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Abstract: We propose computationally efficient and numerically reliable algorithms
to compute minimal realizations of periodic descriptor systems. The main compu-
tational tool employed for the structural analysis of periodic descriptor systems
(i.e., reachability and observability) is the orthogonal reduction of periodic matrix
pairs to Kronecker-like forms. Specializations of a general reduction algorithm are
employed for particular type of systems. One of the proposed minimal realization
methods relies exclusively on structure preserving manipulations via orthogonal
transformations for which the backward numerical stability can be proved.
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1. INTRODUCTION

We consider periodic time-varying descriptor sys-
tems of the form

Ekx(k + 1) = Akx(k) + Bku(k)
y(k) = Ckx(k)

(1)

where the matrices Ek ∈ Rµk+1×nk+1 , Ak ∈

Rµk+1×nk , Bk ∈ Rµk+1×m, Ck ∈ Rp×nk , are
periodic with period N ≥ 1, and the dimensions
fulfil the condition

∑N
k=1 µk =

∑N
k=1 nk. We

denote alternatively the periodic system (1) as
the quadruple Σ := (Ek, Ak, Bk, Ck). The absence
of a direct term in the second equation has no
importance for our developments and therefore
we assume the simpler form above for the system
equations.
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Periodic descriptor systems with constant dimen-
sions have been considered in a series of papers
(Conte et al., 1990; Sreedhar and Dooren, 1997;
Sreedhar et al., 1999; Sreedhar and Dooren, 1999).
This type of system may naturally arise even in
the context of standard periodic systems, when,
for instance, forming an inverse or a conjugate pe-
riodic system. Moreover, intermediary computa-
tions, as for example, in designing fault detectors
for periodic systems (Varga, 2004d) or solving pe-
riodic model-matching problems lead to periodic
descriptor system representations.

From the beginning we would like to emphasize
the importance of considering the more general
case of time-varying dimensions. The development
of general algorithms able to address the case
of time-varying dimensions, was one of the re-
quirements formulated for a satisfactory numer-
ical algorithm for periodic systems (Varga and
Dooren, 2001). However, one even more impor-
tant reason is intrinsic to the minimal realization
problem itself. It is well known that the minimal



realization (i.e., reachable and observable) of stan-
dard periodic systems (i.e., Ek = Ink+1

) have, in
general, time-varying state dimensions (Colaneri
and Longhi, 1995; Gohberg et al., 1999). As it
will be apparent in Sections 3 and 4 the minimal
realization of periodic descriptor systems leads
generally to rectangular descriptor matrices Ek

even in the case of originally constant dimensions.

Although standard periodic systems with time-
varying dimensions have been already considered
earlier in (Grasselli and Longhi, 1991b; Gohberg
et al., 1992), only recently, numerically reliable
algorithms for such systems have been devel-
oped. Relevant examples are the algorithms for
the computation of periodic Kalman reachability
and observability forms (Varga, 2004a), compu-
tation of minimal periodic realizations (Varga,
1999; Varga, 2004c), or the evaluation of the
lifted transfer-function matrix of a periodic sys-
tem (Varga, 2003). Recently, the first algorithms
have been proposed for the more general periodic
descriptor systems with time-varying dimensions,
as for example, the computation of system zeros
(Varga and Van Dooren, 2003) or the evaluation
of L∞-norm of a periodic system (Varga, 2006).

In this paper we propose computationally efficient
and numerically reliable approaches to compute
minimal realizations of periodic descriptor sys-
tems. The proposed algorithms employ similar-
ity transformations to bring the system matri-
ces in condensed forms which allow to eliminate
redundant non-reachable and/or non-observable
parts of the system. The main computational
tool employed for the structural analysis of pe-
riodic descriptor systems is the orthogonal re-
duction of periodic matrix pairs to Kronecker-
like forms (Varga, 2004b). Specializations of the
general reduction algorithm are employed for
particular type of systems (e.g., backward- or
forward-time systems), to separate non-reachable
and non-observable parts, or to compute back-
ward/forward spectral separations. One of the
two proposed minimal realization methods re-
lies exclusively on structure preserving manipula-
tions via orthogonal transformations for which the
backward numerical stability can be proved. Al-
though the structural analysis of periodic descrip-
tor systems with constant dimensions has been ad-
dressed by several authors using geometric meth-
ods (Conte et al., 1990) or the backward/forward
separation technique (Coll et al., 2004; Chu et
al., 1995), none of these theoretical methods are
suited for reliable numerical computations.

