
Efficient Algorithms for Solution of the Adjoint Compressible
Navier-Stokes Equations with Applications

Richard P. Dwight ∗, Joël Brezillon, Daniel B. Vollmer
German Aerospace Center (DLR), Lilienthalplatz, 7, Braunschweig, D-38108 Germany.

Abstract

The complete discrete adjoint equations for an unstructured finite volume compressible Navier-Stokes solver are discussed with
respect to the memory and time efficient evaluation of their residuals, and their solution. It is seen that application of existing
iteration methods for the non-linear equation - suitably adjointed - have a property of guaranteed convergence provided that the non-
linear iteration is well behaved. For situations where this is not the case, a stabilization method based on the Recursive Projection
Method is developed. The resulting adjoint solver is applied to 3D optimization of a turbulent wing-fuselage configuration, as well
as to goal-oriented adaptation using an error representation formula.

Key words: discrete adjoint, recursive projection method, eigensystem analysis, aerodynamic optimization, error estimation

1. Introduction

The adjoint equations are enjoying increasing impor-
tance in the field of computational aerodynamics, as em-
phasis shifts from the modelling of physical phenomena to
their control and optimization. These applications intro-
duce a class of minimization problems to the field, where
the extremal value of some functional of the flow solution
in some parameter space is desired. The parameterization
of three dimensional aircraft geometries can involve many
hundreds of design parameters however [1], and all efficient
solution approaches rely on gradients of the functional in
the design space. The gradients themselves can only be ef-
ficiently evaluated using adjoint methods [2].

As optimization becomes more widely used the question
of the accuracy of the flow solver becomes more important.
In particular quantitative bounds on the error in function-
als are essential for establishing whether a given optimiza-
tion is physically meaningful. Recently several techniques
have been developed which represent the error in a func-
tional as a product of an adjoint field and a residual [3,4],

∗ Corresponding author.
Email addresses: richard.dwight@dlr.de (Richard P. Dwight),

joel.brezillon@dlr.de (Joël Brezillon), daniel.vollmer@dlr.de
(Daniel B. Vollmer).

URL: http://www.maths.man.ac.uk/~rdwight (Richard P.

Dwight).

giving a rapid means of establishing accuracy and identify-
ing how it may be improved.

But solving the adjoint equations is a problem at least as
hard as solving the original flow equations and - as will be
seen - often significantly harder. Although it is possible to
apply the same methods used for the non-linear problem,
Section 4, often these do not converge due to small dis-
crepancies between the adjoint and the original problem. It
then becomes necessary to apply some stabilization to the
iteration, Section 5.

We forego a detailed description of the compressible
Navier-Stokes equations and their unstructured finite vol-
ume discretization in the DLR TAU-Code, referring the
interested reader to [5,6], and note only that the method
uses the Jameson-Schmitt-Turkel (JST) flux with scalar
artificial dissipation [7] and the one-equation Spalart-
Allmaras turbulence model with Edwards modification [8].
The resulting semi-discrete system is written simply

dW

dt
+ R (W,α) = 0, (1)

where W is the vector of unknown flow variables, α is some
arbitrary scalar parameter of the flow problem or geometry,
t is the time and R is denoted the residual. Given this we
are interested in formulating and solving linear systems of
the form

∂R

∂W
Θ = −∂R

∂α
, (2)

Preprint submitted to Elsevier 18 September 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/11131269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

for unknowns Θ, the primal equation, and more especially[
∂R

∂W

]T

Λ = −
[

∂I

∂W

]T

, (3)

for unknowns Λ and scalar cost function I(W,α), the ad-
joint equation. We denote ∂R/∂W the Jacobian and the
term linear problem will refer to either (2) or (3). Given the
solution to one of these, the derivative of I with respect to
α may be written

dI

dα
=

∂I

∂α
+

[
∂I

∂W

]T

Θ =
∂I

∂α
+ ΛT ∂R

∂α
, (4)

whereby evaluating this expression for m different α and n
different I requires either m solutions of (2) or n solutions of
(3). For typical aerodynamic optimization problems m �
n, as we are concerned with a few output forces, and the
parameterization of 3d geometries, and the adjoint becomes
significantly more efficient.

