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Abstract—In this paper, the dynamic model of a robot with
antagonistic actuated joints is presented, and the problem of
full linearization via static state feedback is analyzed. The use
of transmission elements with nonlinear relation between the
displacement and the actuated force allows to control both the
position and the stiffness of each joint. The main advantage of
this actuation modality is that the achieved stiffness becomes a
mechanical characteristic of the system and it is not the result
of an immediate control action as in the classical impedance
control scheme [1]. Different examples of implementation of this
kind of devices are known in literature, even if limited to one
single joint [2], [3], [4], [5], and the application of antagonistic
actuated kinematic chains in the field of robotic hand design is
under investigation [6].

After a brief review of the dependence of the properties of
antagonistic actuation on the transmission elements character-
istics, a scheme for simultaneous stiffness-position control of the
linearized system is presented. Finally, simulation results of a
two-link antagonistic actuated arm are reported and discussed.

Index Terms—Antagonistic actuation, variable stiffness
mechanisms, feedback linearization, nonlinear systems.

I. INTRODUCTION

Standard industrial robots are usually designed to have

very rigid links, that implies a considerable increment of

the link masses, and to minimize the effects of the elastic

coupling between the actuators and the joints due to the

deformation of the transmission elements like long shafts,

belts or harmonic drives. These design goals are usually

maintained also for the design of the control law of these

robots. This approach is justified because industrial tasks

usually require accuracy, repeatability and simplicity in the

implementation of the control law. On the other hand, it

is well know that neglecting the elastic coupling between

the actuators and the robot joints can lead to vibrations in

the kinematic chain and reduce both the dynamic and static

performance of the overall system [7], [8], [9], [10].

In the last years, a large variety of robots have been de-

veloped to accomplish a completely different class of tasks,

like space and submarine activities, cooperative manipulation

and, in particular, to interact with humans for entertainment,

domestic activities and assistance to elder or handicapped

people. The main requirements for the introduction of robots

in the human environment are safety and dependability of the

robotic system [1], [2], [3]. These requirements exclude the

use of standard industrial robots for the interaction with hu-

mans. Also incrementing the sensorization and improving the

performances of the controller, there are intrinsic limitations

on the safety of industrial robots due to the inertia of the

links and to the magnitude of the torque that the actuators

can apply [3].

The development of lightweight robotic arms [11], [12] is

carried out to improve the dynamic performance and reduce

the weight-to-payload ratio. While this approach is suitable

in case of devices for special applications, in particular

for space activities, to improve the safety of robotic arms

different projects have been developed, besides maintaining

a low level of inertia, introducing also an high compliance at

the mechanical level both in the joints of the robot and in the

interface between the robot and the environment. Concerning

the joint compliance in order to obtain an adequate level of

accuracy preserving safety, several variable stiffness devices,

and in particular antagonistic actuated joints, have been

developed [3], [4], [5]. Continuous high compliant structures

with antagonistic actuation are also applied to reduce the

mechanical complexity, the weight and the cost of robotic

hands [6], [13], [14], [15].

In this paper, the dynamic model of a robot with antag-

onistic actuated joints similar to the one reported in [3] but

without direct coupling between the antagonistic actuators is

presented, and the problem of full linearization via static state

feedback of both the position and the stiffness of the joint

simultaneously is analyzed. The modulation of the mechan-

ical stiffness of the joint is achieved by using transmission

elements with nonlinear relation between the displacement

and the actuated force [3], [4], [5]. In particular, the cases

of transmission elements with quadratic [4] and exponential

[5] force-length characteristic are analyzed as examples of

application of this methodology. The time dependence of the

functions is omitted for brevity in the sequel of the paper.

II. DYNAMIC MODEL OF ROBOTS WITH ANTAGONISTIC

ACTUATED JOINTS

In this section, the dynamic model of a robotic arm with

N antagonistic actuated joints is reported. Some assumptions

have been made to obtain this dynamic model. In particular,

we assume that the actuators have uniform mass distribution

and center of mass on the rotation axis [16] and that their
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rotor kinetic energy is due only to their spinning angular

velocity [9]. Another assumption is that each joint is indepen-

dently actuated by 2 motors in an antagonistic configuration.