2. MINIMAL REALIZATION PROBLEM

We formulate the minimal realization problem for
the periodic system (1) in terms of the associated

lifted transfer-function matrix (TFM). We also
discuss shortly the relevant aspects related to
the solvability to guarantee the existence of the
associated TFM.

To define the associated lifted TFM for the system
Σ = (Ek, Ak, Bk, Ck), we employ the lifting tech-
nique introduced in (Grasselli and Longhi, 1991a)
for constant dimensions to build an equivalent
time-invariant descriptor system with the input,
state and output vectors defined over time inter-
vals of length N , rather than 1. For a given sam-
pling time k, the corresponding mN -dimensional
input vector, pN -dimensional output vector and
(
∑N

k=1 nk)-dimensional state vector are

uS
k (h) = [uT (k + hN) · · ·uT (k + hN + N − 1)]T ,

yS
k (h) = [yT (k + hN) · · · yT (k + hN + N − 1)]T ,

xS
k (h) = [xT (k + hN) · · ·xT (k + hN + N − 1)]T .

The corresponding constant descriptor system has
the form

LkxS
k (h + 1) = FkxS

k (h) + GkuS
k (h)

yS
k (h) = HkxS

k (h)
(2)

where Gk = diag(Bk, Bk+1, ..., Bk+N−1), Hk =
diag(Ck, Ck+1, ..., Ck+N−1) and

Fk − zLk =




Ak −Ek O · · · O

O
. . .

. . .
. . .

...
...

. . .
. . .−Ek+N−3 O

O
. . . Ak+K−2 −Ek+N−2

−zEk+N−1 O · · · O Ak+N−1




(3)

Assuming the square pencil Fk − zLk is regular
(i.e. det(Fk − zLk) 6≡ 0), the TFM of the lifted
system at time k is

WΣ
k (z) := Hk(zLk − Fk)−1Gk. (4)

Obviously WΣ
k+N (z) = WΣ

k (z) and the TFMs
at two successive values of k are related by the
relation

WΣ
k+1(z) =

[
0 Ip(N−1)

zIp 0

]
WΣ

k (z)

[
0 z−1Im

Im(N−1) 0

]
.

It is easy to show that if Qk and Zk are invertible
periodic matrices of appropriate orders then the
two systems Σ = (Ek, Ak, Bk, Ck) and Σ̃ =
(QkEkZk+1, QkAkZk, QkBk, CkZk) related by a
similarity transformation have the same TFMs,

i.e., WΣ
k (z) = W Σ̃

k (z), k = 1, . . . , N .

The minimal realization problem (MRP) can be
formulated as follows: Given the periodic system
(1) defined by Σ = (Ek, Ak, Bk, Ck) of state
dimensions nk, k = 1, . . . , N determine a periodic
system Σ = (Ek, Ak, Bk, Ck) of least order state
dimensions nk ≤ nk, k = 1, . . . , N such that

WΣ
k (z) = WΣ

k (z), k = 1, . . . , N .

To compute minimal realizations, we will only em-
ploy similarity transformations to achieve various



compressions of system matrices leading to di-
mensional reductions. Further reduction of order
achieved by eliminating non-dynamic parts is not
considered in this paper.

Before we start presenting the computational ap-
proaches we discuss shortly the significance of
the regularity assumption of the pencil Fk − zLk.
The solvability conditions of system (1) for ar-
bitrary inputs have been discussed in (Conte et
al., 1990; Sreedhar and Dooren, 1999) and are
equivalent to regularity condition established by
Luenberger (1977). In accordance with this, we
say the system (1) is regular if the associated
pencil Fk −zLk is regular, that is, it has no left or
right Kronecker structure. In what follows we will
assume throughout the paper that the solvability
condition is fulfilled.

