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Summary

The solution of the discrete adjoint equations for an unstructured finite vol-
ume compressible Navier-Stokes solver is discussed. In previous work fixed-
point iterations taken from the non-linear method - suitably adjointed - were
applied to the adjoint problem. Here it is seen that there are often situations
in which these iterations can not be expected to converge. To address this
the Recursive Projection Method is developed as a stabilizer, and then used
to perform an eigenmode analysis of attached and separated flow on a single
geometry, allowing identification of flow regions that were unstable under the
basic iteration. Finally an adjoint based optimization with 96 design vari-
ables is performed on a wing-body configuration. The initial flow has large
regions of separation, which are significantly diminished in the optimized
configuration.

1 Introduction

The adjoint equations are enjoying increasing importance in the field of com-
putational aerodynamics, as emphasis shifts from the modelling of physical
phenomena to their control and optimization. Adjoint algorithms are neces-
sary to evaluate cost-function sensitivities with respect to a large number of
design variables with an effort only weakly dependant on their number.

But solving the adjoint equations is a problem at least as hard as solving
the original flow equations, and often significantly harder. One possibility
is to apply the same iterative techniques used for the non-linear problem,
suitably adjointed, to the adjoint problem. This technique guarantees adjoint
convergence if the non-linear problem converges asymptotically [1] - but this
is often not the case. For this reason the Recursive Projection Method (RPM)
is studied as a stabilizer, Section 2. The approximate eigenmodes that are
calculated within RPM are useful for identifying the cause of divergence of
the original iteration, and in our particular cases the cause is found to be
flow separation, see Section 3. The algorithms described are finally applied
to optimization of a 3d turbulent wing-body configuration.



We forego a detailed description of the compressible Navier-Stokes equa-
tions and their unstructured finite volume discretization in the DLR TAU-
Code, referring the interested reader to [2, 3], and note only that the method
uses the Jameson-Schmitt-Turkel (JST) flux with scalar artificial dissipation
and the one-equation Spalart-Allmaras turbulence model with Edwards mod-
ification.

2 The Recursive Projection Method

Despite the guarantees regarding convergence provided by the theory of ad-
jointed fixed-point iterations (FPIs) [1] there are regularly situations in which
it is possible to obtain a reasonably converged solution of the non-linear equa-
tions, but not of the corresponding adjoint equations. This can occur for three
reasons: either a) the non-linear solution is not sufficiently converged, or b)
there is a discrepancy between the linear and non-linear problem due to some
approximation of the Jacobian, or ¢) the FPI applied to the non-linear prob-
lem does not converge asymptotically itself.

In an effort to understand and mitigate these phenomena, we consider
the Recursive Projection Method (RPM), originally developed by Schroff and
Keller in 1993 as a means of stabilization of unstable procedures [4]. Since
then it has been applied in aerodynamics for convergence acceleration [5],
and stabilization of linear frequency domain solvers [6].

Let the (linear) adjoint system be written Az = b. The idea of RPM is to
regard the transient solution of the linear problem as a sum of eigenvectors of
the relaxation operator @ = (I — M ~1A) where M is some iteration operator,
e.g. LU-SGS with multigrid. The application of ¢ to an approximate solu-
tion then corresponds to a product of each eigenvector with its corresponding
eigenvalue. Divergence of the iteration implies that there is at least one eigen-
value of @ with modulus greater than unity. Assuming that the number of
such eigenvalues is small, and that the space spanned by their eigenvectors
is known, call it P, then it must be possible to solve the projection of the
problem onto this low dimensional subspace using some expensive but sta-
ble method, while solving the projection onto the complimentary subspace Q
using the original FPI iteration, which is known to be stable there.

Newton-Raphson is typically used on P. The space of dominant eigen-
vectors is determined as the calculation progresses, by applying the principle
that the difference between successive applications of the FPI on Q form a
power iteration on the dominant eigenvalues of @ restricted to Q.

In more detail: consider a relaxation operator written

N(z)=(I - M Az + M 'b. (1)

Let V be an orthonormal basis of P, then orthogonal projection operators
onto P and Q may be written respectively P = VV7? and Q = I — VVT.