2. Approximation of the Jacobian

The convective terms within (1) are discretized using the
JST scheme, the numerical Riemann flux across a face {ij}
with normal vector nij being written,

f̂c
ij =

1
2

(
fc(Wi) + fc(Wj)

)
· nij (5)

− 1
2

∣∣λc
ij

∣∣ {
ε
(2)
ij (Wj −Wi)− ε

(4)
ij (Lj(W)− Li(W))

}
,

where fc is the exact convective flux, |λc| is the maximum
local convective eigenvalue, ε(2,4) control the switching be-
tween 1st- and 3rd-order dissipation, and

Li(W) =
∑

k∈N(i)

(Wk −Wi), (6)

where N(i) is the set of all immediate neighbours of grid
point i. A complete linearization of this flux may be found
in [6], and covers three full pages. More problematic than
this is that its stencil includes not only immediate, but also
next-neighbouring points, and the Jacobian therefore has
next-neighbour fill-in.

In previous work in 2d [9] this Jacobian was stored ex-
plicitly. Restarted GMRES was applied with an ILU(4) pre-
conditioner as a solution method. This scheme provided an
adjoint solution in approximately 5% of the time required
for the non-linear field, but required a factor of 11 times
more memory than the standard solver. This approach is
no longer tenable in 3d as the memory requirements given
in Table 1 show. This table was generated empirically by
running the sequential codes for one 2d and one 3d turbu-
lent test case with an LU-SGS smoothed 3W multigrid cy-
cle. The discrepancy between the two sets of results is due
to the much increased number of faces in 3d. Notable is the
memory usage of the original non-linear code; we believe

1.2 million points in 1GB of memory is unusually efficient
for an unstructured solver. On the other hand, mere storage
of the full Jacobian in 3d (without the additional memory
needed by ILU and GMRES) multiplies the memory costs
of the code by a factor of 13.5. Even though the approach
reduces evaluation of the linear residual to a matrix-vector
multiplication, this is a factor 1.7 times more expensive to
evaluate than the non-linear residual due to the memory
bandwidth bottleneck.

To alleviate these deficiencies the following device is in-
troduced: by making the assumption that the ε and |λ| are
constant, a simplification of the adjoint residual is possi-
ble [9,10]. Treat L as an independent variable, so that the
derivative and adjoint of (5) may be written respectively

df̂c

dW
=

∂f̂c

∂W
+

∂f̂c

∂L

∂L

∂W
, (7)[

df̂c

dW

]T

=

[
∂f̂c

∂W

]T

+
[

∂L

∂W

]T
[

∂f̂c

∂L

]T

, (8)

whereby all matrices on the right-hand sides of these
equations have immediate neighbour fill-in only. Further
∂f̂c/∂L is a multiple of the identity at each grid face
and ∂L/∂W is trivial. If ∂L/∂W is calculated on-the-fly,
memory requirements are only slightly greater than those
required for a single Jacobian with immediate neighbour
fill-in.

Also the matrices may be stored very naturally on the
edges and nodes of the grid, given which the adjoint residual
may be evaluated in two loops over all edges by introducing
an intermediate variable Λ∗ as follows:

Λ∗ =

[
∂f̂c

∂L

]T

Λ, (9)

[
df̂c

dW

]T

Λ =

[
∂f̂c

∂W

]T

Λ +
[

∂L

∂W

]T

Λ∗. (10)

Since viscous and turbulence diffusion fluxes are used which
involve only gradients normal to grid faces (the so-called
Thin Shear-Layer discretization), the remaining terms of
the Jacobian contain only immediate neighbour informa-
tion and may be formed exactly. The performance of the
resulting method is given in the third column of Table 1, of
particular importance being the factor 4 increase in mem-
ory, which is considered acceptable. If it happens to be un-
acceptable there remains the option of computing the Ja-
cobian on-the-fly, giving a code of similar memory require-
ments to the original, but with a linear residual three times
more expensive than the non-linear residual.

The assumption of constant dissipation coefficients nec-
essarily affects the accuracy of the adjoint solution, however
this error was systematically investigated in [9] together
with several other Jacobian approximations, and found to
be insignificant for the purposes of gradient evaluation and
optimization. A theoretical rationale for this result was pro-
vided in [6]. Note also that - depending on the form of the

2

Table 1

The memory requirements and run-time of the standard code and

two linearized versions of the code for representative 2d (hybrid 28k
points) and 3d (hybrid 120k points) grids.