To check the regularity of the pencil Fk − zLk

we can use the fast structure exploiting method
as proposed for zeros computation to separate
a low-order subpencil with the same left/right
Kronecker structure as Fk − zLk (Varga and
Van Dooren, 2003). Alternatively, the structurally
stable reduction of the periodic pair (Ak, Ek) to
a periodic Kronecker-like form can be performed
using the algorithm proposed in (Varga, 2004b). If
this pair has no left or right Kronecker structure,
then the periodic descriptor system (1) is solvable.

3. FORWARD/BACKWARD
DECOMPOSITION BASED TECHNIQUES

The backward/forward separation technique for
structural analysis of peridic descriptor systems
with constant dimensions has been considered in
(Coll et al., 2004; Chu et al., 1995). This technique
can be employed to compute minimal realizations
as follows. First compute an additive decompo-
sition of the system Σ into Σf , representing the
forward (or proper) part, and Σb representing the
backward (or improper) part, such that W Σ

k (z) =

W
Σf

k (z)+WΣb

k (z), k = 1, . . . , N . In a second step,
minimal realization of each part are computed
using special algorithms to compute appropriate
reachability/observability staircase forms. In what
follows we discuss in some details the main steps
of this approach.

3.1 Forward/backward decomposition

A computational algorithm to perform this de-
composition for constant dimensions has been
proposed in (Sreedhar and Dooren, 1997) based
on the periodic generalized Schur decomposi-
tion of the periodic pair (Ak, Ek) (Bojanczyk et
al., 1992). The forward/backward separation is

achieved by employing eigenvalue reordering tech-
niques, a procedure which is generally considered
not being the best numerical approach because
of possible eigenvalue sensitivity problems in the
case of multiple eigenvalues.

As an alternative, we sketch an enhanced pro-
cedure based on the separation of finite-infinite
structures which is automatically achieved by ap-
plying the basic reduction procedure of (Varga,
2004b) to the periodic pair (Ak, Ek). The result of
this reduction are orthogonal N -periodic matrices
Qk and Zk such that

Ãk := QkAkZk =

[
Ab

k A
bf
k

0 A
f
k

]
,

Ẽk := QkEkZk+1 =

[
Eb

k E
bf
k

0 E
f
k

]

where, for k = 1, . . . , N , Ab
k ∈ Rnb

k×nb
k is up-

per triangular and nonsingular, Eb
k ∈ Rnb

k×nb
k+1

has the part formed from the trailing non-zero

columns of full-column rank, A
f
k ∈ Rn

f

k+1
×n

f

k ,

and E
f
k ∈ Rn

f

k+1
×n

f

k+1 is upper triangular and
nonsingular.

In a second step, we determine periodic matrices
Lk and Rk such that

[
Ab

k 0

0 A
f
k

]
:=

[
I Lk

0 I

] [
Ab

k A
bf
k

O A
f
k

] [
I Rk

0 I

]

[
Eb

k 0

0 E
f
k

]
:=

[
I Lk

0 I

] [
Eb

k E
bf
k

O E
f
k

] [
I Rk+1

0 I

]

by solving the periodic generalized Sylvester sys-
tems of equations

Ab
kRk + LkA

f
k = −A

bf
k

Eb
kRk+1 + LkE

f
k = −E

bf
k

}
, k = 1, . . . , N

To solve the above equation there is presently no
general algorithm available in the case of time-
varying dimensions. However, since the upper tri-
angular E

f
k is invertible, it is possible to eliminate

Lk from the second set of equations

Lk = −(Ebf
k + Eb

kRk+1)(E
f
k )−1

and replace it in the first one

Ab
kRk − Eb

kRk+1(E
f
k )−1A

f
k =−A

bf
k + E

bf
k (Ef

k )−1

which is a periodic generalized Sylvester equation
of the form considered in (Byers and Rhee, 1995)
for constant dimensions. We believe that it is
straightforward to derive a general algorithm to
solve the above equations with time-varying di-
mensions by extending the approach proposed in
(Byers and Rhee, 1995). Note that the above peri-
odic generalized Sylvester equation can be further
reduced to a more standard form (although still
involving time-varying dimensions) by employing
that Ab

k is also invertible (and upper triangular).



