are created by calculating the
adapting the cosP, according to the intensity gradient. Thisbest fitting planes through the disparities $)f,. The choice for
helps placing the disparity step correctly just next to @foound planes is based on assumption 3. Very small segments<i®2,
object, because this location coincides with an intensigdignt pixel, are ignored, as it is unlikely that such small patchel®ng
in contrast to a location within an untextured area. to the correct hypothesis. Then, each hypothesis is eesluat
However, SGM applies the energy function not in 2D over theithin S; by replacing all pixel ofS; by the surface hypothesis
whole image, but along individual 1D paths from all direo8p and calculatingE;;, as defined in (11) for all unoccluded pixel
which are summed. If an untextured area is encountered alarfgS;. A pixel p is occluded, if another pixel with higher
a 1D path, a disparity change is only preferred if matching afisparity maps to the same pixel in the match image. This
textured areas on both sides of the untextured area reqtiiresletection is performed by first mappinginto the match image
Untextured areas may have different shapes and sizes and loamy = e, (p, Dp). Then, the epipolar line of in the base
extend beyond image borders, as quite common for walls imagee,,;(q, d) is followed for d > Dy,. Pixel p is occluded if
indoor scenes (Fig. 4). Depending on the location and dinect the epipolar line passes a pixel with a disparity larger than
of 1D paths, they may encounter texture of foreground andFor each constant intensity segmehtthe surface hypothesis
background objects around an untextured part, in which easé;;, with the minimum costE;;, is chosen. All disparities within
correct disparity step would be expected. They may alsowerieo S; are replaced by values on the chosen surface for making the
either foreground or background texture or leave the imaifje wdisparity selection consistent to the intensities of theebianage,
the untextured area in which cases no disparity step would be., fulfilling assumption 1.
placed. Summing all those inconsistent paths may easilg lea
to fuzzy discontinuities around foreground objects in fraf

untextured background. Fi = Fye with &' = argf:nn Eik (17a)
It is noteworthy, that this problem is a special case thay onl Fi(p) if peS;

applies to certain scenes in structured environments. Menvé Dp = { ! ! (17b)

appears important enough for presenting a solution. Fsne Dp otherwise.

some assumptions are made. The presented approach is similar to some other methods [7],
1) Discontinuities in the disparity image do not occur withi [9], [11] as it uses image segmentation and plane fitting for
untextured areas. refining an initial disparity image. In contrast to other huats,
2) On the same physical surface as the untextured area is al§@initial disparity image is due to SGM already quite aeteiso
some texture visible. that only untextured areas above a certain size are modifrad,
3) The surface of the untextured area can be approximated §y critical areas are tackled without the danger of cdingp
a plane. probably well matched areas. Another difference is thatatities
The first assumption is mostly correct, as depth discoriiesii of the considered areas are selected by considering a sunalier
usually cause at least some visual change in intensitié®r®ise, of hypotheses that are inherent in the initial disparitygmalhere
the discontinuity would be undetectable. The second asSomp is no time consuming iteration.
is necessary as the disparity of an absolutely untextur@#t-ba The complexity of fixed bandwidth Mean Shift Segmentation of
ground surface would be indeterminable. The third assumptithe intensity image and the simple segmentation of the dtgpa
is the weakest. Its justification is that untextured suawéth image is linear in the number of pixels. Calculating the best
varying distance usually appear with varying intensiti€bus, fitting planes involves visiting all segmented pixels. Tegtof
piecewise constant intensity can be treated as piecewasmmpl all hypotheses requires visiting all pixels of all segmefs all
The identification of untextured areas is done by a fixedypotheses (i.e. maximunw). Additionally, the occlusion test
bandwidth Mean Shift Segmentation [25] on the intensitydma requires going through at mog disparities for each pixel.
I,. The radiometric bandwidth, is set toP;, which is usually 4.  Thus, the upper bound of the complexity (W HDN).
Thus, intensity changes below the smoothness penaltyeaett  However, segmented pixels are usually just a fraction ofithele
as noise. The spatial bandwidifi is set to a rather low value for image and the maximum number of hypothese$or a segment
fast processing (i.e. 5). Furthermore, all segments tleas@araller is commonly small and often just 1. In the latter case, it is no
than a certain threshold (i.e. 100 pixels) are ignored, lmea even necessary to calculate the cost of the hypothesis.
small untextured areas are expected to be handled well by.SGM3) Discontinuity Preserving Interpolation:The consistency
As described above, the expected problem is that discatiisu check of Section 1I-C as well as fusion of disparity images of
are placed fuzzily within untextured areas. Thus, untedwreas Section |I-D or peak filtering of Section II-E.1 may invalida
are expected to contain incorrect disparities of the fanegd some disparities. This leads to holes in the disparity image
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shown in black in Fig. 4, which need to be interpolated for enages before fusion, etc. The size of temporary memoryriipe
dense result. either on the image siz& * H, the disparity rangeD or both

