
DEPTH IMAGE PROCESSING FOR OBSTACLE AVOIDANCE OF AN
AUTONOMOUS VTOL UAV

Franz Andert, Gordon Strickert and Frank Thielecke
German Aerospace Center, Institute of Flight Systems

Lilienthalplatz 7, 38108 Braunschweig, Germany

{Franz.Andert, Gordon.Strickert, Frank.Thielecke}@dlr.de

OVERVIEW

We describe a new approach for stereo-based obstacle
avoidance. This method analyzes the images of a stereo
camera in realtime and searches for a safe target point that
can be reached without collision.

The obstacle avoidance system is used by our unmanned
helicopter ARTIS (Autonomous Rotorcraft Testbed for In-
telligent Systems) and its simulation environment. It is op-
timized for this UAV, but not limited to aircraft systems.

1 INTRODUCTION

The automatic detection of obstacles and the avoidance
of collisions is a useful ability for many applications like
robots, cars and flight systems, used for autonomous con-
trol in unmanned systems and as an assistant in manually
driven vehicles. Sensors used to detect obstacles are not
just cameras, there have been a lot of good results with ac-
tive sensors in the past like radar or laser scanner systems.
The use of one or more cameras ends up in image process-
ing, the research concentrates mainly on using optical flow
[1, 2], stereo vision [3, 4] or both techniques [5]. Obsta-
cle detection and avoidance is done by building a map of
the environment and plan a path there or just reactive with
moving away from detected obstacles like insects do.

Our proposed approach is also a reactive system, i.e. single
obstacles will not be detected separately and no environ-
mental data is stored. With ideal input data, information
about free and occupied areas can be extracted out of one
single depth image that has been generated from a stereo
image pair. Intuitively, it can be seen which path directions
will cause a collision and which will not.

Figure 1 shows a brief overview of the process how we de-
tect flight targets to avoid collisions. A stereo image pair
(a, left image only) is recorded and the depth information
(b) from this point of view is calculated. This image con-
tains information about far (darker) and near (brighter) ob-
jects, but not for every pixel (errors are white). After the
filtering of false depths (c), regions in the image without
near objects are detected–only they can represent flight tar-
gets (d). If they really lead to 3-D points where we can
fly is checked out with the help of the three-dimensional
information of the depth image. Dangerous targets will be

FIG. 1: The image processing chain of the obstacle avoidance
system.

filtered (e). Finally, one target is selected (f) and the heli-
copter is instructed to fly there.

The result of the presented method is one of the possible
path directions avoiding a collision. On the other hand it
can be a warning to stop the vehicle if no free area is visible.
It is compatible to a global path planning system so that the
helicopter will reach its originally given goal if there is a
way.

2 FLIGHT TESTBED AND IMAGE PRO-
CESSING ARCHITECTURE

Testbed is our unmanned helicopter ARTIS [6], equipped
with a stereo camera and a separate vision computer for
camera control and image processing.

The task of the vision computer is to acquire images from
cameras, process the images and send information to the
flight control computer. The latter gives the helicopter the
ability to fly to a given coordinate with the help of classical
sensors like GPS and an IMU and we will send the target
coordinate to it. The coordinate of the target avoiding col-
lision is updated with every new processed image frame.

Our image source is a stereo camera rig from Videre De-
sign. It comes with a software to calibrate the cameras
and to calculate a depth image automatically, so that we
do not have to concern about this. The obstacle avoidance
is mainly a postprocessing of this depth image.

1327

DGLR-2006-010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/11131792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FIG. 2: The helicopter ARTIS with an on-board stereo camera.

FIG. 3: Architecture of the ARTIS helicopter, simplified.

In contrary to indoor robots that are used by many research
teams, we have to detect objects at greater distances thus
the helicopter can react in time. Due to the camera geom-
etry, larger focal lengths or baselines between the cameras
allow the precise measure of farther distances. We set the
stereo camera to a baseline of 30 cm and use lenses with a
focal length of 6.3 mm so that the field of view is approx-
imately 64◦× 50◦ wide for each camera. Image sizes be-
tween 160×120 and 640×480 pixels are used. With tests
we have found out that the distance estimation is sufficient
from 8 up to 55 meters.