The resulting equations can be solved by extend-
ing the methods for solving periodic Lyapunov
equations in (Varga, 1997).

If we apply the overall transformation matrices to
Bk and Ck we obtain after appropriate row and
column partitioning

[
I Lk

0 I

]
QkBk :=

[
Bb

k

B
f
k

]

CkZk

[
I Rk

0 I

]
:=

[
Cb

k C
f
k

]

The original periodic system (1) has been addi-
tively decomposed in the backward part defined
by the quadruple Σb := (Eb

k, Ab
k, Bb

k, Cb
k) and the

forward part defined by Σf := (Ef
k , A

f
k , B

f
k , C

f
k ).

The analysis of each of these parts can be per-
formed by extending or adapting the techniques
of (Varga, 2004a) to the periodic descriptor rep-
resentations with invertible Ek or invertible Ak.

Since the backward/forward separation involves
using non-orthogonal transformation, the numeri-
cal reliability of this approach depends on the con-
ditioning of the employed transformations. This
can be easily assessed by simply evaluating the
norms of matrices Lk and Rk. If this norms are
large, then the separation is expected to be inac-
curate and the alternative technique presented in
the next section is a more appropriate.

3.2 Minimal realization of forward part Σf

To solve the MRP for the forward subsystem
Σf := (Ef

k , A
f
k , B

f
k , C

f
k ) with state dimensions

n
f
k , k = 1, . . . , N , it is possible to reduce

this system to an equivalent standard system
(I

n
f

k+1

, (Ef
k )−1A

f
k , (Ef

k )−1B
f
k , C

f
k ) and apply the

minimal realization procedure of (Varga, 2004a).
Alternatively, a numerically more reliable ap-
proach is to extend the algorithms for Periodic
Kalman Reachability Decomposition (PKRD) and
Periodic Kalman Observability Decomposition
(PKOD) to the descriptor system representation

Σf , where additionally we can assume that E
f
k is

upper triangular.

The extension of the PKRD algorithm to the
descriptor case is also discussed in (Varga, 2004a,
Remark 3.). The result of applying the extended
algorithm PKRD to the periodic system Σf is an

equivalent system Σ̃f = (Ẽf
k , Ã

f
k , B̃

f
k , C̃

f
k ) with the

matrices having the following forms (generalized
periodic Kalman reachability decomposition)

Ẽ
f
k =

[
E

f,r
k ∗

0 E
f,r
k

]
, Ã

f
k =

[
A

f,r
k ∗

0 A
f,r
k

]
,

B̃
f
k =

[
B

f,r
k

0

]
, C̃

f
k = [Cf,r

k C
f,r
k ]

where E
f,r
k ∈ Rr

f

k+1
×r

f

k+1 is invertible and up-

per triangular, A
f,r
k ∈ Rr

f

k+1
×r

f

k , r
f
k is the di-

mension of the corresponding reachability sub-
space at time k and the periodic system Σr

f :=

(Ef,r
k , A

f,r
k , B

f,r
k , C

f,r
k ) is completely reachable and

W
Σf

k (z) = W
Σr

f

k (z). Moreover, the resulting ma-

trices [Bf,r
k A

f,r
k ] are in a staircase form, with the

structure described in (Varga, 2004a).

Important remark: Preserving the upper trian-
gular form of resulting Ẽ

f
k during the row com-

pressions involved in the extended PKRD algo-
rithm of (Varga, 2004a) is a key aspect to guaran-
tee a satisfactory worst-case computational com-
plexity of O(Nn3), where n is an upper bound on
the state space dimensions. The basic technique is
the same as described in (Varga, 1990).