Standard TAU Full Jac. a Reduced Jac. a

Memory (Bytes) 2d 12M 100M 44M

Factor increase 2d ×1.0 ×8.3 ×3.7

Points in 1GB 2d 2.3× 106 280× 103 640× 103

Time res. eval 2d ×1.0 ×1.3 ×0.7

Time Jac. eval 2d - ×26.2 ×2.6

Memory (Bytes) 3d 100M 1350M 400M

Factor increase 3d ×1.0 ×13.5 ×4.0

Points in 1GB 3d 1.2× 106 89× 103 300× 103

Time res. eval 3d ×1.0 ×1.7 ×0.6

Time Jac. eval 3d - ×28.0 ×3.0

a Complete code, using same iterative procedure as standard TAU.

ε - by choosing suitable intermediate variables it may pos-
sible to treat the complete dissipation operator in a simi-
lar manner, so that no constant coefficient approximation
must be made. This step was considered unnecessary given
the results of [9].

3. Parallelization of the Adjoint Code

Parallelization of the adjoint residual code does not fit
easily into the pattern established by parallelization of the
original code. This latter follows a domain decomposition
approach, the global grid is divided into n non-overlapping
point sets K = {K1,K2, . . . ,Kn}, each of which is supple-
mented by all points which immediately neighbour a point
in the set and are not in the set themselves:

K̂m = {i ∈ K\Km : ∃ j ∈ Km s.t. i ∈ N(j)}, (11)

to give domains Dm = (Km, K̂m). Variables defined at
points in K̂m are copied from their native domain after
they have been updated there, and before they are needed
in Dm. This parallel copying operation is the only parallel
operation needed on variables defined at grid points. The
variables defined at K̂m are never modified within Dm.

To illustrate the difficulty with parallelization of adjoint
consider the code sample

yi := xj − xi, (12)

evaluated on domain Dm and (borrowing the notation of
algorithmic differentiation, see e.g. [2]) its adjoint

x̄i := −ȳi, x̄j := ȳi. (13)

If i, j ∈ Km there is no difficulty, but if i ∈ Km and j ∈
K̂m (j ∈ Kl say), then the code requires that a point in
K̂m be updated. There are two possible approaches: either
transfer the second operation of (13) to Dl, or perform it
within Dm and communicate the result “backwards” to Dl.

In most circumstances the former is more natural, but in
situations where the stencil is not symmetric, e.g. where
there is no corresponding yj := xi − xj to (12) above, the
latter can be simpler. For the second approach it should
also be carefully noted that a single point may receive con-
tributions from multiple neighbouring domains during one
“backward” communication. In any case, each such occur-
rence must be explicitly handled if the parallelized code is
to be correct.

As an example, in the present effort ∂f̂c/∂W is not trans-
posed in memory as would be required for evaluation of
Radj

j := [∂f̂c
i /∂Wj]T Λi local to Dl. Rather Radj

j is evaluated
on Dm and communicated. The complete resulting parallel
adjoint code has negligibly more communication than the
original code and therefore scales similarly with number of
processors.

4. Application of Existing Fixed-Point Iterations

Efficient solution methods for the non-linear problem (1)
have been an important topic of research for some time, and
significant experience has been gained in this area. Most
methods currently in use employ some form of fixed-point
iteration (FPI), a class of methods including Runge-Kutta,
multigrid and implicit schemes, which may all be written

M(Wn+1 −Wn) = −R(Wn), (14)

for some preconditioning matrix M . Given the level of
advancement of these techniques, it is worth considering
whether they can be applied to the solution of the corre-
sponding linear equations. In fact by rearranging (14), and
linearizing about W̃ , where R(W̃) = 0, we have

Wn+1 = (I −M−1A)Wn + g(W̃) + O‖Wn − W̃‖2, (15)

where A is the Jacobian evaluated at the exact solution and
g(·) is some function independent of n. The relation to the
linearized problem is immediately apparent, and informed
by this we consider the FPI

M(Θn+1 −Θn) =
∂R

∂α
−AΘn, (16)

or rearranged:

Θn+1 = (I −M−1A)Θn + M−1 ∂R

∂α
. (17)

The coefficients of Wn and Θn in these two iterations are
identical, so we can conclude that - for a sufficiently con-
verged non-linear iteration - the errors reduce at the same
rate; i.e. the asymptotic convergence behaviour is identi-
cal. However this is only true if A is the exactly formulated
Jacobian based on a highly converged non-linear solution.
The rate of convergence itself is given by the dominant
eigenvalue of (I −M−1A).

To achieve the same for the adjoint equation consider the
FPI

MT (Λn+1 − Λn) =
[

∂I

∂W

]T

−AT Λn, (18)

3

so that

Λn+1 = (I −M−T AT)Λn + M−T

[
∂I

∂W

]T

. (19)

where M−T denotes the inverse transpose of M . Since any
real matrix and its transpose have identical eigenspectra,
the asymptotic convergence rate of (19) will be the same
as that of (17).