Further define xp = Pz, xg = Qz. Then the RPM iteration may be written

ngrl _ QN(:L‘"), (2)
aptt = 2 + (I — POP)~' [PN(a") — 2'}], (3)

where
2" = x}iﬂ + xgﬂ. (4)

The derivative term in the Newton iteration (3) may be written V(I —
H)~'VT where H is a square matrix of size dimension of P, whose inversion
is cheap if P is of low dimension.

To determine the basis itself consider the sequence

K = Az, Az Awly M (5)
where Azp) = xg”'l — xgy are readily available from the iteration on Q. Using
the linearity of @ it is easy to show that Az, = QPQAz™ ! so K is a
Krylov space for Q®@Q. Asymptotically this subspace will tend to contain
the dominant k eigenvectors of Q@(Q), as they are the components of the
solution most amplified by repeated application of the operator. Via QR
factorization an orthogonal basis for K is obtained, and these vectors are

added to V' when the power iteration becomes sufficiently converged. For
more information see [1].

3 Influence of Separation on Linear Convergence

To demonstrate the effect unsteady flow phenomena can have on the conver-
gence of the adjoint problem, and to evaluate RPM, we consider two cases:
the RAE 2822 aerofoil Case 9 and Case 10 [7]. The only differences between
these two cases are the Mach and Reynolds numbers, but Case 9 is fully
attached and Case 10 has a large region of shock induced separation. Con-
vergence histories of the flow solutions are shown in Figure 1 where LU-SGS
with multigrid with exactly the same settings is used in both cases. The at-
tached case eventually reaches a region of asymptotic convergence, but Case
10 enters a limit cycle after about 1000 iterations and converges no further.
However, the lift and drag are well converged, and an engineer might reason-
ably be satisfied with these values. In fact the parameters of the FPI were
specially chosen such that this situation would occur, in a attempt to model
a circumstance which is common for complex geometries. The exact cause of
the limit cycle is generally difficult to determine with any certainly.

The lack of non-linear asymptotic convergence means that one sufficient
condition for convergence of the linear problem has not been met. Figure 1
shows the linear convergence (without RPM), and as expected, the adjoint of
Case 9 converges and that of Case 10 diverges. The engineer who then wishes
to optimize Case 10 (perhaps to remove the separation) with an adjoint-based



method can not, even though she can reliably obtain force coefficients. This
is clearly an undesirable situation.

Applying RPM then speeds up the convergence of Case 9 and brings Case
10 to convergence, see Figure 1, consistent with the framework developed in
the previous section. The discontinuities in the convergence are the itera-
tions at which the basis is extended. As a side effect of RPM the dominant
eigenvalues and eigenvectors of @ (the LU-SGS smoothed multigrid iteration
applied to each case) are approximated, Figure 2. As must be true - given
the behaviour of the linear convergence - all eigenvalues of Case 9 lie within
the unit circle, and therefore all modes converge. Four eigenvalues of Case
10 lie outside, and the eigenmodes related to these eigenvalues are amplified
at each iteration of the scheme. Effectively the diverging components of the
problem have been isolated.

Plotting the eigenvectors themselves then allows identification of those
regions of the flow responsible for slow convergence and divergence respec-
tively. Each eigenvector has a similar structure to a solution vector, with five
complex components at each grid point; in Figure 3 the L? norm at each point
is taken, representing the overall size of the vector in all components at that
point. The two eigenvectors shown correspond to the eigenvalues marked a
and b in the previous figure, and it should be noted that they therefore show
different things: for Case 9 parts of the field that are most slowly damped,
for Case 10 parts of the field that are diverging.

From these eigenmodes much information may be gleaned that is ordi-
narily unavailable. For example it is becomes clear that in Case 9 the con-
vergence rate of the iteration is limited by the convergence of the flow in the
regions of the shock and upper surface negative pressure gradient. Devising
an FPI that improves the convergence somewhere else, e.g. near the stagna-
tion point, would result in no overall improvement. Similarly in Case 10 the
cause of the non-linear limit cycle instability has been positively identified
as the separation, in particular the largest recirculating region immediately
behind the shock. Any treatment of the instability, in either the non-linear
or linear problem, must necessarily involve this region. In both modes dark
spots appear in the field under the aerofoil where no special physical features
are present, indicating mesh or discretization problems.

