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Abstract— This paper presents an approach to create three-
dimensional occupancy maps from an aerial vehicle with stereo
vision. The main idea is to create an occupancy grid that moves
along with the vehicle and extract features into a fixed global
map. Vice versa, global features or a-priori knowledge can be
inserted into the grid. The maps are calculated onboard to be
used for autonomous behavior like path planning and obstacle
avoidance. With the described method, maps are created and
updated in real-time, and due to its flexibility, the vehicle is not
restricted to a pre-defined area. The developed approach has
been demonstrated in flights with a small unmanned helicopter.

I. INTRODUCTION

Mapping the world with the help of environmental sensors
is one of the main tasks in robotics. Maps are used for
autonomous applications like path planning and obstacle
avoidance and in contrast to classical cartography, these
maps must be calculated onboard in real-time. For more
than 20 years, occupancy grids have been used for world
modeling [1], [2]. There are numerous advanced research
applications using different techniques reported in the lit-
erature, for example using sonar sensors [3], [4], [5], [6],
laser scanning systems [7], [8], [9] and stereo vision based
on real-time image processing made possible by powerful
computer systems [10], [11], [12], [13]. Grid maps can work
with different kinds of sensors allowing simple and efficient
data fusion to integrate multiple sensors, insert complete
data sequences and detect or remove measurement errors and
noise. Unlike fixed objects, moving ones are hard to detect
and often not recognized, though. Since data is stored for
every cell, a lot of memory is needed, and the map has to be
limited to a specified region whose maximal size will depend
on the cell size and the available memory for data storage.

On the other hand, many applications use feature-based
maps, where environmental properties are identified and
stored separately. For example, the world can be represented
by topological graphs [14], velocity obstacles [15], or poly-
gonal objects. In the later case, simplifications are often used,
e.g. vertical walls are assumed [16]. Feature maps take much
less memory, dependent on the amount of objects, and they
are not limited to static boundaries since item lists are used
instead of cell arrays.

It is a straightforward procedure to generate a grid map
from sensor data and extract features out of it. But outdoor
scenarios can be too large to store the whole scene in a
data array of an accurate resolution. Additionally, the area
boundaries may be unknown before mapping.

The approach presented in this paper tackles this problem.
It concentrates on detecting static objects and uses the fact
that the actual sensor information has no influence on regions
that are invisible or out of the robot’s sensor range. In these
regions, an occupancy grid for data fusion is not needed.
Hence, occupancy grids are only used in a small region
around the sensor. Characteristic features are recognized
and inserted to a global map that will take less memory
and is easily expandable. This map is not restricted to the
sensor environment and is used for path planning and other
applications.

The robot used in this investigation is called maxiARTIS
(Autonomous Rotorcraft Testbed for Intelligent Systems), see
figure 1. It is an autonomous helicopter with a main rotor
diameter of 3 meters and a total weight of maximal 25 kg
[17]. Flights of more than 30 minutes are possible.

Fig. 1. The helicopter maxiARTIS.

For the application described in this paper, it is equipped
with a stereo camera and a separate vision computer for
camera control and image processing. Additionally, the he-
licopter’s position and attitude is provided in six degrees
of freedom by a navigation solution using a GPS sensor,
a magnetometer and an inertial measurement unit. Figure 2
illustrates the connection of these components.

II. ENVIRONMENTAL PERCEPTION

For depth measurement, a stereo camera with a baseline
of 30 cm and a field of view of approximately 51◦ × 40◦

is used. It creates images with 640× 480 pixels and has an
inbuilt FPGA processor that calculates a depth image out of
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Fig. 2. Overview of the onboard hardware for vision applications, including
the connection to the flight controller.

the two input images in realtime with 30 Hz. This image,
see figure 3, is a result of a complex processing step where
regions of the two camera images are matched [18], and it
acts as a depth sensor in the mapping process. The depth
image is a discrete 2-D function D : d(u, v) with distance
information about an object projected to the pixel at (u, v)
on the image plane.

As it can be derived from theoretical considerations, the
range of depth measurements is limited to d ∈ [dmin,∞]
with a minimal distance dmin > 0. The error ∆d is given by
the range resolution

∆d =
d2

b f
· σ (1)

based on the camera parameters baseline (b), focal length (f )
and a parameter σ that describes the uncertainty of a region
match between the left and right image. For the parameter σ,
the depth estimation algorithm provides an accuracy of 1/16
pixel. However, a quarter pixel size is assumed to increase
the robustness to noise.

