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A prerequisite for the prediction of ice accretion on an aircraft flying through clouds
of supercooled liquid water is the accurate determination of the water impingement rate
on various components of the aircraft. For this purpose, a droplet impingement module
has been developed using the datastructure of the unstructured Navier-Stokes solver TAU.
Since nowadays large computational grids are common practice, an efficient algorithm for
determination of the droplet trajectories on such grids had to be implemented.

This paper describes the physics and details of the implemented numerical algorithm.
It summarizes lessons learned during development. The paper concludes with the presen-
tation of code validation results and examples of applications.

I. Introduction

The study of particle-laden turbulent flows has significant importance in a variety of scientific fields
such as biology, chemical engineering, atmospherical sciences, oceanography, and aerospace engineering. For
aircraft design and certification, the primary interest is transport of atmospherical precipitation (micron-
sized supercooled water droplets in clouds and fog, rain droplets, snow flakes, ice crystals, and hail stones)
in the flow field past an aircraft and their impingement on an airframe structure.

Two different approaches have been proposed to model particle motion in a fluid: the Lagrangian and the
Eulerian approach. In the Lagrangian model, the motion of an individual particle is modelled. In contrast,
particles are regarded as continuum in the Eulerian model and their average spacing is described by a
particle density function. Both approaches have been used in a number of implemented particle trajectory
codes.1,3, 6, 12,13,16,17,20,21,26,34,36

In this paper, the Lagrangian description has been employed to model particle motion. The Lagrangian
model has the advantage that it can represent intersecting droplet trajectories observed in the vicinity of
blunt bodies, see Figure 1. Moreover, an ambiguity is avoided which is exhibited by the Eulerian model in
the case of two fluid streams merging over a sharp edge, see Ref. 30. However, for the Lagrangian model the
particle densities are not available everywhere in the field. To partially alleviate this disadvantage, plane
cuts of the field have been implemented, on which the particle density is computed.

In this paper, particles are assumed to be spherical and the only forces acting on them are aerodynamic
drag, gravity and buoyancy forces. Other forces, like the Basset history force, the Saffman lift force or the
effect of rarefaction on small droplets are neglected. The effect of particle movement on the surrounding fluid
is neglected by the assumption of low particle concentration. Thus, the integration of particle trajectories is
decoupled from the flow solution and can be performed as a post-processing step.

The motion of individual particles in the Lagrangian model is described by Newton’s second law. Newton’s
second law is a second order ordinary differential equation, for the integration of which a number of standard
methods are available, e.g. explicit Runge-Kutta schemes, Adams-Bashforth predictor/corrector methods,
cf. Simeon32 or Shampine.29 However, the particle drag is dependant on the relative velocity of particle and
surrounding fluid. Thus, for every integration step, the velocity of the fluid at the particle position must be
known.
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Figure 1. Particle trajectories around a three element airfoil (left) and close up view of intersecting trajectories between
slat and wing (right).

To determine the fluid velocity at the particle position two procedures are performed in sequence: First
the cell of the computational mesh is located in which the particle resides. Then the velocity in the cell is
interpolated to obtain the fluid velocity at the particle position.

For the first step, a search algorithm is required, whereas the second step is performed by employing
the linear basis functions of the basic grid volume elements. A number of particle tracking codes have been
designed using these two ingredients, see e.g. Ref. 7, 13, 19, 27. With the advent of modern parallelized
Navier-Stokes solvers like the DLR unstructured flow solver TAU,9 mesh sizes have grown to such an extent
that the calculation of particle trajectories can only be performed in an efficient manner with a very careful
implementation of the two above mentioned steps.

The present paper describes the implementation and validation of a very efficient particle trajectory code
using the data-structure and libraries of the unstructured flow solver TAU. The development was performed
along the following requirements:

• Calculation of catch efficiency for impinging particles.

• Automatic error control during integration of droplet/particle trajectories.

• Flux conservation for catch efficiency calculation.

• Particle concentration can be determined at any point in the flow field.

• Option for streamline visualization (i.e. mass-less particles).

• Compatibility with partitioned flow-field data.

• Numerical efficiency and robustness.

• User friendly control interface.

The paper is organized as follows: First the governing equations of particle motion in a fluid are introduced
and algorithms for the numerical solution of the equations are discussed. Then we present validation results
and lessons learned during implementation of the code. The paper closes with some real world problems to
which the code has been applied.

II. Physics

II.A. Governing equations of particle motion

The governing equation for the motion of a particle in a fluid is Newton’s second law,

mp
~̈xp =

∑
~F . (1)
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In the present paper, the index p denotes a particle property whereas index f is used for properties of the
surrounding fluid.

The sum of all forces acting on the particle may consist of the aerodynamic drag and forces resulting
from the density difference between particle and fluid (buoyancy and gravity),∑

~F = ~FDrag + ~FBuoyancy + ~FGravity + · · · .