Further, by requiring that Θ0 = Λ0 = 0, and expanding
(17) and (19) to the Nth iteration we have respectively

ΘN+1 =−
N∑

n=0

(I −M−1A)nM−1 ∂R

∂α
, (20)

ΛN+1 =−
N∑

n=0

(I −M−T AT)nM−T

[
∂I

∂W

]T

, (21)

given which it quickly follows that

[
ΛN+1

]T ∂R

∂α
=

[
∂I

∂W

]T

ΘN+1, (22)

i.e. that the primal and adjoint results for dI/dα will be
identical not only after the equations have fully converged,
but also at every intermediate step.

These two properties: identical asymptotic convergence,
and a relation on the transient convergence, are very desir-
able. The first effectively provides a guarantee that, given
convergence of the non-linear problem, the linear problem
will also converge. Ideally this would mean that the level
of intervention required from a user of the code to run the
linear code subsequent to the non-linear code is minimal;
CFL numbers and such do not need to be adjusted. The
second property, which holds to working accuracy, aids de-
velopment of the adjoint code considerably by providing a
means of verifying that the Jacobian and FPI have been
correctly adjointed. For example this test revealed that the
Laplacian residual smoothing present in the Runge-Kutta
algorithm was not quite symmetric, as might have been ex-
pected.

In the present work the approximately factored implicit
LU-SGS scheme [6,11] is adjointed. Written

(D̃ + L̃)D̃−1(D̃ + Ũ)x = b, (23)

where D̃, L̃ and Ũ are the block diagonal, lower triangular
and upper triangular parts respectively of an approximate
1st-order Jacobian Ã. The LHS matrix clearly identifies
with M . The corresponding adjoint iteration is therefore

(D̃ + Ũ)T D̃−T (D̃ + L̃)T x = b, (24)

where the order of the forward and backward sweeps has
been reversed by the application of the transpose. Simi-
larly the adjoint of linear multigrid may be found by writ-
ing the iteration in matrix notation and transposing. As a
result, the transpose of the original interpolation operator
becomes the adjoint prolongation operator, and the trans-
pose of the prolongation the adjoint interpolation. Also if

Multigrid cycles
ρ-

R
es

id
ua

l

dC
D
/d

α

0 200 400 600 800 1000

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
Non-linear
Primal Residual
Adjoint Residual
Primal dCD/dα
Adjoint dCD/dα
dCD/dα Error

Fig. 1. Convergence of non-linear, primal and adjoint codes for an

NACA0012 test case. Also shown are transients of dCD/dα.

the relaxation steps are performed before the sweep in the
original method, they are performed after the sweep in the
adjoint method. The adjointing of Runge-Kutta is some-
what more involved [12], but follows the same basic pattern
of writing the iteration in matrix notation and transposing.

In all cases it is necessary to work in the same variables
as the non-linear iteration (which is in conservative flow
variables), if the iterations are to be consistent. If the Ja-
cobian is formulated in terms of derivatives with respect to
primitive variables it must first be transformed. The mem-
ory and CPU requirements of the adjoint FPIs are iden-
tical to their primal counterparts. Also of interest is that
all the standard non-adjointed iterative methods perform
very poorly on the adjoint problem. For the untransposed
Runge-Kutta method on a simple adjoint test case, it was
necessary to reduce the CFL number to 1/4 of its original
value to achieve stability. This effect was not as significant
for multigrid, likely due to the similarity of the original and
adjoint formulations.

A numerical demonstration of the two properties derived
here is shown in Figure 1 using LU-SGS and a 3W multi-
grid cycle for a transonic NACA0012 aerofoil. Plotted are
the convergence of the non-linear, linear and adjoint codes,
together with the gradient dCD/dα from the primal and
adjoint (where here α is the angle-of-attack), as well as
the difference between these two gradients. Note that the
asymptotic convergence of all codes is identical and the er-
ror in the two versions of dCD/dα rests at the truncation
error of the floating point arithmetic used. The monitoring
of such gradients is also a useful way for a user of the code
to estimate the progress of convergence, corresponding to
monitoring of forces in the non-linear case.