3 STEREO VISION

3.1 GEOMETRY OF TWO CAMERAS

Efficient depth estimation from stereo images requires a
standard-stereoscopic view, i.e. the two images lie exactly
on the same plane and do not have a vertical distance to
each other. Since mounting and assembly of the cameras
are usually not accurate enough to meet this requirement,
we need to rectify the images by calculating a projection to
the same plane. This step is feasible if the camera orienta-
tions are known and leads to a higher accuracy that is suffi-
cient for the depth estimation procedure. The stereo camera
system and its software [7] provide this step by calibrating
the camera to get their internal and relative orientation and
by processing the lens undistortion and image rectification
of the two images to produce such an ideal image pair.

FIG. 4: Standard-stereoscopic stereo geometry. An object point
M(X ,Y,Z) is projected to two image points m1(x1,y1) and
m2(x2,y2). Both images are not distorted and lie on the same
plane and the focal lengths are equal.

The pinhole camera model is used for the perspective pro-
jection of an object point to the image planes. In our defi-
nition, the left camera center falls together with the object
coordinate center of the camera-based coordinate system,
so that an image point (x,y) can be calculated from an ob-
ject point (X ,Y,Z) with

(1) z

 x
y
1

 =

 f 0 x0 b f
0 f y0 0
0 0 1 0

 ·

X
Y
Z
1

using the focal length f and the image center (x0,y0) of a
camera. The value b set to 0 for a projection to the left
image and set to the baseline between the cameras for the
right image.

If an object point can be projected to both images, there will
be a disparity δ between the two image point coordinates
(x1,y1) and (x2,y2) due to the different camera positions.
It is

(2) x2 = x1 +δ (x1,y1) and y2 = y1,

the points do only have a horizontal and no vertical dispar-
ity to each other. The value depends on the object distance
Z, so this can be reconstructed with the equation

(3) Z =
b · f

δ

and it is obvious that this reconstruction cannot be done
with only one image.

3.2 DEPTH IMAGE GENERATION

The calculation of a depth image out of a stereo image pair
goes back on work like [8]. It is based on the search for cor-
responding image features that represent the same object in
the real world and the estimation of the disparity between
them. Grouping the disparity values for every position in
the left image g(x,y) to one function δ (x,y) and converting

1328

the disparity values to grayscale, the result is an image that
provides the depth of the objects each pixel represents in
the left input image.

Since our stereo camera system has an included software
for disparity estimation, the resulted depth image d(x,y)
is regarded as sensor information in further steps. It is an
array of signed 16-bit values with the disparity information

(4) δ (x,y) =
{

d(x,y)/16, if d(x,y)≥ 0;
n/a, otherwise.

The last case is a representation of errors where no valid
disparity is available due to filtering or impossible match-
ing.

FIG. 5: Rectified left camera image g(x,y) and generated depth
image d(x,y) of this stereo pair. Darker pixels represent greater
distances and negative values are shown white here.

3.3 IMAGE IMPROVEMENT

Although the camera software provides filtering methods to
detect false values, e.g. caused by occlusions or ambiguous
feature matching, the depth images must be filtered again
for good results.

3.3.1 Speck Removal

At first, several little, mostly bright areas can be found in
the depth images calculated by the used software. With the
assumption that there are no such “spikes” in the real world,
these areas are caused by false depth estimation and should
be treated as blotches that have to be removed. Specks in
the image are usually smaller than projected real objects
and their distance or gray value differs significantly from
the pixels surrounding the speck.

A way to eliminate this kind of errors is to segment the
image into regions with similar values and to remove the
image segments that are smaller than a specified threshold.

Here, two neighboring pixels (x1,y1) and (x2,y2) belong to
the same segment, if

(5) |d(x1,y1)−d(x2,y2)|< τ difference

applies. The neighborhood of one pixel is defined by
the eight surrounding ones. The value τ difference indicates

when the two pixels are similar to each other. In a region,
every pixel is similar to at least one of its neighbors.

FIG. 6: Segmentation. The marked pixel will be added to the
left, dark segment because of the similar gray value. If a pixel
is similar to neighbors of different segments, these segments are
merged. The size of each segment is stored.

