
Personalizable Service Discovery in Pervasive
Systems

Korbinian Frank
German Aerospace Center (DLR)

Institute of Communications and Navigation
Oberpfaffenhafen

82234 Weßling, Germany
Email: korbinian.frank@dlr.de

Vincenzo Suraci
Department of Computer and Systems Science

University of Rome ”La Sapienza”
Via Eudossiana, 18
00184 Rome, Italy

Email: vincenzo.suraci@dis.uniroma1.it

Jelena Mitic
Siemens AG

Corporate Technology
81730 Munich, Germany

Email: jelena.mitic@siemens.com

Abstract—Today, telecom providers are facing changing chal-
lenges. To stay ahead in the competition and provide market
leading offerings, carriers need to enable a global ecosystem of
third party independent application developers to deliver con-
verged services. This is the aim of leveraging a open standards-
based service delivery platform. To identify and to cope with
those challenges is the main target of the EU funded project
IST DAIDALOS II. And a central point to satisfy the changing
user needs is the provision of a well working, user friendly and
personalized service discovery. This paper describes our work
in the project on a middleware in a framework for pervasive
service usage. We have designed an architecture for it, that
enables full transparency to the user, grants high compatibility
and extendability by a modular and pluggable conception and
allows for interoperability with most known service discovery
protocols. Our Multi-Protocol Service Discovery and the Four
Phases Service Filtering concept enabling personalization should
allow for the best possible results in service discovery.

I. I NTRODUCTION

Nowadays computer networks offer innumerable possibili-
ties in terms of accessible contents and services (e-commerce,
telemedicine, web-TV) through the Internet. Often users are
interested in locating a specific ”resource” that satisfies their
requirements such as a file, a document, a multimedia clip, but
also a printer, or a screen with dimensions greater than that one
of a mobile phone. Also, network devices requires dynamic
location of network services, such as content adaptation nodes
to realize necessary codec conversion for setting up of a
multimedia session. Finally, it is often requested that a wireless
network can be established automatically and operate in an
autonomous fashion, in other words, they should support
advanced auto-configuration capabilities. As a consequence
whenever services are to be located in a LAN or in the
Internet, Service Discovery has to be performed. There is
a general interest in the design of mechanisms for dynamic
location of services and network resources in the research
community in order to support computer network capabilities
typical of a pervasive network environment. In other words, the
fundamental problem is the investigation into service discovery
architectures for pervasive computing systems. This problem
can be further subdivided into two sub-problems:
(i) protocols or physical search mechanisms,

(ii) a service description architecture.

In order to enable automatic Service Discovery mechanisms,
some protocols and software architecture have been proposed
(SLP [1], JINI [2], UPnP [3], Salutation [4], UDDI [5],
SDP [6], etc.). Compatibility, autonomy, and simplicity of
service discovery are important requirements for applicabil-
ity in pervasive systems. Description of a service with the
maximum precision is of vital importance. Namely, if one is
not able to discover exactly what is being looked for, the
proposed, not perfectly fitting results are likely to be not
used either. Therefore personalization has to come into play
to assure individually matching search results. Another issue
which is tightly coupled with service description concerns
the vocabulary which is used for research, which should be
as much standardized as possible, so that the domain of the
research can be as large as possible. As a solution to this
problem, an ontology based description model can be adopted,
guaranteeing maximum flexibility in service description as
well as a standardized vocabulary.

In this work we propose a general architecture which is
independent from the particular Service Discovery Protocol,
can perform Service Discovery both in automatic or manual
mode, taking into account the context of a pervasive system in
which the user is involved in as well as personal preferences of
the future service user, and considering a semantic description
of the available services.

In the remainder of this paper, we will put our work into
context by discussing related work in the next section. In
section 3, we will identify requirements and describe our Ser-
vice Discovery architecture, before we describe more in detail
the integration of Personalization in section 4. Afterward, in
section 5, we will validate our framework against the described
requirements and finally section 6 will give a conclusion.