All other forces are neglected.
Introducing the relative velocity between particle and fluid ~̇xrel = ~̇xp − ~̇xf and using a drag law, where

the drag varies with the relative velocity squared, (1) may be written

mp
~̈xp = −CDAp

ρf
2
|~̇xrel|~̇xrel − ρfVp~g +mp~g,

where Ap, Vp, mp and CD are the cross section, the volume, the mass and the drag coefficient of the particle,
respectively. ρf is the density of the fluid. ~g is the gravity vector.

By rearranging the equation above, (1) may be expressed as

~̈xp = −CDRep
24

18
d2
p

µf
ρp
~̇xrel +

ρp − ρf
ρp

~g. (2)

with dp, the particle diameter, and Rep, the particle Reynolds number, defined by

Rep =
|~̇xrel| dpρf

µf
. (3)

If (2) is written in dimensionless form (dashed quantities are dimensionless),

~̈x
′
p = −CDRep

24
1
K
~̇x
′
rel + Fr2

ρp − ρf
ρp

~g

|~g|
, (4)

then two similarity parameters of the particle-fluid interaction become apparent, the so-called inertia pa-
rameter K,

K =
d2
p

18
ρp
µf

ẋref
Lref

, (5)

and the Froude number, Fr = ẋref/
√
|~g|Lref.

The inertia parameter K is the ratio between a particle relaxation time and a characteristic time of the
fluid flow. The Froude number Fr is the ratio between gravitational forces and fluid forces.

To allow numerical integration of (4), a relationship between Rep and CD needs to be defined. For
spherical particles and Rep � 1, Stokes’ relation is applicable

CD =
24

Rep
. (6)

Since much larger particle Reynolds numbers are encountered during calculation of trajectories, experimental
results for the drag of a rigid sphere as given in Ref. 10 and 11 are employed. Langmuir and Blodgett10

proposed an analytical relationship approximating experimental drag data. However, the proposed relation-
ship is computationally expensive. Therefore, a piece-wise approximation of the experimental data has been
used in the present implementation, see Figure 2 and 3.

II.B. Definition and determination of local catch efficiency

The local catch efficiency, often designated β, is defined as the ratio of particle mass flux in the undisturbed
oncoming flow to the mass flux of particles impinging on the surface. Since the particle flux can be thought
of as being delimited by a streamtube, extending from undisturbed flow to the impingement locations on
the surface, β corresponds to the cross section of this imaginary streamtube in the oncoming flow divided
by the surface area on which the particles impinge.
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Figure 2. Experimental data and implemented ap-
proximation for sphere drag (CDRep/24) for particle
Reynolds numbers between 0 and 12.

Figure 3. Experimental data and implemented ap-
proximation for sphere drag (CDRep/24) for particle
Reynolds numbers between 12 and 160000.

In the particle module of TAU, the streamtube is delimited by four particle trajectories to calculate the
local catch efficiency. Part IV.A gives the rationale for the minimum number of four trajectories needed
for this calculation. Thus, β is the ratio of the area A0 spanned by the four particles in the release plane
projected on to a plane perpendicular to the oncoming flow and the area Am spanned by the corresponding
particle impingement points, see Figure 4,

β =
A0 cosα
Am

. (7)

The calculated β value is assigned to the centroids (+) of the quadrilaterals.

Figure 4. Determination of local catch efficiency β for 3D droplet impingement

III. Numerical Algorithm

The particle trajectory integration comprises of the following steps, compare Figure 5:

1. Release particles from a single point or from a predefined starting line or grid, preferably with equidis-
tant spacing of release positions.

2. Locate the hosting element at release position.

3. Interpolate flow quantities to starting position.
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4. Compute initial time-step size.

5. During each step of the particle integration the following steps need to be performed:

(a) Search the hosting element for the current particle position.

(b) Interpolate the flow quantities in the hosting element to the current particle position.

(c) Calculate the forces acting on the particle and integrate equation of motion to obtain new particle
position.

6. Performe trajectory path integration until trajectory intersects with a boundary face of the computa-
tional domain.

7. Decrease time-step of integration rapidly until a minimum time-step is reached to locate the exact
impingement position.

From the list above it is obvious that locating a particle position in the mesh, interpolating flow quantities to
the particle position, and integrating the equations of particle motion are key components of any Lagrangian
particle path integrator. Therefore, they are described in more detail below.

Figure 5. Integration of a particle path through several hosting elements until the bound-
ary of the computational domain is reached.

III.A. Search and interpolation algorithm

For a given particle position, the search algorithm has the purpose of finding the grid volume in which the
particle is currently located. Since searching the hosting volume element has to be performed several times
during each integrator step, the computational efficiency of the search algorithm is crucial to a Lagrangian
particle path integrator.