Invalid disparities are classified into occlusions and miss in case ofC[] and S[. Thus, even moderate image sizes
matches. The interpolation of both cases must be performefdl MPixel with disparity ranges of several 100 pixel reguir
differently. Occlusions must not be interpolated from tieeloder, large temporary arrays that can exceed the available meffioey
but only from the occludee to avoid incorrect smoothing gfroposed solution is to divide the base image into tiles,maing
discontinuities. Thus, an extrapolation of the backgroimtd oc- the disparity of each tile individually as described in S&t II-
cluded regions is necessary. In contrast, holes due to ribe®m A until 1I-C and merging the tiles together into the full dasjty
can be smoothly interpolated from all neighboring pixels. image before multi-baseline fusion (Section II-D).

Tiles are chosen overlapping, because the cost aggregation
step (Section 1I-B) can only use paths from one side for pixel
near tile borders, which leads to lower matching accuracy or
even mismatches. This can especially be critical at lowutext

Disparity of base image Disparity of match image
d d N
\ebm(pl' d) N N

_ = N —

AR N () areas near tile borders. Merging of tiles is done by calngaa
AN ; AN weighted mean of disparities from all tiles at overlappimgas.
0 0 M 3 : X The weights are chosen such that pixels near the tile borger a
1 2 a1 G

ignored and those further away are blended linearly as shown
in Fig. 6. The tile size is chosen as large as possible, such
that all required temporary arrays just fit into the avaéablain
Occlusions and mismatches can be distinguished as partnegmory. Thus, the available memory automatically deteesiin
the left/right consistency check. Fig. 5 shows that the @pip the internally used tile size.
line of the occluded pixep; goes through the discontinuity that
causes the occlusion and does not intersect the disparityidn Weight
Dy, In contrast, the epipolar line of the mismatph intersects i
with D,,. Thus, for each invalidated pixel, an intersection of the [
corresponding epipolar line with,, is sought, for marking it as 1 : :
either occluded or mismatched. ! :
For interpolation purposes, mismatched pixel areas that ar 0 : | —
direct neighbors of occluded pixels are treated as ocaissio 25% 50% 25% X,
because these pixels must also be extrapolated from vatik ba
ground pixels. Interpolation is performed by propagatiraids Fig. 6. Definition of weights for merging overlapping tilg%, T}.

disparities through neighboring invalid disparity aredsis is . . .
done similarly to SGM along paths from 8 directions. For each This strategy allows matching of larger images. Howevetdh

) . . . L are some technologies like aerial pushbroom cameras tmat ca
invalid pixel, all 8 values,; are stored. The final disparity image . . . . .
D' is created by produce single images of 1 billion pixel or more [22]. Thusnay

be impossible to even load two full images into main memory,
not to mention matching of them. For such cases, additipriall

Fig. 5. Distinguishing between occluded and mismatchedlpix

Ty

seclow; vp; if p is occluded, the discussed internal tiling, an external tiling of theebamage is
D)y = { med; Upi if p is mismatched, (18) suggested, e.g, With overlapping t.iles of sig)ﬁ() x 3000 pixels.
) Every base image tile together with the disparity range dmed t
Dp otherwise. known camera geometry immediately define the corresponding