From now, we refer to this kind of mechanical structure as

fully antagonistic actuated kinematic chain. Applications of

this methodology to mechanical structures with coupled an-

tagonistic actuation (or non-fully antagonistic, to distinguish

from the former case) [6], [15] are object of future research.

The considered model is then composed by 3N rigid

bodies (N links and 2N actuators) with nonlinear elastic
coupling between their positions. The state dimension of the

model of a robot with N spatial DOFs is then equal to 6N
(position and velocity of each rigid body) while the input

dimension is 2N (the torques commanded to the actuators).
In this case it is necessary to distinguish between the spatial

and the stiffness DOFs. The former is the possibility of

modifying the position of the system while the latter means

the possibility of adjusting the mechanical stiffness of the

device. In this terms, a robot with N antagonistic actuated

joints1 has a total of 2N DOFs (N spatial + N stiffness).
It is important to stress the fact that, for mechanical stiff-

ness, we mean the compliance of the mechanical coupling

between the link and the actuation. Usually this characteristic

is imposed by the mechanical design, and in particular by

the elasticity of transmission elements, while in this case it

can be modulated with antagonistic actuation and nonlinear

transmission elements. This allows to increase the safety

of the robot arm in the case of unexpected collision with

i.e. a human operator. In [2] a meaningful analysis of how

the mechanical coupling between the link and the actuation

affects the safety of a robotic arm operating in the human

environment is reported.

As output of the system, the positions of the joints and of

the actuators are considered, obtaining a output of dimension

equal to 3N .
In Fig. 1 a sketch of a robotic arm with antagonistic

actuated joints is reported. With reference to this figure, αi

and θi (i = 1, . . . , N ) are positive in the counterclockwise
direction while βi is positive in clockwise direction. φi =
φi(αi, θi) and ψi = ψi(βi, θi) are the nonlinear coupling
functions between the position of the joint and of the two

actuators (see also Fig. 2).
The dynamic model of the robot with antagonistic actuated
joints can be obtained form the standard Lagrangian for-
mulation and can be written in a convenient form grouping
the dynamics of the joints and considering separately the
dynamics of the two groups of actuators:

M (θ)θ̈ +C(θ, θ̇)θ̇ +Dθ̇ + gf (θ) + ϕ(α,β, θ) = 0 (1)

Jα̈ +Bα̇ + φ(α, θ) = τα (2)

Jβ̈ +Bβ̇ + ψ(β, θ) = τ β (3)

where θ is the vector of joint positions, α and β are the

vectors of actuator positions, M(θ) is the inertia matrix
of the robot, J is the matrix of the inertia moments of

the actuators, C(θ, θ̇) is the matrix of the centrifugal and

1For mechanical structures with coupled antagonistic actuation, the total
number of DOFs Nsp+st (spatial + stiffness) is N < Nsp+st < 2N .

α1

α2

α3

β1

β2

β3

θ1

θ2

θ3

φ1

φ2

φ3

ψ1

ψ2

ψ3

Fig. 1. A robotic arm with 3 antagonistic actuated joints.

Coriolis terms of the robot, D and B are the matrices

of the viscous friction coefficients of the robot and of the

actuators respectively, gf (θ) is the vector of gravity effects,
ϕ(α,β,θ) is the combined effect of the positions of the
actuators on the joints, τα and τβ are the vectors of the

torques commanded to the actuators.

The input of the system and the vector of output informa-

tion are:

u =

[

τα

τβ

]

, y =





θ

α

β



 (4)

Since we are interested to control both the position and the

stiffness of the joints of the robot, it is useful to define a new

output vector that contains explicitly these information’s:

yc =























θ1
...

θN
∂ϕ1(α1,β1,θ1)

∂θ1

...
∂ϕN (αN ,βN ,θN )

∂θN























=

[

θ

S

]

(5)

where S is the vector of the mechanical stiffness of the joints

that can be expressed as in eq.(5) because we suppose all the

joints and all the actuators to be independent (no coupling

between the movements of the joints or the actuators). From

eq. (5) it is possible to note that, in general, while it is

difficult to measure the stiffness of the joints, a suitable

knowledge of the coupling functions ϕ(α,β,θ) enables us
to derive the joints stiffness S from the measured output y.