The search algorithm in the presented trajectory integrator is based on linear shape functions, as proposed
by Löhner and Ambrosiano.13 The shape functions are implemented for all element types supported by TAU:
triangles, quadrilaterals, tetrahedra, prisms, hexahedra and pyramids. The linear shape functions used for
triangles and tetrahedra may be analytically inverted to find the element local coordinates corresponding
to the particle position. For all other element types a Newton-Raphson iteration is employed to invert the
shape functions.

Once local coordinates are determined, they may be used for three purposes: (1) The question in-
side/outside of an element can be answered by a simple comparison. (2) If the particle is inside the current
element, the local coordinates can be used to interpolate the flow quantities to the particle position. (3)
If the particle is located outside of the element, it is possible to determine the face, which is closest to the
current particle position.

In particular the last feature may be combined with a list holding the element number of the element
adjacent to each element face, see Figure 6. The adjacent element may be either a volume or a boundary
element.

The adjacent element list is created in a preprocessing step which relies on the numbering of elements,
faces, and points as defined in the TAU-code library. The neighbouring element list is implemented as a
one-dimensional array, since the number of adjacent elements is known for every element type.
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Figure 6. Example of the structure of a neighbouring element list.

In TAU, volume and boundary elements are numbered continuously with the boundary elements in-
dices starting with an offset equal to the maximum number of volume elements, referred to in Figure 5 as
n_vol_element. Thus, a trajectory leaving the computational domain can be easily detected and integra-
tion stops whenever the search algorithm returns an element number greater than the maximum number
of volume elements, see Figure 5. This feature prevents the difficulty observed by Löhner14 with the path
integration jumping over thin boundary structures.

III.B. Trajectory path integration scheme

Integration of the ordinary differential Equation (4) may be carried out either with multistep schemes
(Adams-Bashforth type) or with multistage schemes (Runge-Kutta type) as described comprehensively by
Darmofal and Haimes.7

For the following reasons, we decided to perform the integration of Equation (4) by different embedded
explicit Runge-Kutta schemes: Runge-Kutta schemes are not as sensitive as multistep schemes in the startup
phase and step-size changes during the course of integration incur no overhead. Another advantage of
embedded Runge-Kutta schemes is that error estimation is a free by-product of the integration step and can
be conveniently used for time-step control.

The following four embedded Runge-Kutta methods are implemented in the code: A third order scheme
(RK23) by Bogacki/Shampine,2 two fourth order schemes (RK45) by Cash/Karp4 and by Dormand-Prince,8

and a sixth order integrator (RK68) by Dormand-Prince.8 In our experience, the (RK45) integrator by
Dormand-Prince proved almost always to be superior to the other integrators.

Currently trajectory path integration has been implemented only for steady state flows.

IV. Lessons Learned during Code Implementation

IV.A. Striping with triangular grids for β evaluation

Equation (7) suggests that the calculation of β is straightforward as long as an arbitrary shaped start area
A0 and impingement area Am are defined, delimited by an arbitrarily number of trajectories. However, it
turns out that a minimum number of four trajectories is required to delimit the streamtube connecting the
areas A0 and Am, which are then quadrilaterals. We performed experiments with four trajectories delimiting
either a quadrilateral or two adjacent triangles that form a quadrilateral, but found striping in the β results
for the triangles, see Figure 7. The observed behaviour can be attributed to the fact that triangular meshes
are unable to properly represent area changes for shear distortions of the grid.
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(a) quadrilateral elements (b) quads (zoom) (c) triangular elements (d) triangles (zoom)
Figure 7. Particle concentration on a cut plane in the flow around a swept cylinder. β is calculated from identical
trajectories using four trajectories delimiting quadrilateral areas in (a), (b) and triangular areas (c), (d). The mesh
connects the centroids of the quadrilaterals in (b) and of triangles in (d).

IV.B. Back-tracking of Particle Path

An often complained disadvantage of particle trajectory methods is the trial and error procedure required to
determine appropriate particle release positions. To aleviate this problem, we initially considered reversing
the integration direction and to track particle trajectories back to their starting points. However, it soon
became clear that even for exactly matched velocities, reverse integration never reached the starting point.
Instead the particle after some distance departs from the corresponding forward integrated trajectory with
very high speed normal to the main flow direction, see Figure 8. After reviewing literature, especially Ref.
29, it became clear that the observed behaviour is inherent in second order differential equations. Second
order ordinary differential equation have a weak and a strong solution. During numerical integration of
the differential equation, an algorithm will always converge towards the strong solution. For the forward
integration direction the strong solution is to minimize the velocity differences. For the reverse integration
direction the strong solution is to maximize the velocity differences between fluid and particle, which is the
behaviour observed. Therefore, back-tracking a particle trajectory is in principle impossible.