For each pixel, the region with similar pixels and its size is
calculated comparing the pixel with those pixels that have
been assigned to a region before. This is done line by line,
beginning in the upper left corner of the depth image. Fig-
ure 6 illustrates the segmentation process. If the segment
size falls below a threshold, all pixels of the depth image in
this region are marked as invalid.

This method will remove small regions and keep larger
elements without loss of sharpness. It will also keep thin
structures that are a part of larger regions. If the value of
τ difference is greater than zero, regions with increasing or
decreasing depth are recognized as one and will not be re-
moved if they are large enough.

3.3.2 Sky Detection

Another improvement is the sky detection. In recorded im-
ages, the sky is usually an untextured region, that means
no edges are inside except clouds. No significant features
can be matched in sky regions and no confident depth in-
formation can be extracted there. But sky regions represent
possible flight targets so that the collision avoidance sys-
tem needs the information that the sky is far away and not
an obstacle.

Here, a simple and very fast method of sky detection
adapted by [9] has been turned out as useful. Regions of
the rectified left original image that are bright and not struc-
tured are interpreted as sky regions if no valid depth infor-
mation is available. A pixel d(x,y) of the depth image is
set to zero, meaning infinite distance, if the equations

(6) d(x,y) < 0,

(7) |g(x,y)−g(x−1,y)|< τ texture

and

(8) g(x,y) > τ brightness

are fulfilled. The first column of the image where x = 0 is
ignored. The disparity of the image point must be invalid
and the thresholds τ texture and τ brightness which define tex-
tureless and bright areas are to specify by the user. Suitable
values depend mainly on the image brightness and noise.

1329

FIG. 7: Example of the sky detection. Left camera image (top)
and generated depth image (center), where no depth information
is available in sky regions. In the optimized depth image (bottom),
the sky has infinite distance and is represented by black pixels.

4 REACTIVE OBSTACLE AVOIDANCE

4.1 FINDING A SAFE FLIGHT PATH

The task of our reactive system is to analyze the depth im-
ages in order to find a point where the helicopter can fly to
without collision. The flight controller does not need any
information about single obstacles, only a safe flight path
will be the result of the procedure that is described here.
This path is sent to the flight control computer in form of a
single target point.

We make the following assumptions:

• The camera is immovable installed and looks straight
on. There will be little misalignment, i.e. translation
and rotation between camera- and helicopter-based
coordinates. This deviation is considered later as a
transformation of the returned target point.

• Instead of a path between the helicopter-based coor-
dinate center and a world coordinate, a path starting
at the camera center is calculated. This simplification
leads to higher performance and has no large effects
because the coordinate centers have rather a short dis-
tance to each other.

• The obstacle avoidance system will only work cor-
rectly if the helicopter flies to the direction in which it
looks since the camera does not move.

• Invalid depth image values do not contain information
and will be ignored. It is assumed that an obstacle in

this direction can be recognized through other pixels
around. Anyhow, paths without any valid information
in this direction cannot become targets.

4.2 THE FLIGHT CORRIDOR

As seen in figure 4, every pixel (x,y) projects an object po-
sition (X ,Y,Z) in the world that lies on a ray going through
the camera center and the point on the image plane. The
main goal here is to find out whether this ray is a good
flight path or not.

With the help of the depth image, the distance Z of the point
is known if the disparity is valid at this position and the
original point can be reconstructed by equation 3 and

(9) X = Z · (x− x0)
f

and Y = Z · (y− y0)
f

.

For pixels whose disparity value refer to a near object point
in front of a specified threshold distance τ target, it is trivial
that the ray given by this pixel is not a suitable flight path.

For other pixels, we define a flight corridor. It is a cylinder
around the known ray with a radius r that is large enough
that a helicopter of given size can fly through, considering
a safety distance to obstacles. The pixel represents a flight
path, if the distance of every object point inside the corridor
is larger than the value of τ target. These points are given by
other pixels of the depth image.

FIG. 8: Flight path and corridor given by a pixel coordinate and
obstacles given by the depth image values.

Our Algorithm to check out if a pixel (xpath,ypath) repre-
sents a valid flight path is a fast calculation if other object
points are inside the flight corridor. It is tested for any other
pixel (x,y) in the depth image if this applies.