Considering the new output vector yc, the input u and the

state vector

x =

















θ

θ̇

α

α̇

β

β̇

















(6)
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the model of the robot with antagonistic actuated joints

described by eq. (1)-(3) can be rewritten in the input-affine

state space form:

ẋ = f(x) + g(x)u (7)

yc = h(x) (8)

where x ∈ R
6N and u,yc ∈ R

2N . In particular, for the
model of the robot with antagonistic actuated joints:

f (x) =

2

6

6

6

6

6

6

4

θ̇

M (θ)−1(−C(θ, θ̇)θ̇ −Dθ̇ − gf (θ) − ϕ(α,β, θ))
α̇

J−1(−Bα̇ − φ(α, θ))

β̇

J−1(−Bβ̇ − ψ(β, θ))

3

7

7

7

7

7

7

5

(9)

g(x) =

2

6

6

6

6

6

4

0N×N 0N×N

0N×N 0N×N

0N×N 0N×N

J−1 0N×N

0N×N 0N×N

0N×N J−1

3

7

7

7

7

7

5

(10)

h(x) =

»

θ
S

–

(11)

The eq. (7)-(11) define a square nonlinear system that can

be linearized via static feedback if suitable conditions are

satisfied [17], [18].

III. STATIC FEEDBACK LINEARIZATION

In this section, necessary and sufficient conditions for

the solution of the problem of full linearization via static

state feedback of the system described by the eq. (1)-(5)

are analyzed [17]. In particular, we have to check if the

decoupling matrix of this system is nonsingular and if the

sum of the relative degrees of the outputs are equal to the

state dimension of the system.

With the aim of simplifying the explanation, the notation

used in the previous section is extended. Since all the

components of both the input, the output and the state vectors

belong to R
N , where N is the number of robot joints, we

can redefine the dimensions of the input u, the output yc

and the state x of the system to 2, 2 and 6, respectively.

Also the notation of Lie derivative is extended to work with

vectors in R
N .

The problem of static feedback linearization consists in
transforming a nonlinear system of the type (7)-(8), via
static state feedback and coordinate transformations into a
fully controllable and observable linear system that can be
represented in the form:

ż = Az +B

0

B

@

2

6

4

L
r1
f h1(Φ

−1(z))
...

L
rm

f hm(Φ−1(z))

3

7

5
+Q(Φ−1(z))u

1

C

A
(12)

yc = Cz (13)

where A, B and C are matrices of proper dimensions

given by the Brunowsky canonical form, m is the number

outputs of the system, r1, . . . , rm are the relative degrees

of each output, Lfh(x) denotes the Lie derivative of h(x)
along the vector function f (x), z = Φ(x) is the coordinate

transformation from the original to the new state space and

Q(x) is the so-called decoupling matrix.
First of all, we have to define the (vector) relative degree

of the outputs of the system. For this purpose, it is useful to

firstly define the state transformation from the original state

space to the state space of the linearized system:

Φ(x) =





























h1(x)
...

L
(r1−1)
f h1(x)
...

hm(x)
...

L
(rm−1)
f hm(x)





























(14)

The relative vector degree of the outputs can now be easily

found by looking when the inputs appearing explicitly in

eq. (14). In particular, for the output θ it possible to find

that:

Lg(α,β)
Lk

fhθ(x) = 0N×N , i = 0, · · · , 2 (15)

Lgα
L3

fhθ(x) = J−1M(θ)−1 ∂ϕ(α,β,θ)

∂α
(16)

Lgβ
L3

fhθ(x) = J−1M(θ)−1 ∂ϕ(α,β,θ)

∂β
(17)

where hθ(x) denotes the restriction of the output vector to
θ only while for the output S:

Lg(α,β)
hS(x) = 0N×N (18)

Lgα
LfhS(x) = J−1 ∂S

∂α
(19)

Lgβ
LfhS(x) = J−1 ∂S

∂β
(20)

where hS(x) denotes the restriction of the output vector to its
component S. Lgα

and Lgβ
denote the restriction of the Lie

derivative to the τα and τ β component of the input vector

respectively while Lg(α,β)
denotes both these cases.