4

5. The Recursive Projection Method

Despite the guarantees regarding convergence provided
by the theory of the previous section, there are regularly
situations in which it is possible to obtain a reasonably con-
verged solution of the non-linear equations, but not of the
corresponding linear equations. This can occur for three
reasons, all of which violate the parity of (14) and (16). Ei-
ther a) the non-linear solution is not sufficiently converged,
or b) there is a discrepancy between the linear and non-
linear problem due to some approximation of the Jacobian,
or c) the FPI applied to the non-linear problem does not
converge asymptotically itself.

All three cases appear regularly in practice. An engineer
may reasonably consider a computation converged when
the integrated forces that interest her no longer vary sig-
nificantly, though this may occur prior to the asymptotic
regime. With regard to b), as already described, the Jaco-
bian is simplified to obtain a scheme with reasonable mem-
ory costs. Although the simplification is very slight, it is not
difficult to find a situation in which the non-linear prob-
lem converges and the linear diverges, simply by increasing
the CFL number until the iteration is right on its stability
boundary for the non-linear problem.

However experience suggests the most significant is the
third case - particularly for problems involving complex
geometries - where minor unsteady physical phenomena
are almost always present and reflected in the FPI due to
the pseudo-time marching approach, leading to eventual
stalling or limit cycles in the convergence. Treating these
cases strictly correctly would require an unsteady compu-
tation which may be an order of magnitude more expen-
sive than a stationary calculation, and in practice the latter
tends to converge to an acceptable level anyway. However
the lack of true asymptotic convergence often leads to in-
stability in the linear problem.

In an effort to understand and mitigate these phenome-
nas, we consider the Recursive Projection Method (RPM),
originally developed by Schroff and Keller in 1993 for the
purposes of bifurcation analysis and stabilization of unsta-
ble procedures [13,14]. Since then it has been applied in
aerodynamics for convergence acceleration [15,16], and sta-
bilization of linear frequency domain solvers [17].

The idea is to regard the transient solution of the linear
problem as a sum of eigenvectors of the relaxation opera-
tor Φ = (I −M−1A). The application of Φ to an approxi-
mate solution then corresponds to a product of each eigen-
vector with its corresponding eigenvalue. Divergence of the
iteration implies that there is at least one eigenvalue of Φ
with modulus greater than unity. Assuming that the num-
ber of such eigenvalues is small, and that the space spanned
by their eigenvectors is known, call it P, then it must be
possible to solve the projection of the problem onto this
low dimensional subspace using some expensive but stable
method, while solving the projection onto the complimen-
tary subspace Q using the original FPI iteration, which is

known to be stable there.
Newton-Raphson is typically used on P. The space of

dominant eigenvectors is determined as the calculation pro-
gresses, by applying the principle that the difference be-
tween successive applications of the FPI on Q form a power
iteration on the dominant eigenvalues of Φ restricted to Q.

In detail: consider the relaxation operator of (17) written

N(x) = (I −M−1A)x + M−1b, (25)

where x and b are the unknown and RHS respectively. Let
V be an orthonormal basis of P, then orthogonal projection
operators onto P and Q may be written respectively P =
V V T and Q = I − V V T . Further define xP = Px, xQ =
Qx. Then the RPM iteration may be written

xn+1
Q = QN(xn), (26)

xn+1
P = xn

P + (I − PΦP)−1 [PN(xn)− xn
P] , (27)

where

xn+1 = xn+1
P + xn+1

Q . (28)

The “derivative” term in the Newton iteration (27) may be
rearranged as follows:

(I − PΦP)−1 = V (I − V T ΦV)−1V T (29)

= V (I −H)−1V T , (30)

where H is a square matrix of size dimension of P, whose
inversion is cheap if P is of low dimension. The inversion
is performed only once for each basis, using LU factoriza-
tion [18]. Also the term PN(xn) in the Newton iteration
does not require an additional residual evaluation, as N(xn)
is already available from (26). The projection of this vector
onto P is the only mesh-size dependant part of the Newton
iteration (excluding the one-time evaluation of H), which
is therefore extremely cheap.