Fig. 3. Left camera image and generated depth image of this stereo pair.
Darker green values represent greater distances, missing values are marked
white.

The depth function may be undefined for some pixel
coordinates due to bad or indeterminable depth estimation
at that point. Here, missing information for a depth image
pixel is either ignored or filled up with infinite distance if the
original image coordinate leads to an empty sky region where
no objects are assumed. Since sky is usually bright and low-
textured, stereo-based depth estimation is quite poor and a
filter adapted from [19] is used for a fast detection of image
regions with the attributes mentioned.

III. OCCUPANCY GRID MAPPING

A. The Basic Approach

An occupancy grid M is a discrete 3-D sample of the
space with occupied and free areas. The literature presents
and discusses many probabilistic ways how sensor data is
regarded for map building, including noisy sensor models
and pose estimation. For simplicity, a grid map is an array
of cells m(x, y, z) with likelihood values that describe the
presence of objects at that world coordinate. Positive values
represent occupied regions. Their absolutes can be regarded
as a significance of being occupied or free. Hence, zero
values represent unknown regions.

At time t, the map Mt is built out of the current and all
previous sensor information, i.e.

Mt =
t⋃

τ=1

〈Dτ ,pτ 〉, (2)

where 〈Dτ ,pτ 〉 is an interpretation of a depth image D
recorded from a camera pose p = [x, y, z, φ, θ, ψ] at time
τ . The pose is known through the navigation data and a
constant camera misalignment on the carrier.

A single depth image contains information about free and
occupied areas that are in the sight pyramid of the actual
camera pose. A grid M̂ is built that only has information
about the actual image. It is

〈D,p〉 = M̂. (3)

B. Sensor Interpretation

The calculation of M̂ out of a depth image is done by
interpreting every image pixel as one measurement. A depth
image value d(u, v) refers to objects on a plane perpendicular
to the camera axis and with a distance d to the camera
center. Since every valid pixel leads to a unique ray in space
using the pinhole camera model, the object coordinates are
reconstructed by intersecting the ray and the depth plane
using projective geometry.

Figure 4 illustrates the interpretation of one pixel and its
effect to an empty occupancy grid. A depth measurement
leads to the obstacle found at the specific distance and,
additionally, to free space in front of the obstacle. The
area behind the obstacle is unknown [2]. Higher likelihood
values (top) are an indicator for a high confidence that a
cell is occupied and are represented by dark cells in the
grid (bottom). Vice versa, lower values lead to free areas,
illustrated by brighter cells.

Since the image data is not perfect, enhancements are
added to get a more realistic interpretation:

• The minimal distance dmin and furthermore, a maximal
distance dmax is applied so that too far distance mea-
surements lead to free areas only up to this maximum.
Boundary values for our camera system are 8m and
50m, respectively.

• Smooth transitions between free, occupied and unknown
information to consider an uncertainty ∆d in distance
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Fig. 4. Interpretation of an ideal depth image pixel (left) and a more
realistic model(right).

measurement which is given by equation (1). ∆d in-
creases disproportionately with larger distance values
when using stereo vision.

Finally, a set of linear equations is used for the sensor model
to get a fast implementation. The definition is

m̂(δ) = −1 (4)

for dmin ≤ δ < d− 2∆d and

m̂(δ) = 1− |δ − d|
∆d

(5)

for d − 2∆d ≤ δ < d + ∆d. Otherwise, it is m̂(δ) = 0 so
that these ray sections have no influence on the map.

In the equations (4) and (5), m̂(δ) is the cell of the grid M̂
next to the intersection coordinate between the ray defined
by the pixel and a depth plane with the distance δ. To draw
the whole ray, δ is iterated from dmin to dmax.

C. Local Mapping

The actual grid M̂ is initialized with cell values of 0 and
added with the rays of each pixel using the interpretation
model of the previous section. Each ray is transformed into
global coordinates using the camera pose at the time the
image has been recorded and a line is drawn into the grid
using a modified Bresenham algorithm [20]. As a result,
grid cells inside the sight pyramid of the camera are filled
with occupancy likelihood values. If some cells are filled
more than once, the maximal value is written to enforce the
mapping of obstacles. After inserting all lines, gaussian blur
is applied to the local grid.