II. RELATED WORK

Protocols for service discovery choose between directory-
and non-directory-based models. In the directory-based model
a directory maintains service information and processes
queries and announcements. Architectures can implement flat
(like [7]) or hierarchical (e.g. [8] or [9]) structure. On the other
side, when a query arrives in non-directory-based frameworks,
every service processes it. If the service matches the query, it

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/11132187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


replies. When hearing a service announcement, a client can
record service information for future use.

In the last years, more and more research work is spent
on context-aware service discovery. As one of the first, a Jini
([2]) service query could specify a physical location as an
attribute. Among others [10], [11], [12], [13], [14], [15], [16]
and [17] are presenting further approaches, partly ontology
based (e.g. [10]) and party based on key-value pairs as models
of context information with or without relations between
entities ([11], [13], [14], [16]). Integration or addition (quite
no integration of [11], [13], [14]) of context data (mainly only
static) to service offers is still handled very heterogeneous,
which has consequences for the evaluation of the discovery
process. Only [14] and [17] of the mentioned approaches take
user preferences into account, while [10] allows to integrate
user-defined attributes like ”nearby” into an service request.
Advanced concepts for context-aware request modification
come from the field of database systems [18], but aren’t
directly adaptable to service oriented architectures ([17]).

The Semantic Web approach argues that semantic annota-
tion of resources and services is the key to support automatic
discovery, interoperation, composition, etc. of Web services.
This semantic annotation takes the form of an ontology speci-
fication, and an instance document conforming to the ontology
describing the actual service. There are two major ontology
based approaches to specifying composition, OWL-S [19] and
WSMO [20]. Several European projects have been driving
use of the WSMO framework. The DIP FP6-2004-507483
project [21] has been focusing on infrastructure necessary for
the WSMO based semantic services. The INFRAWEBS FP6-
2003-511723 project [22] has focused on the development of
a software tool set for creating, maintaining and executing
WSMO based Semantic Web Services.

These approaches cover some important aspects for service
discovery, but omit or neglect other ones. Dynamics and
personality of context usage is one, compatibility with other
protocols and vocabularies another one that is not reflected
satisfyingly in the known approaches. Also deployment issues
still have to be taken into account as to minimize unnecessary
computation on clients, servers and directories.

III. SERVICE DISCOVERY

The following paragraphs in section III will describe the
general approach used for Service Discovery focusing in III-B
our Multi-Protocol Service Discovery and different Service
Filters we will deploy in section III-C after discussing the
general design principles.

A. Design principles

Regarding the state of the art for service discovery in
existing systems compared with our goals for real pervasive
computing, we identified the following overall targets for the
DAIDALOS Service Discovery Middleware:

1) Transparency:
The main purpose of DAIDALOS II architecture is to

make the service discovery process transparent to the
user and to the rest of the software architecture.

2) Compatibility:
At the same time, the discovery process should be
backwards compatible with the plethora of standardized
discovery protocols.

3) Interoperability:
Thus it is necessary to make all these protocols capable
of inter-operating in order to provide unified service
discovery functionality with a unique interface.

4) Extendability:
Just as our middleware has to provide the means for
backward compatibility, it must allow for new, future
developments to be integrated. Therefore the architecture
must be modular, extensible and – if possible – hot-
pluggable.

5) Personalization:
Finally, the service discovery should return only promis-
ing service candidates, i.e. such service offers that are
likely to be used by the individual triggering the discov-
ery. Therefore semantic information of the service offers
have to be taken into account and matched against the
user’s needs brought into the query either manually or
automatically.

Following these considerations, we designed a service
framework that should be able to cope with all the challenges.
The generic discovery approach addresses these needs with
the architecture shown in figure 1. It is sufficiently general to

Service Discovery

Generic Discovery
Module

Service Semantic
Filter

Query 
Preprocessor

Pluggable 
Discovery Module

Service Filtering
Module

Fig. 1. Service Discovery Reference Architecture ([23])

allow each existing discovery protocol to be correctly used.
Whenever theGeneric Discovery Module (GDM)is used for
some service request, the incoming query string is prepared
and enriched by theQuery Preprocessor (QP). Then it is
properly translated to the available service discovery protocols,
thanks to the presence of aPluggable Discovery Module
(PDM) in charge of mapping the generic discovery requests
into the specific protocol requests and executed in the native



discovery protocol. After this step a series of optional filters in
the Service Filtering Module (SFM)are enhancing the results
before they can be returned to the requester.