To determine the basis itself consider the sequence

K =
[
∆xn

Q,∆xn−1
Q , . . . ,∆xn−k+1

Q

]
, (31)

where ∆xn
Q = xn+1

Q −xn
Q are readily available from the iter-

ation on Q. For a general non-linear N a Taylor expansion
of QN(xn) gives

xn+1
Q = QN(xn) (32)

= Q

(
N(xn−1) +

∂N

∂x
∆xn + O(∆xn)2

)
, (33)

= Q
(
xn + Φ∆xn + O(∆xn)2

)
, (34)

= xn
Q + QΦQ∆xn + QΦP∆xn + O(∆xn)2, (35)

where QΦP ≈ 0 because P is an approximately invariant
subspace of Φ, so

∆xn
Q = xn+1

Q − xn
Q (36)

= QΦQ∆xn−1 + O(∆xn
Q)2 + O(∆xn

P)2. (37)

5

In our case N is linear, so all higher-order derivatives in the
Taylor expansion vanish and QΦP = 0, so

∆xn
Q = QΦQ∆xn−1. (38)

Therefore K is the k dimensional Krylov space for QΦQ
seeded with ∆x0

Q. Asymptotically this subspace will tend
to contain the dominant k eigenvectors of QΦQ, as they
are the components of ∆x0

Q most amplified by repeated
application of the operator.

Via QR factorization an orthogonal basis Q̄ for K is ob-
tained

K = Q̄R̄, (39)

whereby column pivoting is used such that the sequence of
diagonal elements |R̄ii| of the upper triangular matrix R̄
is decreasing. Additional vectors for V are then chosen on
the basis of the Krylov Acceptance Ratio, κ. For the largest
i satisfying

|R̄ii|
|R̄i+1i+1|

> κ, (40)

the first i columns of Q̄ are added to V . Since these vectors
lie in Q they are already orthogonal to the existing V , and
further orthogonalization is not necessary.

The user defined constant κ controls the accuracy, and
indirectly the size, of the basis. If κ is very large the largest
eigenmodes must dominate the others by a large margin.
This corresponds to many applications of the operator N ,
and hence many iterations, but also implies that the power
iteration will be more highly converged, and the resulting
basis therefore more accurate. Unfortunately κ is problem
dependant, as the convergence of the power iteration de-
pends on the distribution of the dominant eigenvectors.
Based on our experience we choose κ in the range 1×103−
1× 104.

Note that eigenvalues of real matrices have either zero
real part or occur in complex conjugate pairs. If (40) is to be
able to identify these pairs, which grow at identical rates,
then the dimension k of the Krylov subspace must be at
least 3. Similarly if there are n eigenvalues of Φ of identical
modulus then k must be at least n+1. This latter situation
has not been observed in practice for n > 2.

The storage of V and K dominate the memory require-
ments of the method, so it is advantageous to keep k small.
In practice the number of dominant eigenvalues treatable
by the Newton method is limited by the storage of V , rather
than the CPU cost. In the following we set k = 3 and place
an upper limit of 20 on the size of V .

Since P contains the dominant eigenvalues of Φ it is pos-
sible to solve an eigenvalue problem on this low dimensional
subspace to obtain estimates for its eigenvalues and eigen-
vectors, which may allow more detailed analysis of the FPI
with respect to a specific problem on a specific grid. The
eigenvalues of Φ restricted to P are given by

PΦP Ω̄ = Ω̄Ξ̄. (41)

Multigrid cycles

ρ-
R

es
id

ua
l

0 1000 2000

10-6

10-4

10-2

100

102

104
LU-SGS, Multigrid 4w
RPM + LU-SGS, Multigrid 4w

Fig. 2. Convergence acceleration of turbulent adjoint problem for an

RAE2822 with RPM.

Rearranging PΦP as in (29) we have

HΩ = ΩΞ, (42)

where Ω has k columns consisting of eigenvectors, and Ξ
is the diagonal k × k matrix of eigenvalues. The sought
dominant eigenvectors of Φ are then

Ω̄ = V Ω. (43)

The algorithm is first applied to an adjoint problem on
an RAE2822 aerofoil with adjointed turbulence model. Fig-
ure 2 shows convergence of the case with LU-SGS smoothed
multigrid and the same FPI applied with RPM. In this case
the original iteration is stable, so the dominant eigenmodes
identified by RPM are stable modes with eigenvalues close
to 1, which dominate the asymptotic convergence. Hence
RPM operates as a convergence acceleration algorithm. To
emphasize this effect, κ was set to 100, as a result of which
a basis is found very quickly, but is fairly inaccurate. This
can be seen in the spike right at the beginning of the con-
vergence: initially the two curves are identical, then RPM
finds a first basis vector whose low accuracy causes diver-
gence until a second improved vector is found. RPM then
recovers rapidly giving superlinear convergence. Depend-
ing on the level of residual required RPM is 2 to 10 times
faster than the original method in terms of CPU time as
well as multigrid cycles.