Figure 8. Forward integrated (blue) and backward inte-
grated (red) particle trajectory in the flow around a three
element airfoil.

However, there is a solution to the problem of selecting release points: If a mass-less particle is considered,
then the equation of particle motion reduces to a first order differential equation. A first order ordinary
differential equation has only a single solution if the solution exists at all. Therefore, the integration direction
for the trajectory of a mass-less particle may be reversed without any problem. The trajectory of a mass-less
particle corresponds to a streamline of the given flow field.
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IV.C. Breaking dead-locks during search

The third difficulty encountered were occasional infinite loops during the search of particle location and a
subsequent program dead-lock. A closer investigation of the problem revealed that the dead-locks always
occured if the particle position was near the faces of a volume element, where the location search algorithm
performed an endless search through multiple adjacent elements. It turned out that the infinite search
was caused by round-off errors in the basis function representation of the elements: the search algorithm
determined that the given current point location was never in the currently considered element but in one
of the adjacent elements.

Resolving the dead-lock was only possible by allocating a list of elements considered in the search up to
now. Whenever during the search an element was encountered a second time, the element size was temporarily
increased to allow the particle to be located inside of the element and values of the flow variables extrapolated
to the particle position. Particle path integration will then continue normally.

V. Validation of the Implementation

The particle trajectory module for TAU has been validated by comparison with analytical impingement
data reported in the literatur for a circular cylinder,15 a sphere31 and an experimental investigation on a
NACA 23012 airfoil.23 A few representative results of the cylinder test case will be shown below.

The local catch efficiency and impingement limits of the particles impinging on the cylinder depend on
the size of the cylinder and the particle diameter as well as the flow conditions. In general, two similarity
parameters are required to summarize this influence, e.g. the inertia parameter K, see Equation (5), and
the particle Reynolds number, see Equation (3). However, in their investigation Langmuir and Blodgett10

used K and a similarity parameter designated ψ instead of the particle Reynolds number. The similarity
parameter ψ is defined by

ψ =
Re2

0

K
, (8)

where Re0 is a particle Reynolds number expressed with fluid freestream velocity.
From the experimental data presented in Ref. 15 and Ref. 10, we selected the total collection efficiency

E and the maximum impingement angle q and compared them to numerical results. The impingement angle
q is measured from the horizontal axis to the impingement location on the cylinder. Figure 9 and Figure 10
depict the comparison of the collection efficiency E and the maximum impingement angle q for two of the
four considered ψ values, namely ψ = 1000 and ψ = 10000. The numerical results of the particle path
integrator are in both cases very close to the experimental data of Ref. 15 and Ref. 10. For very high inertia
parameters K, the impingement angle exhibits wiggles that are due to the fact that for trajectories impinging
close to the 90◦ position, a very small numerical error leads to a large change of the impingement angle.
Contrary to Ref. 10, no damping procedure has been applied while determining the maximum impingement
angle.

Figure 9. Total collection efficiency E (left) and maximum impingement angle q (right) for impingement on a cylinder,
ψ = 1000.

All experimental data used in the comparison and a more detailed description of the test cases may be
found in Ref. 15 and in Ref. 10.
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Figure 10. Total collection efficiency E (left) and maximum impingement angle q (right) for impingement on a cylinder,
ψ = 10000.

VI. Applications

VI.A. Very High Bypass Ratio Nacelle - VHBR

The first test case, a generic VHBR nacelle, has been selected to demonstrates an impingement analysis
for a droplet spectrum, automatic refinement of droplet release points, and the numerical efficiency of the
TAU particle module on three-dimensional grids. The generic VHBR nacelle is a wind tunnel model tested
at a Mach number of 0.2 and a Reynolds number of 2 million. The angle of attack was set to 8 degrees
with the engine operating at full thrust. This test condition simulates take-off with water impingement.
The computational grid contained about 1.8 million points and was generated with the software package
Centaur.5 Details of the engine including impingement on fan blades and other engine components is not
modelled.

For the impingement analysis, a so-called Langmuir D droplet size distribution was employed as defined
in Ref. 10. The Langmuir D distribution is a more realistic representation of the droplet size distribution
in icing clouds than a monodisperse droplet spectrum, i.e. droplets with only a single diameter. A median
volumetric diameter (MVD) of 20 µm was selected for the droplet distribution. For an MVD of 20 µm,
Table 1 gives the droplet diameters and percentage of the total water content in the seven diameter classes
of a Langmuir D distribution. These values have been used in the droplet impingement calculation, which
produces results for any number of droplet diameter classes in a single calculation.

Diameter class # 1 2 3 4 5 6 7
Diameter ratio (d/d0) 0.31 0.52 0.71 1.0 1.37 1.74 2.22
Diameter [µm] 6.2 10.4 14.2 20 27.4 34.8 44.4
Percentage of liquid water [%] 5 10 20 30 20 10 5

Table 1. Water droplet diameter distribution for a Langmuir D distribution with an MVD of d0 = 20 µm.