B. Multi-Protocol Service Discovery

To enable the discovery of services offered in differentser-
vice discovery protocols (SDP), we have to provide aGeneric
Discovery Query Language (GDQL)that abstracts from the
concrete syntax of a single protocol, but is still translatable
into the concrete syntax. In the following paragraphs we will
detail on how this target is realized from an implementation
point of view, revealing parts of the Java implementation.
The GDQL developed for DAIDALOS is composed by two
types of discovery query languages:

1) Common Discovery Query Language (CDQL)– this
is a SQL-like and common to the different low-level
service discovery protocols (like SLP, UPnP, etc.), pro-
viding basic discovery/registration functionalities. This
language is used by the PDMs in order to create a
protocol specific query that will be used to perform
a basic service filtering. The common discovery query
language is used to createSimple Queries .

2) Semantic Discovery Query Language (SDQL)– that
is able to handle ontologies and to filter services in
a semantic manner. It is also in charge of taking
into account potential user requirements on the context
of the services and the surrounding environment. The
semantic discovery query language is used to create
Semantic Queries . In DAIDALOS 2 theRDF Data
Query Language (RDQL)will be used as SDQL.

In figure 2 you can see the process how this query languages
will be used. Originated by a DAIDALOS system component
in a Generic Query or by an end user giving keywords the
query is forwarded to the Query Preprocessor. The QP is
providing theICreateQuery interface which the GDM uses
to obtain aGeneric Query . A Generic Query is a pair
< Simple Query , Semantic Query > where:

• Simple Query – it is expressed in a CDQL and based
on simple filtering mechanisms (e.g. the type of a service
or a list of attribute-values pairs).

• Semantic Query – it is expressed in a SDQL (like
RDQL for instance) and aware of semantic based filtering
mechanisms.

The Simple Query is translated into a discovery protocol
by the chosen PDM and the resulting list of services is filtered
by the SFM based on the Semantic Query.
The CDQL has been designed within DAIDALOS II to be
at the same time powerful enough to perform basic discov-
ery/registration mechanisms and to deal with the different
protocol specific characteristics. Due to these requirements,
the CDQL syntax is very similar to SQL’s one. To better un-
derstand what CDQL looks like, we will propose an example
in the following. An end user is looking for ink-jet printers that
support CMYK or RGB, print at least 10 ppm, cost less than
1SS/page, have a maximum of 10 documents in its queue, are

End User
Keywords

Client

Service Discovery

Daidalos 2
Client Side

Components

G
en

er
ic

D
is

co
ve

ry
M

od
ul

e
(G

D
M

)

Query Preprocessor (QP)

Service Semantic Filter (SSF)

Pluggable Discovery
Module (PDM)

Generic Query
Keywords

Semantic Query

Simple Query

Generic
Query

Fig. 2. Discovery Query Language diagram ([23])

less than 50 meters away (from the user starting the discovery
procedure) and inside his building.
The corresponding CDQL query would be:

SELECT *
FROM local
WHERE ServiceType = printer

AND ColourDepth = four_colour_process
AND (ColourCombination = CMYK

OR ColourCombination = RGB)
AND PrintingSpeed >= 10
AND PrintingCost <= 1
AND Distance <= 50

USING UPnP OR SLP

C. Four Phases Service Filtering

In this section, we present four basic filters that should
be mandatory to be used in ubiquitous service environments.
A service filter thereby is a module that applies criteria to
service advertisements and discards those which do not meet
the criteria. As such, Service Filtering is an important part for
a large scaled system enabling pervasive services. It reduces
the number of service candidates because of its destructive
character. If no filtering is applied to the list of discovered
services in a ”pervasive world” with thousands of available
commercial and private services, they would all have to be
processed in subsequent stages like e.g. Service Ranking.

Input to this filtering process is a completed query which
is the output of the Query Preprocessor that will be described
more in detail in section IV-A.