From this result we can state that, if the derivatives of

ϕ(α,β,θ) in eq. (16),(17),(19),(20) are not null, the vector
relative degree of θ is 4 while the one of S is 2. The sum

of the vector relative degrees of the output is then equal

to the dimension of the state of the system (i.e. 6), so that

the condition for the existence of noninteracting control via

static state feedback is satisfied. In particular, if ϕ(α,β,θ)
depends linearly on their arguments, as in [7], [9], [10], [19],

the terms in eq.(19),(20), and also the successive derivatives,

are always zero. Hence the vector relative degree of S is not

defined and therefore the mechanical stiffness of the joints

is not controllable.

Now, to verify that the system has no zero dynamics, we

have to check if the decoupling matrix is nonsingular. The

decoupling matrix of this system is:

Q(x) = B(θ)

[

∂ϕ(α,β,θ)
∂α

∂ϕ(α,β,θ)
∂β

∂S
∂α

∂S
∂β

]

(21)
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where

B(θ) =

[

J−1M (θ)−1 0N×N

0N×N J−1

]

(22)

From this equation and from eq.(5), it is possible to see

that the rank of Q(x) depends on the nature of ϕ(α,β,θ),
hence this property has to be checked for mechanical imple-

mentation. If ϕ(α,β,θ) depends linearly on their arguments,
S is constant and therefore Q is singular.

Now, supposing that Q(x) is not singular, by defining the
new input

u = Q−1(x)

([

−L4
fhθ(x)

−L2
fhS(x)

]

+

[

vθ

vS

]

)

(23)

we obtain the linear model of the robot with elastic joints

ż = Az +Bv , v =

[

vθ

vS

]

(24)

yc = Cz (25)

where

A =

















0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 0 0
0 0 0 0 0 I

0 0 0 0 0 0

















, B =

















0 0
0 0
0 0
I 0
0 0
0 I

















(26)

C =

[

I 0 0 0 0 0
0 0 0 0 I 0

]

(27)

z =
[

θT θ̇
T

θ̈
T

θ[3]T ST Ṡ
T
]T

(28)

in which I and 0 are the identity and the zero matrix of
dimension N . From eq. (24)-(28) it is then possible to note

that:
[

θ[4]

S̈

]

=

[

vθ

vS

]

(29)

IV. CONTROL STRATEGY

Since the system (24),(25) is completely controllable and

observable, the state of the system can be reconstructed

by means of an asymptotic observer and of the change of

coordinates (14) or, since the position of each rigid body

is directly measurable, the velocities can be estimated in

many ways e.g. by means of state variable filters or adaptive

windowing algorithms [20].
From eq.(29), applying the control laws:

vθ = θ
[4]
d +K3θ

(θ
[3]
d − L

3
fhθ(x)) +K2θ

(θ̈d − L
2
fhθ(x)) + . . .

. . .K1θ
(θ̇d − Lfhθ(x)) +K0θ

(θd − hθ(x)) (30)

vS = S̈d +K1S
(Ṡd − LfhS(x)) +K0S

(Sd − hS(x)) (31)

with diagonal gain matrices K3θ
, . . . ,K0S

such that

λ4 +λ3K3θi
+λ2K2θi

+λK1θi
+K0θi

= 0 , i = 1, . . . , n
(32)

λ2 + λK1Si
+K0Si

= 0 , i = 1, . . . , n (33)

are Hurwitz polynomials, the convergence to zero of the

tracking error is ensured. If the desired trajectory θd is

continuous together with its derivatives up to the 4th order

and Sd is continuous together with its derivatives up to the

2nd, also the asymptotic trajectory tracking is achieved.

It is important to note that all the Lie derivative appearing

in eq. (23),(30) and (31) can be written as function of the

measurable quantities x, so the computation of the time

derivatives of θ (up to 4th order) and S (up to 2nd order)

are not necessary.