We can further apply the extension of Algorithm
PKOD of (Varga, 2004a) to the reduced periodic

system Σr
f := (Ef,r

k , A
f,r
k , B

f,r
k , C

f,r
k ) to obtain an

equivalent system Σ̃r
f := (Ẽf,r

k , Ã
f,r
k , B̃

f,r
k , C̃

f,r
k )

with the matrices having the following forms (gen-
eralized periodic Kalman observability decompo-
sition)

Ẽ
f,r
k =

[
E

f,ro
k ∗

0 E
f,ro
k

]
, Ã

f,r
k =

[
A

f,ro
k ∗

0 A
f,ro
k

]
,

B̃
f,r
k =

[
B

f,ro
k

B
f,ro
k

]
, C̃

f,r
k = [Cf,ro

k 0 ]

where E
f,ro
k ∈ Rq

f

k+1
×q

f

k+1 is invertible and upper

triangular, A
f,ro
k ∈ Rq

f

k+1
×q

f

k , q
f
k is the dimension

of the corresponding observability subspace at
time k and the periodic system

Σro
f := (Ef,ro

k , A
f,ro
k , B

f,ro
k , C

f,ro
k )

is completely reachable and completely observ-

able, and satisfies W
Σf

k (z) = W
Σro

f

k (z).

3.3 Minimal realization of backward part Σb

To solve the MRP for the backward subsys-
tem Σb := (Eb

k, Ab
k, Bb

k, Cb
k) with state dimen-

sions n
f
b , k = 1, . . . , N we apply the same al-

gorithms to the dual forward system defined
as ΣD := (Ab

N−k+1, E
b
N−k+1, B

b
N−k+1, C

b
N−k+1).

The resulting system

Σro
D := (Ab,ro

N−k+1, E
b,ro
N−k+1, B

b,ro
N−k+1, C

b,ro
N−k+1)

is completely reachable and completely observable
and its dual represents a minimal realization of Σb

as

Σro
b := (Eb,ro

k , A
b,ro
k , B

b,ro
k , C

b,ro
k )



3.4 Solution of MRP

The minimal realization Σro of the system Σ
can be assembled as Σro := (Ero

k , Aro
k , Bro

k , Cro
k ),

where

Ero
k =

[
E

b,ro
k 0

0 E
f,ro
k

]
, Aro

k =

[
A

b,ro
k 0

0 A
f,ro
k

]
,

Bro
k =

[
B

b,ro
k

B
f,ro
k

]
, Cro

k =
[
C

b,ro
k C

f,ro
k

]

4. GENERALIZED PERIODIC KALMAN
DECOMPOSITIONS BASED METHOD

The second approach we propose is inspired by the
method described in (Van Dooren, 1981) for stan-
dard descriptor systems and essentially concerns
with the structured reduction of the periodic pair
(Sk, Tk)

Sk :=
[
Bk Ak

]
, Tk :=

[
0 Ek

]
(5)

to a periodic Kronecker-like form in which the
completely reachable part and the part contain-
ing the input-decoupling zeros are separated. By
deleting the part containing the input decoupling
zeros, a reachable realization can be computed.

We present in more detail the reduction of the
pair (Sk, Tk) defined by (5) which allows the

elimination of the non-reachable part. Let U
(1)
k be

a periodic orthogonal state-space transformation

such that U
(1)
k compresses Bk to a full row rank

matrix

U
(1)
k Bk :=

[
Bk,1

0

]
, (6)

where Bk,1 has full row rank νk. We apply the

transformation to Sk and Tk and partition U
(1)
k Ek

and U
(1)
k Ak according to the row partitioning of

U
(1)
k Bk in (6)

U
(1)
k Sk :=

[
Bk,1 Ak,1

0 Ak,2

]
, U

(1)
k Tk :=

[
0 Ek,1

0 Ek,2

]