The first case ensures that occlusions are interpolated tiiem parts of the match images. All steps including multi-baseli
lower background by selecting the second lowest value,ewhiflusion (Section 1I-D) and optionally post processing (&ectl-
the second case emphasizes the use of all information withd) are performed and the resulting disparity is stored fohede
a preference to foreground or background. The median is udedividually. Merging of external tiles is done in the sameyw
instead of the mean for maintaining discontinuities in saskere as merging of internal tiles.
the mismatched area is at an object border. Depending on the kind of scene, it is likely that the disparit
The presented interpolation method has the advantage tthatange that is required for each tile is just a fraction of trspdrity
is independent of the used stereo matching method. The oriynge of the whole images. Therefore, an automatic digparit
requirements are a known epipolar geometry and the calonlatrange reduction in combination with HMI based matching is
of the disparity images for the base and match image forndistisuggested. The full disparity range is applied for matchantg
guishing between occlusions and mismatches. the lowest resolution. Thereafter, a refined disparity eans
Finally, median filtering can be useful for removing rema@i determined from the resulting disparity image. The range is
irregularities and additionally smoothes the resultingpdrity extended by a certain fixed amount to account for small strest
image. The complexity of interpolation is linear to the nembf that are possibly undetected while matching in low resotutirhe
pixels, i.e.O(W H), as there is a constant number of operationefined, up-scaled disparity range is used for matchingeahéxt

for each invalid pixel. higher resolution.
. The internal and external tiling mechanism allow stereocimat
F. Processing of Huge Images ing of almost arbitrarily large images. Another advantade o

The SGM method requires temporary memory for storingxternal tiling is that all tiles can be computed in paralhel
pixelwise matching cost€’[], aggregated cost$[], disparity different computers.
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Fig. 7. The Tsukuba3g4 x 288), Venus {84 x 383), Teddy @50 x 375) and Cones450 x 375) stereo test images [1], [18].

G. Fusion of Disparity Images holes that have to be interpolated. Thus, interpolatioredgired

Disparity images can be seen as 2.5D representations of giyway. However, after orthographic projection, the infation
scene geometry. The interpretation of disparity imageswe- about occlusions and mismatches that is used for pathwise in
quires the corresponding geometrical camera model. Fruntire, polation (Section II-E.3) is lost. Therefore, a differenetimod is
in multiple image configurations, several disparity imagesn suggested for interpolating orthographic 2.5D height data
different viewpoints may have been computed for represgnti First, the height data is segmented in the same way as dedcrib
a scene. It is often desirable to fuse the information of aff Section II-E.1 by allowing height values of neighboringdg
disparity images into one consistent representation ofsteme. cells within one segment to vary by a certain predefined amoun
The optimal scene representation depends on the locatimhs §ach segment is considered to be a physical surface. Hotes ca
viewing directions of all cameras. An important specialgasg., exist within or between segments. The former are filled bglse
for aerial imaging [22], is that the optical centers of alheaas Distance Weighted (IDW) interpolation from all valid pisejust
are approximately in a plane and the orientations of all came Next to the hole. The latter case is handled by only consideri
are approximately the same. In this case, an orthograpbid o valid pixels of the segment whose pixel have the lowest mean
projection onto a common plane can be done. compared to the valid bordering pixel of all other segmermtst n