1) Service Type Filtering:The Service Type Filtering is
directly connected with the concept of service discovery and in
our scenario often already performed by the pluggable Multi-
Protocol Service Discovery. If the low level service discovery
protocols (like SLP or UPnP) are understanding the concept
of ServiceType , then this task is expressible already in a
CDQL. But in case low level protocols don’t contain service



type information or too few details/variations (like Bluetooth
profiles for instance), a special filter is needed to extract this
information from a semantic service description. This is a
basic filtering process in which just a small set of information
is necessary in order to identify a preliminary set of available
services that will be further filtered in the next phases.

2) Semantic Filtering: The Semantic Filtering (also
Ontology-based Filtering) deals not only with the protocol
given service description, but with the semantically enhanced
service descriptions based on OWL-S. Like that, many more
attributes of a service are known and can be subject to filtering
constraints as already described in [24]:

• User-dependent constraints:
For instance lists of keywords provided by the user for
the query are representing filtering criteria.

• Service-dependent constraints:
Filtering criteria may be imposed by the services (or
more precisely: their descriptions) as well as by the users.
Services can have limitations, e.g. with respect to re-
sources or compositions with other services. Particularly
well known are (service-dependent) criteria concerning
the user’s location (also known as the service’s scope).

3) Contextual Filtering:As can be seen in the state of the
art in section II, the current service discovery architectures are
usually based on static information and are not aware of the
surrounding environment and the user context. In our view
on the other hand, it is not acceptable that a future service
management architecture ignores context information which
would make the system aware of the world’s dynamics.

In order to introduce the concept of a context aware service
discovery, we will shortly present our concepts of context
requirements and context information (for a more detailed
description see [25]). There are three main actors that play
an active role in a context aware service discovery, namely
end user, service and environment. Table I will show their
specific view on context.

Without entering in detail, we assume that both Context
Information and Context Requirements will be described using
ontologies and all context information issues will be managed
by a Context Manager (for more details see [26]) that stores
context information produced by the context sources, deliv-
ers context information to external applications that need it,
provides filtering policies to select the context information to
obtain and offers a Publisher-Subscriber mechanism to register
for specific context information. The overview of the overall
context management architecture is depicted in Fig. 3 below.

In the following we will have a deeper look into the concrete
interactions between the entities involved in a general service
discovery process in case of service registration and discovery:

In order to have a context aware service registration, when-
ever a Service Agent (SA)wants to advertise a service, it
registries the service storing into theDirectory Agent (DA)the
context information about the service requirements on the end
user, the service requirements on the environment and a pointer
to the service context (maintained by the context manager) –
all the information that can be seen in table I. Then aUser

TABLE I
CONTEXT FROM DIFFERENT POINTS OF VIEW

End User Service Environment
Context In-
formation
examples

terminal battery
charge, user
position,
terminal screen
size, etc.

service location,
service
operational
status, etc.

Whatever
surrounds the
end user and the
service.

Context
Source
examples

portable GPS
systems, etc.

location, etc. environmental
sensors, network
measures, etc.

Context re-
quirements

require specific
Context
Information
from either
services or the
environment.
Examples
could be the
distance from the
service, network
availability, etc.

needs regarding
Context
Information
from the end
user or the
environment.
For instance
this might
be a certain
screen size,
network QoS or
environmental
conditions

Agent (UA) searches for a service and sends with its query
the context information about user requirements on service,
environment and also a pointer to the user context (maintained
by the context manager). If finally the DA receives a service
query from the UA, it checks if the registered service profile
matches the service query, if the service and the environmental
context match the user requirements, as well as if the user
and the environmental context match the service requirements.
So, a service is filtered if either one ore more of the context
requirements or the query are not satisfied.