However we are more concerned with problems that do
not converge initially, and we consider the very difficult case
of the DLR-F6 wing-body configuration, which will also be
used for optimization in Section 6. At the free stream con-
ditions considered this case has a large region of separated
flow in the junction between the upper surface of the wing
and the fuselage. Further there is separation along almost
the entire length of the wing, shortly before the trailing
edge. All these features are well resolved by the non-linear
calculation on the mesh used.

6

Multigrid Cycles

R
es

id
ua

ls

dC
D
/d

α

0 2000 4000 6000
10-12

10-10

10-8

10-6

10-4

10-2

100

102

104

0

0.005

0.01

ρ-Residual (no RPM)
ρ-Residual
ρ-Residual on Q
ρ-Residual on P
Dimension of P
dCD/dα

Fig. 3. Stabilization of DLR-F6 adjoint computation with RPM.

For the adjoint problem on this geometry, both trans-
posed LU-SGS and Runge-Kutta diverge for all CFL num-
bers, so that the only recourse is to a stabilized iteration.
RPM was applied with k = 3 and κ = 1 × 103. The QR
factorization of the Krylov space was evaluated every 50
multigrid cycles to determine if a new basis vector had
been found. The results are shown in Figure 3, where the
residual of the problem is also shown restricted to P and Q

so that the convergence of the Newton iteration is visible.
Also plotted is the dimension of V (without axis), revealing
when the basis updates were made.

The corresponding eigenvalues, plotted in Figure 4, show
that in total there were 8 unstable modes. Examining the
associated eigenvectors shows that they are all large in the
regions of separation, and particularly in the recirculating
corner flow. The eigensystem analysis has therefore allowed
the conclusive identification of the adjoint convergence dif-
ficulties with the separation in the flow.

A major advantage of the RPM is that its implementa-
tion requires no modification of the flow solver, requiring as
it does only application of solver FPI iterations to given in-
put vectors. This makes it possible to implement the entire
algorithm in Matlab [16], calling the external flow solver
each time N(x) is required. In contrast to the use of GM-
RES as a stabilizer, RPM does not require a priori knowl-
edge of the size of the unstable space, which is expanded as
necessary.

As for all Krylov methods, RPM does not offer grid in-
dependent convergence, and is therefore likely to scale well
with problem size only in combination with a FPI contain-
ing multigrid. Further, as problem complexity increases,
the number of unstable modes is also likely to increase,
resulting in a larger basis with its associated costs. Paral-
lelization of the algorithm is complicated by the presence
of the QR factorization. While distributed memory QR

Re
Im

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-0.82 -0.8 -0.78 -0.76 -0.74

-0.66

-0.64

-0.62

-0.6

-0.58

0.95 1 1.05 1.1
-0.1

-0.05

0

0.05

0.1

Fig. 4. Dominant eigenvalues of LU-SGS smoothed multigrid applied
to the DLR-F6, determined with RPM.

algorithms exist, they are complex, and often have oner-
ous restrictions. For example the ScaLAPACK implemen-
tation [19] requires that all but one domain have the same
dimension, which is unlikely to be compatible with exist-
ing domain decomposition and load-balancing code. The
alternative is a modification of RPM with a basis local to
each domain, updated either independently or globally. An
investigation of this issue is underway.

6. Gradient-Based Optimization

The first application of the adjoint method in aerody-
namics was to flow control [20,21], and the discrete adjoint
method developed in the previous sections is applied here
in a similar context. The problem considered is drag min-
imization at constant lift of the DLR-F6 wing-body con-
figuration. We use a similar strategy to that already de-
scribed in [9,22]. The on-flow is at Mach 0.75, at a rela-
tively low Reynolds number of 3 × 106 and initial angle-
of-attack of 0◦. The surface of the computational grid is
shown in Figure 5 and is entirely structured, a structured
layer of constant thickness extends from this in order to re-
solve the boundary layer, the stacks are then topped with
pyramids and the remainder of the domain is filled with
tetrahedra [23]. The final mesh is coarse, with a total of 120
thousand points, however it captures well the large region
of separated flow already mentioned, which appears in the
corner between the upper surface of the wing and the fuse-
lage. The memory requirements and relative performance
of the adjoint solver for this case were given in Table 1.
The adjoint solver is applied with adjointed 3W multigrid
smoothed LU-SGS and the RPM outer iteration. Due to
robustness problems only the adjoint mean-flow equations
were solved while the eddy-viscosity was frozen. The gradi-

7

Fig. 5. F6 wing-fuselage showing parameterization of the wing with
a free-form deformation box.

ents thus obtained were used to drive a conjugate gradient
algorithm.