The common plane is chosen parallel to the optical centerstgf the hole. This strategy performs smooth interpolationt b
all cameras. A coordinate systeRy, T, is defined such that the Maintains height discontinuities by extrapolating thekgaound.
origin is in the plane and the-axis is orthogonal to the plane.Using IDW instead of pathwise interpolation is computaditiy
Thez, y-plane is divided into equally spaced cells. Each disparitjiore expensive, but it is performed only once on the fusedltres
image is transformed separately into orthographic prigiecty and not on each disparity image individually.
reconstructing all pixels, transforming them usify, 7, and
storing thez-values in the cells in which the transformed points Ill. EXPERIMENTAL RESULTS
fall into. The change to orthographic projection can causees  The SGM method has been evaluated extensively on common
points to occlude others. This is considered by always kegepistereo test image sets as well as real images.
the value that is closest to the camera in case of double mggpi
After transforming each disparity image individually, tfesulting A Evaluation on Middlebury Stereo Images
orthographic projections are fused by selecting the median
all values that fall into each cell (Fig. 8). This is usefulr fo
eliminating remaining outliers.

Fig. 7 shows the left images of four stereo image pairs [1],
[18]. This image set is used in an ongoing comparison of gtere
algorithms on the Middlebury Stereo Pages. The image sets of

» ) Y Venus, Teddy and Cones consist of 9 multi-baseline imagas. F
N Reconstruction, e.g. e . . . .
NN from perspective ey stereo matching, the image number 2 is used as the left image
Y \\ projection // )/ and the image number 6 as the right image. This is differeanto
/ BN L7 \\ earlier publication [19], but consistent with the procedof the
N N s /2 new evaluation on Middlebury Stereo Pages. The disparitgga
. . - . is 16 pixel for the Tsukuba pair, 32 pixel for the Venus paid an
l/ ! Oiipocigé‘;gii'c ! \: 64 pixel for the Teddy and Cones pair.
y Y Disparity images have been computed in two different con-
) figurations. The first configuration called SGM, uses the dasi
N /\ 4 Fusion steps like cost calculation using HMI, cost aggregation and

disparity computation (Sections II-A until II-C). Furthmore,
small disparity peaks where removed (Section II-E.1) angsga
Fig. 8. Orthographic reproiection of disparity images ausidn. interpolated (Section ”'E3) The second Configuratiormaﬂed
C-SGM, which uses the same steps as SGM, but additionally
It is advisable not to interpolate missing disparities idivid-  the intensity consistent disparity selection (Sectioic.). All
ual disparity images (Section II-E.3) before performingifun, parameters have been selected for the best performance and
because missing disparities may be filled in from other viewkept constant. The threshold of the disparity peak filter has
This is expected to be more accurate than using interpolateelen lowered for C-SGM, because intensity consistent digpa
values. Furthermore, the orthographic reprojection cad te new selection helps eliminating peaks, if they are in untexdureeas.
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Fig. 9. Disparity images calculated by SGM (top) and C-SGMttfim), which includes the intensity consistent dispasiéfection post-processing step.

TABLE |
COMPARISON USING STANDARD THRESHOLD OH PIXEL (LEFT) AND 0.5PIXEL (RIGHT), FROM OCTOBER2006.

Algorithm Rank | Tsuk. Venus Teddy Coneg Algorithm Rank | Tsuk. Venus Teddy Cones
AdaptingBP [3] 17 | 1.112 010 422 2.48 || C-SGM 36 | 139 330 9.82 537
DoubleBP [11] 2.3 0.88 0.14 3.55 2.90 SGM 5.0 13.4 4.55 11.0 4.93

Segm-+visib [9] 5.1 1.30 0.79 5.00 3.72|| AdaptingBP [3] 5.3 19.1 484 12.8 7.02
SymBP+occ [14] | 5.1 | 0.97 0.16 6.47 4.79|| Segm+visib [9] 5.8 12.7 10.4 11.0 8.12
C-SGM 6.2 2.61 0.25 5.14 2.77|| DoubleBP [11] 7.1 18.7 7.85 14.3 11.9
RegTreeDP [12] 7.0 1.39 0.22 7.42 6.31|| GenModel [26] 8.1 7.89 4.59 14.8 10.2
AdaptWeight [10]| 7.3 1.38 0.71 7.88 3.97|| SymBP+occ [14]| 8.8 20.7 5.96 15.7 11.4
SGM 9.3 | 3.26 1.00 6.02 3.06|| CostRelax 93 | 263 292 123 6.33
Currently 16 more entries ... Currently 16 more entries ...