Of course the eigenmodes depend on the FPI, and so the analysis relates
to physical phenomena only over the discretization. On the other hand this
is a feature that makes the analysis useful in the study of FPIs. Further work
will apply eigenmode analysis to attempt to systematically categorize the
behaviour of some common FPIs with respect to certain flow features, the
goal being to quantify the local influence of, for example different directional
multigrid coarsening algorithms. The wider use of Krylov methods also in-
troduces the need for an FPI that is a good Krylov preconditioner, though
not necessary a good multigrid smoother. Where previously Fourier analysis



was an essential tool for studying multigrid smoothers, we expect eigenmode
analysis to be useful for studying Krylov preconditioners.

4 Gradient-Based Optimization

The adjoint method is now applied to the drag minimization of the DLR-F6
wing-body configuration at Mach 0.75, a Reynolds number of 3 x 106, and
Cp, = 0.8, at which conditions the case has a large region of separated flow
in the junction between the upper surface of the wing and the fuselage, as
well as along most of the length of the wing. For the adjoint problem on
this geometry, adjointed LU-SGS with multigrid alone was unconditionally
unstable, and applying RPM was necessary, see Figure 4. Also shown is the
p-residual restricted to P and Q, and the dimension of V. The corresponding
eigenvalues in the same figure show that in total 8 unstable modes were found.

The optimization algorithm used is conjugate-gradients (CG), as in [§],
where the angle-of-attack is varied to constrain the lift. The surface of the
computational grid is shown in Figure 4, and is coarse, but sufficient to resolve
the separation mentioned. The 84 paired nodes of a free-form deformation
bounding box are also shown, whose vertical positions, as well as 12 additional
wing twist variables were used to parameterize the wing. The pairing of nodes
constrained the wing thickness. With such a large number of design variables
only gradient-based optimization is viable, and only the adjoint method can
deliver the gradient efficiently. Note that since the bounding box passes inside
the fuselage, the wing-body junction also varies, and this is accounted for by
the geometry and grid generation process. The metric sensitivities needed
in the gradient calculation are evaluated by finite-differences on the mesh
deformation.

The convergence of the optimization is shown in Figure 5, the horizontal
axis shows the number of calls to the flow solver (both linear and non-linear),
thereby approximately representing computational effort. Symbols indicate
gradient evaluations. After 32 solver calls CG was unable to reduce the drag
further, giving a final reduction of about 10 drag counts. In contrast a sim-
ilar optimization with 42 parameters produced a reduction of only 8 counts
on this mesh (in a similar CPU time) [9], emphasizing the need for a com-
prehensive parameterization. The optimization reduced the region of corner
separation considerably, Figure 5, while not completely eliminating it, which
is unlikely to be possible within the design space considered, as it does not
allow deformation of the body.

5 Conclusions

The influence of separation on the convergence of the non-linear and the ad-
joint problem has been examined with the use of eigenmode analysis and the
recursive projection method. This method was shown to stabilize the linear



calculation in situations where the use of the exact adjointed FPI for the non-
linear problem was unstable. The resulting adjoint code was applied to the

optimization of a wing-body configuration, whereby the region of separation
was considerably reduced.
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Figurel Non-linear and linear convergence histories for the two cases.
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Figure2 Dominant eigenvalues of the linear iterations on the two cases.
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Figure3 The dominant eigenvectors of each of the two cases; dark regions indi-
cate large values. The corresponding eigenvalues are highlighted in Figure 2.
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Figure4  Stabilization of DLR-F6 adjoint computation with RPM, and parame-
terization of the wing with a free-form deformation box with 84 paired nodes. Twist
is parameterized separately with 12 variables.
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Figure5 Convergence of the F6 drag-minimization optimization. Comparison of
the region of corner separation before and after optimization.
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