It is an easy way to measure distances between points in-
side a plane with the depth Z of the image point (x,y). This
plane intersects with the ray at the point (Xpath,Ypath,Z)
calculated by equation 9. The intersection between the

1330

cylindrical corridor and this plane is an ellipse around
(Xpath,Ypath,Z), the lengths of its semi-axes are

(10)
ax =

√
f 2 +(xpath− x0)2 · r

f and
ay =

√
f 2 +(ypath− y0)2 · r

f ,

dependent on the ray pixel (xpath,ypath). Because the ob-
stacle point (X ,Y,Z) lies also on that plane, it will be inside
the corridor exactly if it is inside the ellipse. For that,

(11)
(X −Xpath)2

a2
x

+
(Y −Ypath)2

a2
y

≤ 1

must be fulfilled. Otherwise, the pixel (x,y) does not rep-
resent a dangerous obstacle for the flight corridor given by
(xpath,ypath). The output of this algorithm is the smallest
distance of an object inside the corridor. If no pixel leads
to a point inside the corridor due to invalid ones, this will
not become a flight path since we have no obstacle infor-
mation at all.

The algorithm is extended with three improvements mak-
ing it much faster. At first, we use the fact that the output
value of the algorithm can only decrease with each new
pixel that is tested. If obstacles with the distance Z have
been found inside the corridor, pixels (x,y) whose dispar-
ity lead to a distance greater or equal to Z can be omitted.

Secondly, the calculation can be stopped when the minimal
object distance reaches or falls below the decision thresh-
old τ target within the search. The coordinate (xpath,ypath)
does not represent a suitable flight path in this case.

The last improvement is to build an image pyramid with
depth images of lower resolution. A new level is created
by summarizing each 2×2 pixel region of the level below
using their maximal disparity value. To calculate the image
pyramid up to level n, the edge lengths must be multiples
of 2n. If needed, the image is increased and filled up with
invalid depth values at the edges. The search for obstacles
inside the corridor starts in the highest pyramid level from
now on. Any pixel there stands for the minimal distance
represented by all pixels in a 2n×2n square of the original
depth image.

For a check if the represented object is inside the corridor
or not, it is sufficient to check the distances of the nearest
and the farthest point of that square relative to (xpath,ypath).
If both are outside, all object points represented by pixels
of this region must be outside the corridor. If both are in-
side, at least one is inside and an obstacle is found. If the
ellipse curve intersects with the square, the four squares
of the previous level are examined as illustrated in figure 9.
This is done recursively down to level zero, i.e. the original
depth image if needed.

4.3 TARGET SELECTION

Each pixel of the depth image can represent a flight path
and it can be determined if this path is free of obstacles up
to a specified distance with the help of the flight corridor.

FIG. 9: Pyramid-based Search. The dark marked pixels or square
regions are fully inside or outside of the ellipse. As seen in (a)
and (b), some regions have to be checked in lower levels and only
in the bottom level (c) it becomes clear if they represent obstacle
points or not.

Additionally, a search space of this algorithm is needed to
specify which pixels of the image could represent flight
targets. Then, the corridor search algorithm is applied to
them. If more than one suitable flight corridor is returned,
they must be compared to choose one as the final target.

4.3.1 Quadtree-based Search

An easy way would be trying for each pixel if there is a free
corridor around the ray the pixel represents. This is very
slow and not usable in a real-time application. Since we
have the information that bright pixels represent obstacles,
omitting them will make the search faster.

The next improvement is a kind of forecast which pixels
could represent targets at all, so it is sufficient to pick out
some dark pixels and not to check everyone. Since usual
depth images will be rather low-textured, free points are
found near other free points and obstacle points near oth-
ers that represent the same object. When some pixels are
skipped in the corridor test, we may lose some good target
points but should find alternatives next to them without loss
of generality, though. Of course, skipping too many pixels
will increase the risk that a free area will not be found, es-
pecially if it is very small.

It is quite efficient to divide the depth image into dark and
bright regions and to check the dark only. The threshold
for partitioning the depth image into dark and bright parts
is given by τ target that divides object points into near and
far ones.