Fig. 9 shows the results of SGM and C-SGM. Differences cdhat calculates epipolar lines point by point. This is a pesing
be best seen on the right side of the Teddy image. SGM produtiese overhead for rectified images, but permits working on
foreground disparities between the arm the the leg of thelyfed pushbroom images that cannot be rectified [22]. The most time
because there are no straight paths from this area to stedctuconsuming cost aggregation step has been implemented using
parts of the background. In contrast, C-SGM recovers thpesheSingle Instruction Multiple Data (SIMD) assembler commsnd
of the Teddy correctly. The mismatches on the left of Teddy ar.e. SSE2 instruction set. The processing time on the Teddy
due to repetitive texture and are not filtered by C-SGM, bseaupair was 1.8s for SGM and 2.7s for C-SGM on a 2.2GHz
the disparity peak filter threshold had been lowered as itestr Opteron CPU. This is much faster than most other methods of
above, for a better overall performance. the comparison.

The disparity images are numerically evaluated by courttieg
disparities that differ by more than a certain thresholdrfrthe B. Evaluation of MI as Matching Cost Function
ground truth. Only pixels that are unoccluded accordingh® t M| based matching has been discussed in Section II-A for
ground truth are compared. The result is given as percemthgecompensating radiometric differences between the imadute w
erroneous pixels. Table | is a reproduction of the upper phrt matching. Such differences are minimal in carefully prepaest
the new evaluation at the Mldd|9bury Stereo Pages. A Stdnd%ages as those of F|g 7, but they often occur in practiceeﬁk
threshold of 1 pixel has been used for the left table. BothMSGtransformations have been tested on the four image pairsgof F
and C-SGM are among the best performing stereo algorithms7atThe left image has been kept constant while the right image
the upper part of the table. C-SGM performs better, becausenhs been transformed. The matching cost has been calculated
recovers from errors at untextured background areas. lioerpy sampling insensitive absolute difference of intensit{BT),
the threshold to 0.5 pixel makes SGM and C-SGM the toperatively calculated Mutual Information (MI) and hiecaically
performing algorithms as shown in table I (right). The reesacalculated Mutual Information (HMI). The mean error ovee th
seams to be a better Sub-pixel performance. four pairs is used for the evaluation.

SGM and C-SGM have been prepared for working with unrecti- Fig. 10(a) and 10(b) show the result of globally scaling
fied images with known epipolar geometry, by defining a fuorcti intensities linearly or non-linearly. BT breaks down vewryiakly,



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

100

s |
= |
P |
g or
© )
kel
g eof
> ]
2 ‘
g |
g 40
=1 ]
£ |
o 20 F)
S KN
I e
0 1 [ S— E———
0 0.2 0.4 0.6 0.8

Scale factor s

(a) Global scale change, i.¢. = sI.

100

80

60

40

20

Errors in unoccluded areas [%)]

T 1 1 I B

1 2 3 4 5 6
Gamma factor g

(b) Global gamma change.

Errors in unoccluded areas [%)]

0 1 1 1 1 1 1 1

10

10 15 20 25 30 35 40 45 50
Signal to Noise Ratio (SNR) [dB]

(c) Adding Gaussian noise.

Errors [%)] Errors [%)]

Errors in unoccluded areas [%)]

0.4
le s2 SN e N W
02 0 Scales2 0.6 \““‘// 0
08 96scales1 1 08 9Fscalest

(d) Different scaling of image halves. (e) Different scaling of image halves. (f) Linear down-scaling from center

Fig. 10. Effect of applying radiometric changes or addingsedo the right match images, using SGM with different miaglcost calculations.