For an impingement analysis of an engine nacelle, selecting droplet release locations is particularly chal-
lenging, since the frontal area of nacelle leading edge and hub is small compared to the frontal area of the
whole engine. Nacelle leading edge and hub are the only components where droplets will impinge. The
release area, which is usually selected to be delimited by a quadrilateral for simplicity, has to enclose all
trajectories impinging on the nacelle. If trajectories are released with equidistant spacing, then a large
number of trajectories will be swallowed by the engine inlet boundary, leading to an inefficient use of the
started trajectories, see Figure 11(a). A solution to this problem is automatic local refinement of the start
grid, from which droplet trajectories are released. This feature of the TAU particle module is demonstrated
in Figure 11.

Figure 11(a) shows the β-distribution and impingement limits on the VHBR nacelle and the β-distribution
on the start grid in front of the engine for a 150x164 starting grid without any refinement. It is obvious, that
the impingement limits depicted by a red line on the nacelle and a black line on the hub have a large distance
to the area for which the β-distribution has been calculated. A certain distance between the impingement
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(a) Initial start grid (b) Refined start grid

Figure 11. Initial (a) and refined (b) start grid with the computed β-distribution on hub and nacelle of an VHBR
engine for a droplet diameter of 20 µm. Impingement limits on hub and nacelle are depicted by black and red lines,
respectively.

limits and the area, for which β has been computed, is normal for our implementation. The distance results
from the fact that the impingement limit is simply the convex hull of all impinging trajectories, whereas β
is only calculated for those quadrilaterals of the start grid, for which all four delimiting trajectories impinge.
In addition, the edge of the area for which β has been computed is not very smooth. Obviously, the chosen
start grid was too coarse and a refinement of the start grid is necessary.

The following strategy has been introduced in the TAU particle module in order to locally refine the
start grid without significantly increasing the number of trajectories: Whenever any of the four trajectories
delimiting a quadrilateral impinges, this quadrilateral is divided into four new quadrilaterals and five tra-
jectories at the newly created corner points are launched for every refined quadrilateral. Thus, a quad-tree
structure of quadrilaterals is built.

Figure 11(b) shows again catch efficiency and impingement limits for the same droplet diameter and
initial start grid resolution as in Figure 11(a). However, this time the start grid has been refined up to seven
times. The computational savings are enormous. Moreover, the impingement limits on nacelle and hub are
much closer to the area where β has been calculated and the edge of the β-distribution is much smoother
for this calculation.

Droplet diameter [µm] 6.2 10.4 14.2 20 27.4 34.8 44.4

# of particles released 50694 56178 55377 54386 54698 56771 57194
# of impinging particles 19309 26970 28186 29243 30568 32981 28762
Impingement Area Nacelle 0.0037 0.0095 0.0147 0.0214 0.028 0.0324 0.0370
Impingement Area Hub 0.001 0.0024 0.0034 0.0042 0.0045 0.0046 0.0047
WallClockTime (s) 327 307 271 250 210 202 187

Table 2. Number of starting and impinging droplets with impingement area and run time of for each droplet diameter
class of a Langmuir D spectrum with an MVD of 20 µm.

With this refinement strategy, all particle diameters in the Langmuir D spectrum with an MVD of 20 µm
have been calculated. The starting grid resolution was taken again to be 150x164 trajectories and a maximum
of 10 refinement levels have been used. Table 2 lists the impingement area for each droplet diameter. For
reference, it should be mentioned that the surface area of the hub is 0.0049m2 and 0.1454m2 for the nacelle.
As expected, the impingement area of the nacelle and hub increases continuously with droplet diameter due
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to increasing droplet inertia. The hub impingement area levels out at a droplet diameter of 27.4 µm, while
the impingement area on the nacelle continuous to increase. The impingement area of the hub levels out
because already droplets with a diameter of 27.4 µm impinge on almost the whole hub surface. Even larger
droplets can not cover more than the whole surface.

The computations were performed on a single processor Linux PC. As seen from Table 2, the compu-
tational time decreases with increasing particle diameter. This behaviour is due to the fact that bigger
droplets have larger inertia and are less influenced by the flow. For a droplet diameter of 20 µm around 220
trajectories per second were computed.

VI.B. Airbus A330 with fuselage mounted satellite antenna radome

Modern communication needed on long distance flights have recently increased the number of aircraft with
onboard broadband satellite communication systems installed. Because of installed bandwith, the antenna
radomes have a comparatively large size. Due to aerodynamic and structural restrictions and the requirement
that the antenna has to remain in line of sight of a satellite, only two installation locations on top of the
fuselage are feasible: one in front of the fuselage wing intersection, see Figure 12, and the other behind this
intersection.