To determine whether an image region is dark or not, the
same image pyramid as described in section 4.2 is used.

1331

The search for dark regions is done between a maximal and
a minimal level of the image pyramid, making this fast and
let the user control the maximal number of possible “free”
regions. If a dark pixel in a high level is found, the lower
levels of this pixel will be ignored. For each found pixel,
representing a square-sized image region of the input depth
image, a corridor is searched around the ray represented by
the center of this region.

FIG. 10: Depth image example and the dark regions found,
marked with squares. Flight Corridors around the center of ev-
ery region are searched.

Valid targets are only these points, where the flight corridor
is free of obstacles up to a specified distance. If more than
one target can be achieved from this image, the target min-
imizing the cost function K(Z,∆αx,∆αy) is chosen, which
is given in equation 12. It is

(12) K(Z,∆αx,∆αy) = cz ·Z + cx ·∆αx + cy ·∆αy

with the distance Z and the horizontal and vertical change
of the flight direction, given by

(13) ∆αx = |αxpath −αxact | and ∆αy = |αypath −αyact |,

based on the spherical angles of the proposed tar-
get (Xpath,Ypath,Zpath) and the actual velocity vector
(Xact ,Yact ,Zact) in camera coordinates. The angles of a
point are

(14)
αx = atan2(X ,Z)

and
αy = atan2(Y,

√
X2 +Z2),

whereby αx is the azimuth and αy the elevation angle. The
actual velocity vector is a part of the navigation data that
can be acquired from the flight control computer.

To prefer corridors with large distances i.e. no near obsta-
cles, the value for cz is negative. Since near obstacles are
not existing in the corridors, we set this value to 0, so that
the corridor with the lowest change of the actual flight di-
rection is chosen. Different values for cx and cy make it
possible to set the priority to the change of heading or the
change of flight altitude.

4.3.2 Target Tracking

The method just described is a search for a target point in
the whole image, even in every new frame when analyzing

image sequences. In our testing videos the “best” target
point can jump from one image side to the other using the
quadtree-based method only. The result is an ambiguous
recommendation for the flight target between succeeding
frames. However, changing the direction smoothly can be
handled much better by any kind of vehicle system.

So what we do is a kind of adaptation what a human would
do for obstacle avoidance intuitively: first look around and
search for a target, but stick to this in future moments with
little corrections when driving. Only change the target if
it becomes useless, e.g. too near, or a previously unseen
obstacle appears in this direction.

Looking around corresponds to the search in the whole im-
age. Pointing and holding one special target is described in
this and the next subsection.

One way is to stare on the object at the actual target direc-
tion and recalculate with every frame, whether a safe flight
is possible. Since the helicopter moves, this object may
not be located on the same pixel coordinate in the next im-
age. By calculating the optical flow, the new position can
be estimated. If a previous target is described by the im-
age coordinates (xt−1,yt−1), the new point (xt ,yt) where a
corridor is searched is given by

(15)
xt = xt−1 + vx
yt = yt−1 + vy

with the optical flow vector (vx,vy) at this point between
the times t −1 and t. This vector is estimated with feature
tracking, using the Lucas Kanade algorithm [10]. Here,
the original images are used instead of the depth images
because of the bad performance of tracking points in low-
textured images without significant features like edges and
corners.

Since a previous coordinate is required, this method is not
applicable with the first image. The target is initialized by
the pixel representing the way straight on or a path searched
by the quadtree method.

4.3.3 Searching near a previous target

Even if the target tracking is good enough to get a smooth
change of the flight direction, it happens often that a safe
flight path cannot be found at the new position and the tar-
get point is lost. Possible reasons are the false estimation
of the optical flow vector, errors in the depth image result-
ing in a wrong corridor calculation or simply the real object
that is coming too close.

In this case, searching for a flight target nearly around the
previous one will result in a more or less gentle transition
between two image frames, contrary to the quadtree-based
search.

As a compromise between performance and accuracy due
to the amount of pixels that are tested or skipped, the search
is done in two steps. At first, a target is searched in a small
circle around the old target point with high precision. If no

1332

suitable way could be found there, the search is extended by
testing pixels inside a larger circle, but with less precision.
If there is again no flight corridor found, the rest of the
image is searched as defined in 4.3.1.