while the performance of Ml and HMI is almost constant. They The matching costs have also been tested on the Art dataset,
break down only due to the severe loss of image informatioenwhwhich is a courtesy of Daniel Scharstein. The dataset offengo
transformed intensities are stored into 8 bit. Fig. 10(@vehthe images that have been taken with different exposures andrund
effect of adding Gaussian noise. Ml and HMI are affected, bdifferent illuminations, i.e. with changed position of thight
perform better than BT for high noise levels. 10 dB means thapurce, as shown in Fig. 12(a) and 12(b). There is also a droun
the noise level is abou%rd of the signal level. truth disparity available. The errors that occur when miagh
Thus, global transformations are well handled by MI and HMimages of different exposures are shown in Fig. 12(c). It lban
The next test scales the left and right image halves diffaréor ~ S€en that BT fails completely while HMI is nearly unaffected
simulating a more complex case with two different radiofoetr by the severe changes of exposure. Fig. 12(d) gives thetresul
mappings within one image. This may happen, if the illuniovat Of matching images that are taken under different illunioret.
Changes in a part of the image_ The left image of F|g ]_Ihls time, also HMI is a.ffeCted, but to a lower extent than BT.
demonstrates the effect. The result is shown in Fig. 10(d) af should be noted that illumination changes in these images
10(e). Again, BT breaks down very quickly, while Ml and HMmIVery severe and cause many local changes.
are almost constant. Fig. 10(f) shows the results of deicrgaise BT based matching takes 1.5s on the Teddy images, while MI
intensity linearly from the image center to the border. Tisism base matching requires 3 iterations, which takes 4s. THi84%6
locally varying transformation, which mimics a vignettiegfect slower than BT. The suggested HMI base matching needs 1.8s,
that is often found in camera lenses (right image of Fig. MI). which is just 18% slower than BT. The values are similar f@ th
and HMI have more problems than in the other experiments, ther image pairs.
compensate the effect much better than BT, especially fgela  All of the experiments demonstrate that the performance of M
s, which can be expected in practice. and HMI is almost identical. Both tolerate global changée li
different exposure times without any problems. Local clesng
like vignetting are also handled quite well. Changes intligh
of the scene seem to be tolerated to some extent. In cor@ast,
breaks down very quickly. Thus, using BT is only advisable on
images that are carefully taken under exactly the same tonsli
Since HMI performed better in all experiments and just resgii
a small, constant fraction of the total processing times #livays
recommended for stereo matching.

C. Evaluation of Post-Processing

Fig. 11. Examples of local scaling of intensities with= 0.3 andsy = 0.7
(left) and linear down-scaling from image center with= 0.5 (right).

Post-processing is necessary for fixing errors that theester
algorithm has caused and providing a dense disparity image
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Fig. 12. Matching of images with different exposure and tiiglh The Art dataset is a courtesy of Daniel Scharstein.

o Bl

(a) Result after basic SGM

(c) Low textured segments (d) Disparity segments

(e) Intensity Consistent Sel. (f) Occlusions (black) and missm. (@) Result after interpolation (h) Errors against ground truth

(grey)

Fig. 13. Demonstration of the effect of the proposed postgssing steps on the Teddy images.

without gaps. The effects of the proposed post-procesdigss interpolation, i.e., Section II-E.3, is presented in Fig(d).
are shown in Fig. 13. Finally, Fig. 13(h) gives the errors when comparing Fig.g)3(
Fig. 13(a) shows raw result of SGM, i.e. Sections II-A unitl | against ground truth with the standard threshold of 1 pixel.
C. Peak filtering, i.e. Section II-E.1, removes some isdlasenall
patches of different disparity as given in Fig. 13(b). Fig( and
13(d) show the segmentation results of the intensity angadity
image that are used by the intensity consistent disparigcten The SGM method has been designed for calculating accurate
method, i.e. Section II-E.2. The result in Fig. 13(e) shohatt Digital Surface Models (DSM) from high resolution aerialdges.
disparities in critical, untextured areas have been raedveFig. Graz in Austria has been captured by Vexcel Imaging with an
13(f) gives the classification result for interpolation. ddsions UltraCam, which has a4° field of view and offers panchromatic
are black and other mismatches are white. The result of geghwimages of11500 x 7500 pixels, i.e. 86 MPixel. Color and infrared