Figure 5 shows an example of a local mapping. Corre-
sponding obstacles in the image and in the map are marked.
Contrary to many indoor robotics, the maps are built in three
dimensions, so that a separate floor plane detection is not
needed.

The data fusion between succeeding image frames is done
using equations (2) and (3), it is given by

Mt =
t⋃

τ=1

M̂τ , (6)

Fig. 5. Depth image (a) and a 2-D view of the local map that was built
out of it (b).

or recursively Mt = Mt−1∪M̂t with an initialization of M0:
∀x, y, z : m0(x, y, z) = 0. The unification is done by adding
the cell values, i.e.

mt(x, y, z) = mt−1(x, y, z) + m̂t(x, y, z). (7)

Similar to other approaches, free or occupied cells become
more confident if measured several times. With that, espe-
cially unmoved objects can be determined easily. In practice,
the map values are truncated to a specified range so that
integers can be used for the cell array. The range must be
large enough to ensure the robustness to failures.

D. Creating Global Maps

The data fusion of the map M with one image will only
affect the grid cells inside a small environment of the actual
position. There is no need to store values of a local map M̂
outside this environment.

To insert the whole sensor data into M̂ , its definition range
must be large enough so that the sight pyramid fits. To set
the camera at the center for any heading or pitch angle, the
zone must be a cube with an edge length of a little more than
2 dmax, dependent on the camera aperture angles. If the size
is smaller, far measurements may be outside and they are
omitted in this case. In practice, the environment size in x-
and y-direction should not limit the maximal sensor range.
The size in z-direction can be smaller since a lower vertical
speed of the helicopter is assumed and there is no need to
store objects far above or below the actual flight altitude.

Finally, this environmental grid M̂ is inserted into the
global map M using equation (7). Hence, only those global
map parts need to be grid-based which are interacting with
M̂ . Further, the grid array that stores M is defined in only
a small environment.

To avoid shifting a large number of map cells when
moving, the implementation divides the global map into
cuboidal zones. Their position is fixed. The size of each zone
is equal to the sensor environment so this is overlapping with
maximal eight zones of the global 3-D map. The environ-
mental cuboid M̂ moves through M with the movement of
the camera, i.e. with the helicopter. Only those global zones
overlapping with M̂ are represented by an occupancy grid.

The actual camera and environment position is shown in
figure 6 (a), the other graphics show possible effects on the
map, caused by the next measurement. The camera stays
next to the same grid cell, thus not affecting the definition
range of M̂ , despite rotations and small movements of the

2067



Fig. 6. 2-D view of the global map that is divided into zones. For zones
around the actual camera position, an occupancy grid representation exists.

helicopter (b). If the movement is larger (c), the environment
M̂ moves so that its center will always be the cell next to
the camera position.

If global zone boundaries are crossed (d), new parts of M
are allocated for these zones. Grid information is discarded
for zones of M that fall outside.

IV. FEATURE MAPPING

A. Creating Bounding Boxes and Object Shapes

In every map zone where a grid exists, features are
detected by segmenting the grid into occupied and free areas,
applying a threshold. A single object is a set of occupied cells
that are connected in a 6-neighborhood of the 3-D array.
These objects are recognized with a flood fill algorithm. By
saving the minimal and maximal values of the x, y, and z-
coordinates of cells belonging to the object, the bounding box
is calculated and put into the global map as it is illustrated
in figures 7 and 8. Unlike the cell array, these boxes are
saved when the occupancy grid moves and the features are
available to further applications, independent of the existence
of a grid in that zone. The features are detected separately for
each map zone, so that a bounding box will always be inside
the boundaries of one zone. Objects that belong physically to
more than one map zone are represented by multiple features.

Fig. 7. Extracting features from an occupancy grid (a) with thresholding
(b) and bounding box calculation (c). Bounding boxes can overlap.

Fig. 8. Features are stored when the grid data is discarded due to helicopter
movement.

Saving the bounding boxes leads to a great data reduction
since they do not contain the object shapes. But they will
only be a useful object representation in rather unoccupied
environments, e.g. outdoor scenarios with large free spaces
and single obstacles like trees. Free paths inside bounding
boxes of tunnel or canyon walls will not be found in the
feature map since the whole box is regarded as occupied in
the feature map.