Figure 12. Position of satellite antenna radome on the forward fuselage of an A330
aircraft. Inset: cp-distribution and skin friction lines (black) on satellite antenna
radome.

Especially in the forward installation position, it is required to show for certification that the radome
will not accrete ice in quantities that are sufficient to increase aircraft drag or can impact and damage other
aircraft components if shed. In the past, the impingement analysis supporting certification has mostly been
carried out with Euler or potential flow solvers. DLR has recently performed an investigation on a TW560
antenna system installed on an A330 with the Navier-Stokes flow solver TAU and the TAU particle module,
Ref. 33. The flow calculation and impingement analysis of the radome were performed on a half model of
the wing-body-nacelle configuration at a mesh size of about 10 million grid points. The flight and icing
conditions corresponded to typical holding conditions.

The investigation revealed a very interesting flow topology and impingement pattern on the radome.
Because of the blunt radome shape, the adverse pressure gradient in front of the radome leads to the
separation of the fuselage boundary layer well in front the radome. Because of the early separation, the
stagnation point on the forward facing side of the radome is not located near the fuselage attachment point
of the radome, but at about two third of the radome’s height. This is clearly visible from the blue color
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of the cp-distribution and the skin friction lines in the inset on Figure 12. Downstream of the separation a
recirculation zone forms below the free shear layer. The recirculation zone in front of a blunt body is usually
referred to as ”horseshoe” vortex because of its characteristic form. A close investigation of the horseshoe
vortex reveals that there are actually two vortices forming that are depicted in Figure 13. Figure 13 was
produced with the TAU particle module operating in streamline mode (mass-less particles). It should be
noted that none of the flow features described above could have been adequately described with a flow solver
neglecting fluid viscosity.

In order to explore the impingement pattern on the satellite antenna radome in such a complex flow
topology, impingement for two Langmuir D distributions with an MVD of 15 and 20 µm was computed.
Surprisingly, impingment was only detected for droplet diameter classes with a diameter of 6.2 and 10.4
µm from the 20 µm Langmuir D distribution and with a diameter of 7.8 µm from the 15 µm Langmuir D
distribution. Obviously, smaller droplets are too light to impinge. Larger droplets do not impinge because
separation happens early enough to deflect the larger droplets away from the radome. Even for the diameter
range from 6–10.5 µm, the size of the impingement zones is very small, see Figure 14. There is a small
impingement area near the stagnation point and a second impingement zone on the front part of the radome
fuselage attachment point. Apparently, the particles get deflected by the horseshoe vortex to impinge near the
attachment point of the radome. Unfortunately, the two above mentioned impingement zones are connected
by two large blue surfaces in Figure 14 due to a visualization problem.

Figure 13. Streamlines of the flow past the satellite antenna
radome forming two horseshoe vortices in front of the radome.

Figure 14. Impingement locations of droplets
from the 6.2 µm diameter class of a Langmuir
D distribution with an MVD of 20 µm.

VI.C. Dornier 228 flight icing experiment

A flight experiment with a Dornier 228 airplane was performed under a wide range of simulated icing
conditions created by means of an icing tanker aircraft (Figure 15). The flight experiment HYLTEC18

(HYbrid Laminar TEChnology) has been designed to generate insight into the operating mechanisms and
performance of two different wing ice protection systems available for transport aircraft. The data obtained
during one of the flight tests have been compared with a numerical computation of ice accretion at the flight
test conditions.

As a first step, a relevant CAD model of the Dornier 228 test aircraft had to be generated, see Figure 16.
The original aircraft has a length of 15 m, a height of 2.4 m from sponson bottom to vertical stabilizer tip,
and a wing span of 17 m. The wing area is 32 m2. The two four-blade propellers have a diameter of 2.7 m
and are both rotating counterclockwise at 1500 rpm. The exact dimensions of wing and laminar glove could
be retrieved from design drawings of the experiment. For all other parts of the aircraft, such as fuselage,
cockpit, dorsal, horizontal and vertical stabilizer, the CAD model is based on measuring the original DLR
research aircraft.

Modelling of the propellers received special attention in the computer simulation, as it had been observed
during the flight test from an externally mounted camera, see Figure 16, that water droplet trajectories were
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Figure 15. DLR test aircraft Do228 in the water spray plume of the Dornier icing tanker aircraft.

strongly influenced by the right propeller. Moreover, about one fourth of the laminar glove span is located
in the downwash of the right propeller. Therefore, an actuator disc model of the propellers based on blade
element theory, see Ref. 28, was included in the computational model. The actuator disc creates a constant
suction effect upstream and a constant swirl flow downstream of the disc. It is often a sufficient alternative
for simulating a real rotating propeller which would require an unsteady simulation with prohibitively large
computational times. The turbine inflow and outflow have been neglected in the computational model
because of expected low influence. The computational mesh for the half model contained around 14 million
points, of which approximately 9.5 million points were situated in the prismatic elements resolving the
boundary layer.