The control law in eq. (30),(31) is equivalent to a static

state feedback plus feedforward in the state space of the

linearized system:

v = vd +K(zd − Φ(x)) (34)

vd =

[

θ
[4]
d

S̈d

]

, zd =



















θd

θ̇d

θ̈d

θ
[3]
d

Sd

Ṡd



















(35)

K = diag[K0θ
K1θ

K2θ
K3θ

K0S
K1S

] (36)

The matrix K can be also obtained via direct eigenvalues

assignment or through the solution of the CARE equation

with a suitable choice of the weight matrices.

This approach ensures that, in case of an undesired event

e. g. a collision with an obstacle, the coupling between

the joint and the actuators has the desired stiffness without

the intervention of the controller, avoiding in this way any

problem related to limited control bandwidth, sensorization,

delay in the control loop and so on. If the stiffness S depends

itself on θ, this behavior is a linearization of the system

stiffness around the desired position θd.

V. PROPERTIES OF THE TRANSMISSION ELEMENTS

To show some properties of different types of nonlinear

coupling between the joint and the actuators, transmission

elements with quadratic and exponential relation between the

displacement and the force will be investigated. This analysis

is performed considering a two-links planar arm with antag-

onistic actuated joints. In Fig. 2 a detail of the antagonistic

joint is given. From this picture, the displacement between

the i-th joint and its actuators can be defined as:

ǫαi
= rmαi + rjθi (37)

ǫβi
= rmβi − rjθi (38)

where ǫαi
, ǫβi

are the displacements (compression or exten-

sion) of the transmission elements and rm, rj are the radii

of the pulley of the actuator and of the joint respectively. In

order to simplify the following calculations and without loss

of generality, rm and rj are supposed to be equals for all

the actuators and all the joints. In [4], [5] the transmission

elements are connected to the actuators and to the joint by

means of metallic cables. To avoid cable slack, a suitable

operating region of α,β,θ must be defined considering the

geometry of the device. However, the condition ǫαi,βi
< 0

can be achieved by properly setting the zero position of the

FrD4.4

4370



actuators. From Fig. 2 it is also possible to establish the

relationship between the coupling functions of the joint and

of the actuators:

ϕi(αi, βi, θi) =
rj

rm
[φi(αi, θi) − ψi(βi, θi)] (39)

A. Quadratic force-displacement transmission elements

In order to provide a stiffness that is a linear function

of the displacement and independent from the position

of the joint, transmission elements with quadratic force-

compression characteristic must be used [4]:

F = k2ǫ
2 + k1ǫ+ k0 (40)

where F is the force, ǫ is the displacement and k2,1,0 are

proper constants. The torques applied to the actuators result:

φi(αi, θi) = rm(k2ǫ
2
αi

+ k1ǫαi
+ k0) (41)

ψi(βi, θi) = rm(k2ǫ
2
βi

+ k1ǫβi
+ k0) (42)

and the torque applied to the i-th joint is:

ϕi(αi, βi, θi) = rj [k2(ǫ
2
αi

− ǫ2βi
) + k1(ǫαi

− ǫβi
)] =

= rj [k2rm(αi + βi) + k1][rm(αi − βi) + 2rjθi] (43)

Deriving this expression with respect to θi the value of

the joint stiffness is obtained:

∂ϕi(αi, βi, θi)

∂θi

= Si = 2r2j [k2rm(αi + βi) + k1] (44)

In this case, the joint stiffness does not depend on the
position of the joint: this result can be achieved only with
quadratic force-displacement relation as eq. (40). The decou-
pling matrix for the two-links planar arm can be be written
as:

Q(x) = rjrmB(θ)

2

6

4

(2k2ǫα1 + k1) 0
0 (2k2ǫα2 + k1)

2k2rj 0
0 2k2rj

. . .

. . .

−(2k2ǫβ1 + k1) 0
0 −(2k2ǫβ2 + k1)

2k2rj 0
0 2k2rj

3

7

5
(45)

In this case, Q(x) is singular if ǫαi
= 0 or ǫβi

= 0 and
k1 = 0 (purely quadratic force-displacement characteristic,
zero stiffness for zero displacement) and is always singular

if k2 = 0, confirming that the stiffness of the joints is not ad-
justable using transmission elements with linear compliance.