As an improvement, shape detection algorithms are ap-
plied, and the shape of each object is stored together with the
box. Let the output of the flood fill algorithm, i.e. the grid-
based shape of an object be denoted as an array s(x, y, z)
where s = 0 represent free and s = 1 occupied cells. By
assuming vertical walls, objects can be modeled as prisms
with a ground plane that is represented by a 2-D array s′.
Its elements are calculated using

s′(x, y) =

{
0, if

∑
z
s(x, y, z) = 0;

1, otherwise.
(8)

As a flexible solution, a quadtree of s′ is built and stored
together with the bounding box so that the object height and
size in z-direction is not lost.

B. Re-Integration of Features into the Grid

To complete the exchange of elements between grid and
feature-based map representations, single objects of the
global map must be inserted into the grid. This is done
when a new grid zone is allocated and some world map
objects exist there. First, the global map is searched for
bounding boxes. Then, those grid cells that intersect with
an object shape are marked as occupied by giving them a
high likelihood value. The other cells remain unexplored.

Fig. 9. Inserting features to the grid if there are objects inside a new zone.
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V. FLIGHT TESTS AND RESULTS

The map building algorithm is tested on video sequences
that have been recorded by the onboard stereo camera. The
paper presents results of three scenarios.

At first, the aim is to detect the obstacles as seen in
figure 10. There is a straight line of bushes between the
fields and a small aircraft on the left side. The mapping is
done at a rather low resolution for fast processing. A grid
with a cell size of 1 m and zones with each 80 × 80 × 10
cells are used. These small-sized zones do not integrate all
depth measurements, but increase the calculation speed and
allow a demonstration of allocating new grid parts in shorter
flights.

Fig. 10. Left stereo camera image, recorded during a flight.

Fig. 11. Height profile map and flight trajectory in a 2-D (top) and 3-D
view (bottom).

For viewing purposes, a height profile representation of the
map is used. It shows a grid in x- (north) and y-direction
(east). For each 2-D cell of that profile, the occupied map
cell at this (x, y)-coordinate with maximal height is drawn
with a height-specific color. However, holes are discarded
in this representation but in the cases shown here, the
information loss is negligible. Figure 11 shows the output
of the first flight test. The bushes and the aircraft have been
detected, and the floor too. Some missing data remains due
to noise and the mapping size: objects of 5 meters below
the helicopter are not recorded to the map. When looking
at the end of the flight path, objects with a distance of 40
meters can be detected correctly. On a 3.0 GHz computer,
the calculation speed is approximately 15 frames per second
when using the original-sized camera images with 640×480
pixels.

In the second flight (figures 12 and 13), a line of trees is
crossed and the mapping is done at a higher resolution of
0.5 m and with a larger environmental grid of 160×160×80
cells. Here, no holes from missing data are remaining in
the mapped area, the white space in the curve is due to the
higher flight altitude there. The line of trees has been detected
correctly and the marked higher trees are also mapped.

Fig. 12. A line of trees near the flight field.

Fig. 13. Flight trajectory and height profile map.
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For the third flight test (fig. 14), two posts are positioned
on the flight field. They are spaced at intervals of 7 meters.
The mapping is done with 160 × 160 × 20 cells and a
resolution of 0.5 m. Two flights are done as seen in figures 15
and 16, a fly-through and a pirouette around while heading
the nose to the center. In the map images, the posts are visible
but there is a lot of missing data in the free area that describes
the floor height. Although the floor detection is not optimal
in this case, the posts have been detected correctly and the
detected positions are nearly the same in both flights. They
are marked in the height profile images.

Fig. 14. Two posts positioned on the flight field.

Fig. 15. Mapping the posts by flying through.

Fig. 16. Mapping the posts by flying around.

VI. CONCLUSION

The paper shows a technique for obstacle mapping. With
the help of an occupancy grid, free areas and fixed obstacles
can be detected in unknown scenarios. The grid map is
available in only a small environment around the helicopter
and moves along with the helicopter movement. Connected
occupied cells are regarded as single objects. Their bounding
box and their shape is put into a feature-based map. In
contrast to the occupancy grid, the feature map is global.
The investigations reported in this paper have shown that

the image quality is sufficient to build maps of the given
resolution and that localization with navigation data works.
The map calculation is fast enough to be an input for further
real-time applications.

Future work will concentrate on improvements to the
global map. The recognition of polygonal shapes and the
merging of large objects is one task. Another challenge is the
tracking of features to handle moving objects. Applications
like autonomous path planning are currently developed. The
goal is an on-board obstacle avoidance system that considers
actual map updates for an immediate replanning of the flight
trajectory.
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