We now apply to the reduced periodic pairs
(Ak,2, Ek,2) the periodic Kronecker-like algorithm
of (Varga, 2004b). Note that this pair has no
left Kronecker structure since the original pair
(Sk, Tk) does not have either (guaranteed by the
regularity assumption). We obtain periodic or-

thogonal matrices U
(2)
k and Vk such that

U
(2)
k Ak,2Vk =

[
Br

k,1 Ar
k,1 ∗

0 0 Ar
k

]
,

U
(2)
k Ek,2Vk+1 =

[
0 Er

k,1 ∗

0 0 Er
k

]
,

where the periodic pair
(
[Br

k,1 Ar
k,1 ], [ 0 Er

k,1 ]
)

has only right Kronecker structure, with [Br
k,1 Ar

k,1 ]
full row rank and in a staircase form, Er

k,1 square,

upper-triangular and invertible, and the pair
(Ar

k, Er
k) is regular (i.e., has no left or right Kro-

necker structures). The corresponding generalized
eigenvalues represent the input-decoupling zeros
of the system (Varga and Van Dooren, 2003).

Overall we have with Uk := diag
(
Iνk

, U
(2)
k

)
U

(1)
k

UkEkVk+1 =




Ek,11 ∗ ∗

0 Er
k,1 ∗

0 0 Er
k


 :=

[
Er

k ∗

0 Er
k

]
,

UkAkVk =




Ak,11 ∗ ∗

Br
k,1 Ar

k,1 ∗

0 0 Ar
k


 :=

[
Ar

k ∗

0 Ar
k

]
,

UkBk =




Bk,1

0
0


 :=

[
Br

k

0

]
, CkVk =

[
Cr

k Cr
k

]

It can be easily shown using similar arguments as
in the constant system case (Van Dooren, 1981)
that the reduced system defined as

Σr := (Er
k, Ar

k, Br
k, Cr

k)

is completely reachable (i.e., the corresponding
periodic pair (Sk, Tk) in (5) has only right Kro-

necker structure). The resulting system Σ̃ :=
(UkEkVk+1, UkAkVk, UkBk, CkVk) is in a gener-
alized periodic Kalman reachability decomposition
form, where [Br

k Ar
k ] is full row rank and is in a

staircase form, and [Br
k Er

k ] has full row rank.

In a dual setting, the periodic pairs (Sr
k, T r

k ) with

Sr
k :=

[
Ar

k

Cr
k

]
, T r

k :=

[
Er

k

0

]
(7)

can be reduced to a Kronecker-like form in which
the completely observable part and the part con-
taining the output-decoupling zeros are separated.
By deleting the part corresponding to the output
decoupling zeros, a minimal order realization can
be computed. The resulting reduced system

Σro := (Ero
k , Aro

k , Bro
k , Cro

k )

is both reachable and observable, and thus mini-
mal.

Note that in contrast to the approach based
on backward/foward decomposition, this method
relies exclusively on orthogonal transformations.
Thus, it is possible to prove that the computed
matrices of the minimal realization are exact for
slightly perturbed original matrices. It follows
that this algorithm is backward numerically sta-
ble.

The overall worst-case computational complexity
of the algorithm is O(N(n3+mn2+pn2)) which in-
dicates that, in light of requirements formulated in
(Varga and Dooren, 2001), the proposed approach
is satisfactory.



5. CONCLUSION

We proposed computationally efficient and nu-
merically reliable algorithms to determine min-
imal realizations of periodic descriptor systems.
The main advantage of the backward/forward sep-
aration based method is the additional structural
insight which can be gained by separately ana-
lyzing the proper and improper parts. Although
not numerically stable, still the method can be
considered numerically reliable because possible
instabilities caused by ill-conditioned transforma-
tions can be easily detected. The second approach
uses exclusively orthogonal transformations and
thus its numerical stability can be proven. Both
methods employ powerful analysis techniques re-
lying on the computation of periodic Kronecker-
like forms (Varga, 2004b). For efficient and robust
software implementations a specialization of the
underlying algorithms is highly recommended.
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