Another condition of singularity of Q(x):

αi + βi = −
k1

k2rm
(46)

correspond, from eq. (44), to the case in which Si = 0, that
means no coupling between the actuators and the joint, a

nonsense. This condition can be avoided imposing a suitable

minimum value of the stiffness.

α1

β1

θ1

φ1

ψ1

rm

rm

rj

g1(θ1)

ǫα1

ǫβ1

Fig. 2. Detail of the antagonistic actuated joint.

B. Exponential force-displacement transmission elements

In this example, the transmission elements are composed

by plastic elements (gum-balls) compressed inside a cylinder

[5]. The geometry and the characteristic of the material gives

the nonlinear force-compression relation [21], [22], [23]:

F = k(ebǫ − 1) (47)

where F is the force, ǫ is the displacement and k > 0, b > 0
are suitable constants. The torques applied to the actuators

of the i-th joint are then:

φi(αi, θi) = rmk[e
bǫαi − 1] (48)

ψi(βi, θi) = rmk[e
bǫβi − 1] (49)

The resulting torque applied to the joint using these elements

in antagonistic configuration is:

ϕi(αi, βi, θi) = rjk[e
bǫαi − ebǫβi ] (50)

The resulting stiffness of the joint can be then expressed in

the form:

∂ϕi(αi, βi, θi)

∂θi

= Si = kbr2j [e
bǫαi + ebǫβi ] (51)

The decoupling matrix for the two-links planar arm can be
be written as:

Q(x) =

k b rjrmB(θ)

2

6

6

4

e
bǫα1 0 −e

bǫβ1 0

0 e
bǫα2 0 −e

bǫβ2

brje
bǫα1 0 brje

bǫβ1 0

0 brje
bǫα2 0 brje

bǫβ2

3

7

7

5

(52)

It is important to note that in this case Q(x) is always non-
singular thanks to the properties of the exponential function

that characterize the transmission elements.

VI. SIMULATION OF THE TWO-LINK ANTAGONISTIC

ACTUATED ARM

In the following the validity of the proposed approach is

reported by presenting the simulation results of a planar two-

link antagonistic actuated arm. Due to space limitations, the

well-known model of the planar two-link arm together with

the solution of the previous equations for this system are

omitted. For the same reason, only the simulations about the
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exponential force-displacement transmission elements case

are reported.

In the simulation scheme, only the joint and actuator

positions are known and the corresponding velocities are

estimated by means of state variable filters. The trajectories

are generated through filters of appropriate order to estimate

also their derivatives up to the necessary order. The control

strategy has been chosen as in eq. (35) and the matrix K

is obtained from the solution of the CARE equation with a

diagonal state weights matrix.

In Fig.3 the positions of the joints of the antagonistic

actuated arm are reported. Both step and sinusoidal joint

trajectories are used together with coordinated movements

to show the stabilizing properties of the controller. The joint

stiffnesses and the stiffness errors are reported in Fig.4.

During the test, the stiffness of the joint 2 is constant while

the one of joint 1 is sinusoidal. It is important to note that

the joint stiffness trajectories are not affected by the changes

of the joint positions and vice versa.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, the non-interacting static feedback lineariza-

tion of a antagonistic actuated arm has been presented.

This problem can be solved if the transmission elements

have nonlinear force-displacement characteristic and if the

transmission element stiffness with zero deformation S0 6= 0.
The simultaneous stiffness-position control of a two-link

robot arm has been validated through simulation. Even if

only the joint and the actuator positions are known, the

velocities estimation through state variable filters does not

compromise the stability of the closed loop system.

Future activities consist in the implementation of this

control scheme on a single link experimental setup [5]

and the extension of the proposed approach to the case of

nonlinear visco-elastic transmission elements.

The problem of external load compensation for this system

is under analysis while the extension of this approach to non-

fully antagonistic actuated robots is object of future research.
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