4) Privacy-based Filtering:In DAIDALOS II each legal
person has one or more VIDs (see again [27]). Thus, a service
provider also has a set of VIDs and whenever he advertises
a service in a specific network, that service is associated to a
specific VID. Network operators, but also worried parents for
instance, might not want to make all services discoverable. In

CONTEXT MANAGEMENT SYSTEM

USER SERVICE ENVIRONMENT

CONTEXT SOURCE

SENSOR

ENVIRONMENT CONTEXTUSER CONTEXT SERVICE CONTEXT

CONTEXT SOURCE

SENSOR

CONTEXT SOURCE

SENSOR

USER
REQUIREMENTS

SERVICE
CONTEXT

REQUIREMENTS

ENVIRONMENT
CONTEXT

REQUIREMENTS

SERVICE
REQUIREMENTS

USER
CONTEXT

REQUIREMENTS

ENVIRONMENT
CONTEXT

REQUIREMENTS

Fig. 3. Overview of the Context Management Architecture ([23])



order to avoid that any registered service could be discovered
by any person, the VID of the Service Provider can be
associated to a certain number of groups (or communities).
Like that, our framework could guarantee that only members
of those specified communities will be able to discover the
service, because the requester’s group memberships can be
identified by checking his VID.

In order to allow such a mechanism to work properly,
a specific privacy filtering phase is required. Whenever an
end user performs a service discovery, the list of discovered
services (i.e. matching the user query, the user preferences on
service discovery and the user context) will be finally filtered
taking into account also the privacy issues as mentioned above.

It is clear that a Service Provider could have more than one
VID, so he can differentiate the availability of its own services
to different kinds of user communities. Moreover each single
VID belonging to a service provider or an end user could
be associated to none, one or more communities. Instead a
registered service belongs only to one VID, the one used by
the service provider to register the service.

IV. PERSONALIZATION OF DISCOVERY RESULTS

As discussed earlier on, pervasive and in particular context
aware computing aim to ease things for users. Therefore
services should be selected following the user’s preferences.
As we don’t assume that each user always wants to enter
(or even is aware of) all his preferences and constraints, in
DAIDALOS we have built a Personalization subsystem, both
storing and learning user preferences for each subscriber of
the system (see [28]). So either the user enters his preferences
manually or they are integrated automatically by the system
using an interface of the Personalization subsystem.
We distinguish between two types of preferences:

• Service Discovery Preferenceswhich are hard criteria
(”Don’t”, ”Never”, ”Always”, ”Only”,...) representing the
user’s constraints like for a Restaurant-Finder service:

Don’t show Chinese Food.
• Service Selection Preferencesthat are just giving the

user’s bias (soft criteria) and are used in a later Service
Ranking process, see the document [23] for more infor-
mation on that.

Both types of preferences should be handled in different stages
of the service discovery and selection process. Though all user
preferences could be treatedafter a first basic discovery of all
available services, it does make sense to reduce the number of
service candidates as early as possible as already discussed in
III-C. Therefore we integrate Service Discovery Preferences by
theQuery Preprocessorinto the query that is already executed
by the various filters, before we apply the Service Selection
Preferences to the resulting list in a component calledService
Ranker. The tasks of these two components will be presented
in the following subsections

A. Query Preprocessing

Before the actual Service Discovery is executed in the filters,
the DAIDALOS middleware must make sure that a well-

formed, valid and complete query statement is available. This
is the task of the Query Preprocessor which first personalizes
the query and then translates all manually given or system-
stored constraints into one query-statement.

a) Completeness of the information included into the
query: The completeness of the information relates mainly
to adding further user preferences to the key words given
by the user to start the query. Those user preferences are
retrieved from the DAIDALOS Personalization subsystem (see
[29]), because it is sensible to store them permanently in his
user profile, whenever a user tends to reuse his constraints on
service queries. The information available in a user profile can
be applied every time the user queries the system.
Retrieved information have then to be compared with the
received keywords to avoid contradictions that would result in
empty result sets for the query. Manually entered constraints
have to get priority in the case of conflicts.

b) Formulation of the query in a common discovery query
language: After this completion stage, the QP has a second
important task: a well-formed and valid query has to be built,
that is able to interact with all the different service discovery
protocols used in the pluggable Service Discovery architecture
of DAIDALOS.
This complete and ”translated” query is then fed back to the
GDM and used further in SFM and PDM.