Figure 16. DLR test aircraft Do228 compared to the CAD model simplified for numerical analysis. The laminar glove
is highlighted on the CAD model for better visualisation.

Table 3 lists the flight and icing conditions measured during the second flight test on 15th March 2002,
see Ref. 18. During the flight test, the aircraft was in a clean configuration. It is well known, that Medium
Volume Diameter (MVD) and Liquid Water Content (LWC) in an icing tanker plume depend on the distance
between tanker aircraft and test aircraft, ambient temperature, and spray rig configuration (type and number
of nozzles and pump performance). The distance between icing tanker and test aircraft during the flight
tests has been measured by means of a differential GPS system and was in the range of 35–40 m. From
the calibration charts of the icing tanker it could be concluded that the plume at the test aircraft position
had an MVD of 35 to 40 µm plus some super large droplets (SLD). The complete spraying time lasted 13
minutes from turning on and turning off the spray rig.

The flight conditions in the simulation were set according to the conditions given in Table 3. Additionally,
an angle of attack needed to be defined. However during the flight test, the angle of attack varied rapidly
in a wide range to allow the test aircraft to stay at a certain fixed distance from the tanker aircraft and
keeping the water spray plume centered on the wing. For the simulation, we decided to use only one fixed
angle of attack set corresponding to a lift coefficient of 0.5, which agrees with level flight at this atmospheric
conditions. All other necessary information for setting the propeller, such as blade angles, local lift and drag
coefficients over the radius, was extracted from a similar propeller once developed for the Do228 at the DLR.

The numerical simulation was performed with the classic k−ω turbulence model, Ref. 35. Preconditioning
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Flight and Icing conditions
Altitude 13.000 ft
IAS 140 kts
Temperature -10◦C
LWC ≈ 1.2 g/m3

MVD 35 - 40 µm + SLD
Icing duration 13 min.
Ice thickness ≈ 12 - 15 mm ?

Table 3. Flight and icing conditions from the test flight for the numerical investigation.

Figure 17. Computed surface pressure distribution on the Do 288.

due to the low Mach number proved to be unnecessary and a convergence of the density residual by 5 orders
of magnitude to steady state was reached. Due to the low flight speed of 250 km/h no shocks appear in
the flow. The pressure distribution on the surface of the Do228 model is shown in Figure 17. The influence
of the swirl from the counterclockwise rotating propeller is well visible in Figure 17 generating an area of
increased suction on the upper side of the wing outboard of the nacelle and a stronger pressure peak on the
leading edge of the wing inboard of the nacelle.

For computation of trajectories in the propeller flow field, we had to introduce a special treatment of the
actuator disc boundary condition in the calculation of particle trajectories. Contrary to all other boundaries
of the aircraft, which are simply solid walls for the particles, the actuator disc had to be made transparent
to particles. Thus, the particles would be able to experience the action of the higher velocity in the vicinity
of the propeller and the swirl downstream of the propeller. The effect of the flow past wing and propeller
on selected particle trajectories is depicted in Figure 18.

Figure 18(a) shows particles moving over the upper side of the wing. The most inboard row of particles
moves through the propeller disc and encounters the upward-moving blade. Short behind the disc, the
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(a) Side view (b) View from bottom up
Figure 18. Particle trajectories influenced by propeller and aircraft wing. On the left, view from side. On the right,
view from bottom up.

particles get an upward deflection caused by the swirl. In Figure 18(b), the spanwise displacement of
particle trajectories by the interaction of the propeller downwash with the wing is depicted. The larger
velocity in the propeller downwash increases local circulation on the wing. As can be seen in Figure 18(b)
for the two most inboard rows of particles, this also increases the separation of the particles passing the wing
on the upper and lower side.

A first impingement analysis was made for the wing only. The starting grid for particles was located
50 m in front of the airplane. A droplet diameter of 35 µm was chosen according to Table 3. The effect
of gravity was neglected. The initial equidistant release mesh contained 30x800 trajectories. A maximum
of 5 refinement levels were allowed. The computer time for this calculation was 20 minutes on a dual core
Linux Opteron machine. In Figure 19, the catch efficiency distribution on the wing leading edge is shown.
The catch efficiency β behaves as expected with a maximum near the stagnation line. The maximum β is
around 0.62 on average but peak values of up to 1.7 are observed in the region behind the propeller. From
the maximum value near the stagnation point, β decreases uniformly to zero.