If the previous pixel representing a flight target was
(xt−1,yt−1), candidates for the new target are the pixels
(xt ,yt) fulfilling the equation

(16)
xt − xt−1 ≡ 0 mod d1

∧ yt − yt−1 ≡ 0 mod d1
∧ (xt − xt−1)2 +(yt − yt−1)2 ≤ r2

1

in step 1 or

(17)
xt − xt−1 ≡ 0 mod d2

∧ yt − yt−1 ≡ 0 mod d2
∧ r2

1 < (xt − xt−1)2 +(yt − yt−1)2 ≤ r2
2

in step 2. The parameters d1, d2, r1 and r2 are to specify.

FIG. 11: Example for pixels (black) around the center (xt−1,yt−1)
that are tested for a flight corridor and circles with the radii r1 and
r2. Here, the parameters are d1 = 2, d2 = 4, r1 = 5 and r2 = 19.

If more than one suitable target is behind these pixels, min-
imizing a cost function similar to the equations 12 and 13
finds out the best target point. Instead of the actual velocity
the old target is used as reference in order to stick to this.

4.3.4 Joining the different methods

As a conclusion, the resulting obstacle avoidance method
is the following:

1. Check out the corridor at the position of the pixel rep-
resenting the actual flight velocity vector. If the dis-
tance to an obstacle is far enough, do not change the
direction. This check is done parallel and independent
to an alternative point that is tracked.

2. If 1. fails, search whether the path of a tracked point
is free and change the direction to there if it applies.

3. If 2. fails, search around the previous point for a new
target and change direction to the best suitable path.

4. If 2. and 3. are skipped because no previous target
is available or no path can be found in 3., check the

whole image using the quadtree method. Fly to the
best point that is sufficient.

5. If no point is found at all, stop at the current position.
Instruct the helicopter to hover in place and change
heading until a free area can be detected.

Finally, a target point will be transformed to the helicopter
coordinate system using the equation

(18)

 X f
Yf
Z f

 = R

 Xpath
Ypath
Zpath

+ t

with a 3×3 rotation matrix R and a translation vector t. It is
an Euclidean motion between the two coordinate systems
given through the camera misalignment. This coordinate
(X f ,Yf ,Z f) is sent to the flight control computer that lets
the helicopter move there.

5 EXPERIMENTAL RESULTS

We have finished testing the collision avoidance software
in our “hardware-in-the-loop” simulation where images are
processed in real but the visible scene is generated and
the helicopter flight done by a simulation environment that
considers the behavior of the vehicle.

In this simulation, a generated scene is projected on two
screens and captured by our stereo camera as seen in figure
12. The cameras are connected to the vision computer that
is used on our helicopter and it is unknown for the vision
software that it is a simulation. We also use the original
flight control computer, only the sensors are emulated and
the visible scene is generated from a 3-D model of our real
test area.

FIG. 12: Hardware-in-the-loop simulation by capturing images
from displays showing generated views.

In this test, the helicopter is instructed to change the direc-
tion if an obstacle comes nearer than τ target = 30 meters.
The maximal speed is set to 5m/s, the acceleration rate re-
stricted to 2m/s2. A tree with a diameter of 10 meters is
placed into the scene and the helicopter is set to a flight
path that intersects with this tree.

1333

Figure 13 shows the results of several test flights in compar-
ison to a flight without obstacle avoidance. Here, the heli-
copter is instructed to keep the original heading if possible.
Using images with a size of 320× 240 pixels, a 3.0 GHz
Pentium IV processes between 5 and 20 frames per second
including depth estimation, image improvement, obstacle
avoidance and sending the safe target to the flight con-
troller. Due to noise, the distance measurement is rather in-
accurate but a distinction between obstacles and free areas
is possible, even in smaller images with a size of 160×120
pixels.

�225 �200 �175 �150 �125 �100 �7 5
�80

�60

�40

�20

East [m]

N
or

th
 [m

]

Obstacle

�225 �200 �175 �150 �125 �100 �7 5
�80

�60

�40

�20

East [m]

N
or

th
 [m

]

Obstacle

�225 �200 �175 �150 �125 �100 �7 5
�80

�60

�40

�20

East [m]

N
or

th
 [m

]

Obstacle

FIG. 13: Results of simulated flight tests. Images with resolutions
of 640×480 (top), 320×240 (center) and 160×120 pixels (bot-
tom) are used. The graphs show flown paths from east to west
with (solid lines) and without obstacle avoidance (dotted line) as
reference.