D. Example 1: Reconstruction from Aerial Full Frame Images
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(a) Small part of aerial image (b) Matching against 1 image (c) Matching against 6 images (d) Orthographic reprojection

Fig. 14. SGM matching results from aerial UltraCam image&odz. The input image block is a courtesy of Vexcel Imagin@zGr

are captured as well, but at a lower resolution. A blocBef15 the camera is used on-board airplanes for mapping Eartiés ci
images has been provided as courtesy of Vexcel Imaging Grand landscapes from flight altitudes between 1500 m-5000 m
The images were captured 900 m above ground with an overlaipove ground [27]. The camera has nine 12 bit sensor arrays
of approximately 85% in flight direction and 75% orthogonaWith 12000 pixels, which are mounted orthogonally to thehflig
to it. The ground resolution was 8 cm/pixel. The image bloc#lirection and look downwards in different angles up2@5°.
was photogrammetrically oriented by bundle adjustmentgisiFive of the sensor arrays are panchromatic and used forostere
GPS/INS data that was recorded during the flight as well asatching. The other four capture red, green, blue and drar
ground control points. The position and orientation of the camera is continuousam
The SGM method using HMI as matching cost has been applisdred by a GPS/INS system. The ground resolution of the immage
with the same parameters as used for the comparison in 8eci®15-20 cm/pixel.
[lI-A, except for post filtering. The peak filter thresholdsha The SGM method has been applied to HRSC images that have
been increased to 300 pixel. Furthermore, the intensitgistent been radiometrically and geometrically corrected at thstitirte
disparity selection is not used as aerial images do typicadt of Planetary Research at DLR Berlin. The result are 2D images
include any untextured background surfaces. This may atso fioom the data captured by each of the nine sensor arrays. \Howe
due to the quality of images, i.e. sharpness. Finally, pukation despite geometric rectification, epipolar lines are in ganeot
has not been done. The disparity range of this data set is stpaight, as this is not possible for aerial pushbroom imagkus,
to 2000 pixel. The size of the images and the disparity ranggipolar lines are calculated during image matching asrijbest
required internal and external tiling as well as dynamigdigy previously [22].
range adaptation as described in Section II-F. SGM using HMI as matching cost has been applied again
A small part of one image is given in Fig. 14(a). Fig. 14(bas in Section IlI-D with the same parameters. Matching is
shows the result of matching against one image to the lefFand performed between the five panchromatic images of each flight
14(c) the result of multi-baseline matching against 6 surding strip individually. Each of these images can have a size atfoup
images. It can be seen that matching of two images resuiadjir several GB, which requires internal and external tiling @il &s
in a good disparity image. Matching against all surroundindynamic disparity range adaptation as described in SettiBn
images helps to fill in gaps that are caused by occlusions aMidtching between strips is not done as the overlap of stsps i
removing remaining mismatches. After matching, all imagesgpically less than 50%.
are fused into an orthographic projection and interpolasd  The fully automatic method has been implemented on a cluster
described in Section 1I-G. The result can be seen in Fig.)14(af 40 2.0 GHz and 2.2 GHz Opteron CPU’s. The cluster is able to
The roof structures and boundaries appear very precisehigt process an area of 400 kim a resolution of 20 cm/pixel within
of one image against 6 neighbors took around 5.5 hours on aheee to four days, resulting in around 50 GB of height andgiena
2.2 GHz Opteron CPU. 22 CPU's of a processing cluster wedata. A total of more than 20000 Krhas been processed within
used for parallel matching of the 45 images. The orthogaphine year.
reprojection and true ortho-image generation requiresvanfere Fig. 16 shows a reconstruction of a small part of one scene.
hours, but only on one CPU. The visualizations were calculated fully automaticallycluding
Fig. 15 presents 3D reconstructions from various viewgointmapping of the wall texture from HRSC images. It should be
The texture is taken from UltraCam images as well. Mappingoted that the ground resolution of the HRSC images is almost
texture onto all walls of buildings is possible due to theatigkly three times lower than that of the UltraCam images of Fig.
large field of view of the camera and high overlap of image® TH5. Nevertheless, a good quality of reconstruction, witargh
given visualizations are high quality results of fully awatic object boundaries can be achieved on huge amounts of ddta. Th
processing steps without any manual cleanup. demonstrates that the proposed ideas are working veryestebl
practical problems.