A comparison of the impingement area with flight test results would require a flight test performed at
very cold temperatures to avoid run-back combined with a very short spraying time. Unfortunately, such
a flight test has not been performed. The closest approximation we could find in the video tape recordings
of an outboard camera was a picture extracted after a few minutes of spraying when ice accretion just
became discernable for the first time, see Figure 20. Due to the fact that the exact camera location of
Figure 20 is known, we have tried to visualize Figure 19 from the same viewing position as the original
camera. Comparison of both figures seem to indicate that the lower impingement limit of the flight tests
was matched fairly well. However, the upper impingement limit seems to be not as far downstream in the
calculation as compared to the flight test situation presented in Figure 20. This discrepancy may have been
either caused by run-back icing, the angle-of-attack variations during the flight tests, or the influence of the
supercooled large droplets present in the icing tanker plume. At present, it is not clear which of the three
possibilities is the most relevant cause and this will be subject for further investigation in the future.

Additionally, we performed an impingement analysis for the complete airplane, see Figure 21. Droplets
with a diameter of 35 µm were again released 50 m in front of the aircraft. For this calculation we used
four different starting grids, one for the wing, a second for the cockpit, and the third and fourth grid for the
vertical and horizontal stabilizer, respectively.

The results of the impingement analysis are depicted in Figure 21. They indicate a catch efficiency
β that does not exceed 0.45 on the nose of the aircraft, cockpit windows, sponson, and vertical tail. On
spinner, wing, and horizontal stabilizer however, the maximum catch efficiency exceeds 0.7. As expected,
the maximum β observed on the leading edge of the horizontal stabilizer is larger than that on the wing’s
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Figure 19. Computed catch efficiency on the Do228
wing vizualized from a similar view point as in Fig-
ure 20.

Figure 20. Ice accretion on the Do 228 wing after a
few minutes of spraying.

Figure 21. Catch efficiency β for the complete Do 228 aircraft.

leading edge since the chord-length and the leading edge radius of the horizontal stabilizer is much smaller
than on the wing. A relatively high catch efficiency is also observed in the turbine inlet position of the
nacelle. However, since the inlet was not modelled, it is not clear whether the catch efficiency on a real inlet
lip would have had a similar magnitude or whether the largest amount of water would have been ingested
by the engine.

In addition to computing the catch efficiency on the whole aircraft configuration, we have made a first
attempt to calculate the resulting ice accretion on the wing and to compare it with an ice shape accreted
during flight test. During flight test, the thickness of ice accretion was measured by a camera looking towards
a disc mounted in streamwise direction on the wing leading edge, see Figure 22. On the disc, markings were
applied with color bands of 10 mm thickness each in a different colour. In Figure 23, the ice accretion after
13 minutes of water spraying can be seen. The picture was taken short before the complete ice accretion
began to shed from the upper side of the wing. The wing area behind the ice thickness disc is free of ice
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because a hot air ice protection system was operated in this area. The ice consists mainly of glaze ice and
on the upper side of granular rime ice. The ice thickness after 13 minutes of icing is about 30 to 35 mm as
can be seen from the ice thickness disc in Figure 23.

Figure 22. Clean wing before water spraying with
discs installed for measuring the ice thickness. View
is from the wing tip mounted camera.

Figure 23. Ice shape on the laminar glove after 13
minutes of water spraying on the Do228 wing short
before ice shedding.

Using the icing conditions given in Table 3 and the β distribution from Figure 19 we have made a first
attempt to compute the expected ice shapes by applying Messinger’s method. The resulting ice accretion is
depicted in Figure 24 with the catch efficiency β shown below it.

Figure 24. Computed ice accretion on the Do228 wing.

VII. Conclusions

This paper presented the development of an efficient particle trajectory integrator within the framework
of TAU for computing particle catch efficiencies. The implementation of the particle trajectory module has
been validated by comparison with analytical solutions and experimental data. The numerical results showed
good agreement.

In the present paper, a few special features implemented into the trajectory integrator have been intro-
duced, i.e. support for selecting appropriate particle starting locations, automatic refinement of the starting
grids, and cut planes for determining particle concentrations at any predefined position in the flow field.
All three features greatly simplify the application of the presented particle trajectory code in an operational
environment, especially if impingement on very thin aircraft structures is considered.

The capability to visualize streamlines in a very large computational domain also helps to verify flow
topologies and phenomena.

The particle trajectory module has been applied to three different real world problems: Impingement
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on a generic very high bypass ratio nacelle, icing of a satellite radome antenna mounted on the top of
an A330, and icing of a complete Dornier Do228 aircraft. Concerning the Do228 flight experiment, the
numerical modeling was able to achieve the same relevant flow behavior as in the flight test. Subsequently,
the presented comparison with the extracted flight test data and the numerical impingement and ice accretion
results provide an insight about the prediction capabilities of the TAU particle tracer.

Summarizing, the Lagrangian particle integration has proven to be an efficient and promising tool and
may be used as a stepping stone for a future tool suite to determine 3D ice accretions.
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