If the distances are measured too high, the helicopter
changes the direction earlier. Otherwise, if the tree is de-
tected late, no alternative way is visible and the vehicle
stops. But the obstacle could be detected in every case and
the helicopter did not hit it at all.

6 CONCLUSIONS

A way to process depth images for collision avoidance is
described. It searches for free areas and, if possible, returns

the best free area of the given image. This leads to a path
without obstacles and an instruction for the helicopter to
move on this. Our tests have shown that this method works
and has a processing speed that is sufficient for this realtime
application.

Even though it produces successful results, there are sev-
eral challenges for improvement. First of all, the algorithm
must become more robust to noise and false information.
Another focus of research is to add obstacle information
into known environment maps and to integrate the colli-
sion avoidance system into a global path planner. The goal
is to navigate autonomously in uncertain areas, finding safe
and optimal paths to waypoints.

REFERENCES
[1] W. E. Green, P. Y. Oh, and G. Barrows: “Flying Insect In-

spired Vision for Autonomous Aerial Robot Maneuvers in
Near-Earth Environments.” Proceedings of the IEEE Inter-
national Conference on Robotics & Automation, pp. 2347-
2352, 2004.

[2] J.-C. Zufferey and D. Floreano: “Optic-flow-based steering
and altitude control for ultra-light indoor aircraft.” Techni-
cal Report, Swiss Federal Institute of Technology in Lau-
sanne (EPFL), 2004.

[3] D. Murray and J. Little: “Using real-time stereo vision for
mobile robot navigation.” University of British Columbia,
1998.

[4] K. Sabe et al.: “Obstacle Avoidance and Path Planning for
Humanoid Robots using Stereo Vision.” Proceedings of the
IEEE International Conference on Robotics & Automation,
pp. 592-597, 2004.

[5] S. Hrabar et al.: “Combined Optic-Flow and Stereo-Based
Navigation of Urban Canyons for a UAV.” Proceedings of
the IEEE International Conference on Intelligent Robots
and Systems, 2005.

[6] J. Dittrich, A. Bernatz and F. Thielecke: “Intelligent
Systems Research using a Small Autonomous Rotorcraft
Testbed”. 2nd AIAA Unmanned Unlimited–Systems, Tech-
nologies and Operations–Aerospace, 2003.

[7] K. Konolige, D. Beymer: “Small Vision System – User’s
Manual” and “Calibration Addendum to the User’s Man-
ual.” Software version 4.1e. SRI International, Menlo Park,
2005.

[8] B. D. Lucas, T. Kanade: “An Iterative Image Registration
Technique with an Application to Stereo Vision.” Interna-
tional Joint Conference on Artificial Intelligence, pp. 674-
679, 1981.

[9] T. D. Cornall and G. K. Egan: “Measuring Horizon Angle
from Video on a Small Unmanned Aerial Vehicle.” 2nd In-
ternational Conference on Autonomous Robots and Agents,
2004.

[10] J.-Y. Bouguet: “Pyramidal Implementation of the Lucas
Kanade Feature Tracker.” Description of the algorithm, In-
tel Corporation, 2000.

1334

	––––––––––––––––––
	Hauptmenü
	zurück zum Inhalt
	––––––––––––––––––
	< zurückblättern
	> weiterblättern
	––––––––––––––––––
	Suchen
	Drucken
	Aktuelle Seite drucken
	––––––––––––––––––
	Thumbnails ein
	Werkzeuge aus/ein
	Menüleiste aus/ein
	––––––––––––––––––
	© 2006 DGLR
	www.dglr.de
	––––––––––––––––––

	DGLRJT: Deutscher Luft- und Raumfahrtkongress 2006
	Vortragsnummer: DGLR-2006-010
	Vortragstitel: Depth Image Processing of Obstacle Avoidance.
	Autoren: F. Andert, G. Strickert et al.