B. Service Ranking

The Service Ranker is the next component in the
DAIDALOS architecture after the basic Service Discovery
depicted in Fig. 1. It is receiving from the GDM anunsorted
list of service candidates. Unlike the Query Preprocessor,
the Service Ranker is not only retrieving the data from
the Personalization subsystem, but also applying them. For
retrieval it can use the same interface only specifying a
different type of preferences.
Typical examples for Service Selection Preferences
would be ”Cheaper restaurants preferred ”
or ”I prefer to sit outside ”. Their application
to the list of service candidates depends on their system
internal representation. A simplistic approach would be
hierarchical <ServiceType , ServiceAttribute ,
value > (e.g. <Restaurant , Cost , minimum>)
combined with priorities in order to overcome conflicts of
different preferences. More sophisticated ranking could be
based on evaluation of objective functions, e.g. in Bayesian
Decision Networks that are already partially applied in the
DAIDALOS Context and Personalization subsystems.

V. VALIDATION

Our middleware is based on a Plug&Play approach: the
Pluggable Discovery Modules can host different service dis-
covery protocols, making it easy to expand the users’ possi-
bility to discover services belonging to different technologies
and to be compatible with many different service protocols.
The use of ontologies to describe the services in a semantic
way and the use of standard languages helps the architecture



to inter-operate with whatever type of service, but also to be
easily merged with existing service management solutions.
With well defined interfaces (QP and Service Ranker) it is
allowing for personalization of each query, while the user
has only a very simple interface for keywords and the whole
process stays completely transparent to him.
These considerations imply that the requirements identified in
section III-A have been successfully matched by the proposed
architecture.

Within DAIDALOS, the architecture is implemented as a
prototype and used in three scenarios. The Java implementa-
tion is running in an OSGi environment on a IPv6 network.
Service Descriptions are based on an extended OWL-S format,
which we manipulate with the Jena2 toolkit. We realized the
components in a thin-client approach. Only basic functionality
is running on the mobile device preserving the performance of
the discovery process, while the computationally hardest part
(filtering and ontology reasoning) is shifted to the back-end.

VI. CONCLUSION

In this work we presented a general and innovative ar-
chitecture for service discovery in Pervasive Systems. We
particularly discussed the main design principles and presented
the overall structure of the architecture.
The architecture presented here provides a general and innova-
tive way to perform personalized service discovery based on
a four phase filtering process, where service-type, semantic,
context-aware and privacy filters are applied together with
user specific preference information to find the best services
matching the search criteria.
This middleware is applicable to many different scenarios in
which the service discovery process is necessary and needs to
be easy to install and easy to use. Thanks to its capabilities
this platform could transform a simple set of services in a
real pervasive environment in which the end user feels to be
involved in.

ACKNOWLEDGMENTS

The work described in this paper is based on results of
IST FP6 Integrated Project DAIDALOS. DAIDALOS re-
ceives research funding from the European Community’s Sixth
Framework Programme. Apart from this, the European Com-
mission has no responsibility for the content of this paper.
The information in this document is provided as is and no
guarantee or warranty is given that the information is fit for
any particular purpose. The user thereof uses the information
at its sole risk and liability.
The authors would like to thank members of DAIDALOS
team who partially supported this work by participating to
service discovery issues in a context of pervasive computing
environment.

REFERENCES

[1] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service location
protocol, version 2,” United States, 1999.

[2] “Jini Architectural Overview. White Paper,” Sun Microsystems, 1999.
[Online]. Available: http://www.sun.com/jini/whitepapers/architecture.
pdf

[3] UPnP Forum, “UPnP device architecture 1.0,” July 2006.
[4] B. A. Miller and R. A. Pascoe, “Salutation service discovery in pervasive

computing environments,” IBM White Paper, Tech. Rep., Feb. 2000.
[Online]. Available: http://www-3.ibm.com/pvc/tech/salutation.shtml

[5] T. Bellwood, L. Clement, and C. von Riegen, “UDDI specification
version 3.0.1.” UDDI Spec Technical Committee, Tech. Rep., October
2003.

[6] “Specification of the Bluetooth System v1.1,” 2001. [Online]. Available:
http://www.bluetooth.com/dev/specifications.asp

[7] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The
design and implementation of an intentional naming system,” inSOSP,
1999, pp. 186–201.

[8] Apple Computer, “Bonjour release: 107.6 (formerly ”rendezvous”),”
2006.