E. Example 2: Reconstruction from Aerial Pushbroom Images

The SGM method has also been applied to images of the High
Resolution Stereo Camera (HRSC) that has been built by theThe SGM stereo method has been presented. Extensive tests
Institute of Planetary Research at DLR Berlin for stereopiagp show that it is tolerant against many radiometric changes th
of Mars. The camera is currently operating on-board the ES#cur in practical situations due to a hierarchically chdtad
probe Mars-Express that is orbiting Mars. Another versién ®utual Information (HMI) based matching cost. Matching &né

IV. CONCLUSION
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Fig. 15. Untextured and textured 3D reconstructions fromab&lltraCam images of Graz.

Fig. 16. Untextured and textured reconstructions from iesagf the DLR High Resolution Stereo Camera (HRSC) of Ettal.
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accurately on a pixel level by pathwise optimization of abgllo [14] J. Sun, Y. Li, S. Kang, and H.-Y. Shum, “Symmetric stereatching
cost function. The presented post filtering methods oplipna for occlusion handling,” iNEEE Conference on Computer Vision and
help by tackling remaining individual problems. An extemsfor Pattern Recognitionvol. 2, San Diego, CA, USA, June 2005, pp. 399~

: . 06.
matching huge images has been presented as well as a strafegyG. van Meerbergen, M. Vergauwen, M. Pollefeys, and Ln'\@ool, “A

for fusing disparity images using orthographic projection hierarchical symmetric stereo algorithm using dynamicgpamming,’
The method has been evaluated on the Middlebury Stereo 'znégmA""gr?I’_‘j‘L r‘]]guzrgg'zf’f Computer Visiowol. 47, no. 1/2/3, pp. 275~
Pages. It has been shown that SGM can compete with l"[li@] O.\}eksler, “Stereo correspondence by dynamic prognarg on a tree,”

currently best stereo methods. It even performs superiallto in IEEE Conference on Computer Vision and Pattern Recognitioh 2,
other methods when the threshold for comparing the results San Diego, CA, USA, June 2005, pp. 384-390.

. . : . 1 H. Hirschmuller, “Stereo vision based mapping and iediate virtual
against ground truth is lowered from 1 to 0.5 pixel, whichwgo walkthroughs,” Ph.D. dissertation, School of Computingg Bontfort

an excellent sub-pixel performance. All of this is done wdth University, Leicester, UK, June 2003.
complexity ofO(W H D) that is rather common for local methods[18] D. Scharstein and R. Szeliski, “High-accuracy stereptd maps using

The runtime is iust 1-2s on tvpical test images. which is much structured light,” inlEEE Conference for Computer Vision and Pattern
J yp ges, Recognition vol. 1, Madison, Winsconsin, USA, June 2003, pp. 195—

lower than that of most other methods with comparable result 555
Experiences of applying SGM on huge amounts of aerial fullo] H. Hirschmiiller, “Accurate and efficient stereo prssiag by semi-
frame and pushbroom images demonstrate the practicalcappli ~ global matching and mutual information,” ifEEE Conference on

o : Computer Vision and Pattern Recognitjorol. 2, San Diego, CA, USA,
bility of all presented ideas. All of these advantages ma&dIS June 2005, pp. 807—814.

a prime choice for solving many practical stereo problems.  [20] — “Stereo vision in structured environments by ceteit semi-

global matching,” inEEE Conference on Computer Vision and Pattern

A Recognition New York, NY, USA, 17-22 June 2006.
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