[9] J. R. von Behren, E. A. Brewer, N. Borisov, M. Chen, M. Welsh,
J. MacDonald, J. Lau, and D. E. Culler, “Ninja: A framework for
network services,” inUSENIX Annual Technical Conference, General
Track, 2002, pp. 87–102.

[10] T. Broens, S. Pokraev, M. van Sinderen, J. Koolwaaij, and P. Dockhorn
Costa, “Context-aware, ontology-based service discovery,” inEUSAI,
2004, pp. 72–83.

[11] C. Doulkeridis, N. Loutas, and M. Vazirgiannis, “A system architecture
for context-aware service discovery.” [Online]. Available: citeseer.ist.
psu.edu/doulkeridis05system.html

[12] S. Penz, “SLP-based service management for dynamic ad-hoc networks,”
in MPAC ’05: Proceedings of the 3rd international workshop on
Middleware for pervasive and ad-hoc computing. New York, NY, USA:
ACM Press, 2005, pp. 1–8.

[13] P.-G. Raverdy, O. Riva, A. de La Chapelle, R. Chibout, and V. Issarny,
“Efficient context-aware service discovery in multi-protocol pervasive
environments,” inMDM ’06: Proceedings of the 7th International
Conference on Mobile Data Management (MDM’06). Washington,
DC, USA: IEEE Computer Society, 2006, p. 3.

[14] S. Cuddy, M. Katchabaw, and H. Lutfiyya, “Context-aware service
selection based on dynamic and static service attributes,” inWireless
And Mobile Computing, Networking And Communications, 2005., 2005,
p. 4.

[15] S. Marti and V. Krishnan, “Carmen: A dynamic service discovery
architecture.” [Online]. Available: citeseer.ist.psu.edu/marti02carmen.
html

[16] M. Samulowitz, F. Michahelles, and C. Linnhoff-Popien, “CAPEUS: An
architecture for context-aware selection and execution of services,” in
DAIS, 2001, pp. 23–40.

[17] F. Klan, “Context-aware service discovery, selection and usage,” in
Grundlagen von Datenbanken, 2006, pp. 95–99.

[18] A. Lubinski, Mobile Datenbanken und Informationssysteme - Konzepte
und Techniken. dpunkt.verlag, 2005, ch. Anfragen mobiler Benutzer,
pp. 93–98.

[19] “OWL-S,” http://www.daml.org/services/owl-s.
[20] “WSMO,” http://wsmo.org.
[21] “IST project DIP,” http://dip.semanticweb.org, 2004.
[22] “IST project INFRAWEBS,” http://www.infrawebs.eu, 2003.
[23] R. Mullins, M. Crotty, J. Mitic, K. Frank, P. Robertson, R. M. Svedsen,

B. Farshchian, and V. Suraci, “Pervasive service manager,” IST Daidalos
II, Tech. Rep., December 2006.

[24] S. Mignanti, V. Suraci, and C. Di Menna, “An ontology-based multi-
protocol service discovery framework,” inMobile and Wireless Com-
munications Summit, 2007. 16th IST, 2007, pp. 1–5.

[25] V. Suraci, S. Mignanti, and A. Aiuto, “Context-aware semantic service
discovery,” inMobile and Wireless Communications Summit, 2007. 16th
IST, 2007, pp. 1–5.

[26] M. Strimpakou, I. Roussaki, C. Pils, M. Angermann, P. Robertson, and
M. E. Anagnostou, “Context modelling and management in ambient-
aware pervasive environments.” inLoCA, 2005, pp. 2–15.

[27] W. Fitzgerald, K. Doolin, F. Mahon, C. Hauser, A. F. Gomez-Skarmeta,
S. Butler, P. Schlosser, and B. Weyl, “Daidalos security framework for
mobile services,” inProceedings of eChallenges 2005, June 2005.

[28] S. McBurney, E. Papadopoulou, N. Taylor, H. Williams, K. Frank,
P. Robertson, G. L. Bello, and M. L. Demarie, “Architecture and design:
Personalisation and learning management,” IST Daidalos II, Tech. Rep.,
December 2006.

[29] Y. Yang, M. H. Williams, R. Pooley, and R. Dewar, “Context-aware
personalization in pervasive communications.” inICEBE, 2006, pp. 663–
669.