The parameterization of the wing is also shown in Fig-
ure 5. The dark lines show the position of a free-form de-
formation control box [24], the vertical positions of the 8
vertices marked with a circle are the design variables. Note
that since the bounding box passes inside the fuselage, the
wing-body junction also varies, and this is accounted for
by the geometry and grid generation process. The lift con-
straint is met by modifying the angle-of-attack in the so-
called target-lift mode of the solver. Because we wish to
minimize the drag at the target lift C∗

L, rather than at the
preexisting lift CL, the objective function must be modified
to consider the constraint consistently [25],

I = CD − (dCD/dα)
(dCL/dα)

(CL − C∗
L) , (44)

so gradients of CL are also needed.
The extremely low number of design variables, and the

coarse grid, allow the adjoint optimization to be compared
with an optimization using gradients obtained using central
finite differences:

dI

dα
≈ W (α + ε)−W (α− ε)

2ε
, (45)

whereby each gradient of I with respect to all 8 design
parameters requires 2 × 8 = 16 non-linear solutions. If a
typical geometry parameterization with ≈ 50 parameters
were to be used, this calculation would become impractical.
The computation of the adjoint gradients also includes a
finite difference component, due to the dependence of R
and I on the computational grid X, which introduces terms
∂R/∂X and ∂I/∂X in (4). Since a explicit linearization of
these terms is not presently available in the code, they are
also evaluated using central differencing, at a cost of two

Design Variable Index
dC

D
/d

α i

2 4 6 8

-.0004

-.0003

-.0002

-.0001

.0000

.0001

.0002
Adjoint - ε=+/-2.0
Adjoint - ε=+/-5.0
Adjoint - ε=+/-10.0
Findiff - ε=+/-1.0
Findiff - ε=+/-2.0
Findiff - ε=+/-5.0

Fig. 6. Comparison of gradients evaluated with finite difference and
adjoint for various step sizes.

mesh deformations per design variable. Hence increasing
the number of design variables here incurs relatively minor
additional costs, see e.g. [1].

To examine the errors in the gradient produced due to the
approximations of the Jacobian, the gradients of CD with
respect to each design variable were computed using central
finite differences with various step sizes ε, for the initial
geometry. The adjoint gradients were calculated similarly,
using various step sizes for the evaluation of ∂R/∂X. The
results are shown in Figure 6 where it is apparent that
the two sets of gradients agree well, and that the adjoint
gradients are less sensitive to the step size - as might be
expected.

Given the successful gradient validation we proceed to
the optimization, the convergence of which is shown in
Figure 7. The horizontal axis shows the number of calls
to the flow solver (both linear and non-linear), thereby
approximately representing the computational effort re-
quired. Symbols indicate gradient evaluations; ε was set to
2.0 for both adjoint and finite difference gradients. As the
scale of the design space is initially unknown the first gra-
dient is used to estimate the step in the design space nec-
essary to produce a 2% reduction in CD. Given this step
the adjoint gradient actually produces a 1.94% reduction
while the FD gradient gives a 2.03% reduction, increasing
our confidence in both gradients. After 34 solver calls the
adjoint is unable to reduce the drag further, giving a final
reduction of 42 counts. The FD optimization requires three
times as many iterations and reduces the drag by 47 counts.
The optimizations took in total 24 and 42 hours respec-
tively on 16 processors, the adjoint being run sequentially
due to RPM. However as the time required for the FD gra-
dient evaluation increases proportionally to the number of
design variables, the gap in CPU time will widen dramat-
ically for practical problems with hundreds of design vari-

8

(Non-)Linear solutions

A
ng

le
of

in
ci

de
nc

e
(°

)

0 20 40 60 80 100

-0.2

0

0.2

0.4

0.6

0.8

(Non-)Linear solutions

C
D

0 20 40 60 80 100

0.035

0.036

0.037

0.038

0.039
Central Fin. Diff.
Discrete Adjoint

Fig. 7. Convergence of the F6 drag-minimization optimization with
finite-difference gradients and adjoint gradients.

ables.
The discrepancy in the final solutions of the two opti-

mizations is likely a result of the adjoint not delivering gra-
dients that are as accurate as the central finite-differences.
This in turn is likely a result of the frozen eddy-viscosity in
the adjoint, and will be the subject of further investigation.

7. Adjoint Error Estimation

One of the main advantages of unstructured CFD codes
is their ability to locally refine the mesh, allowing improve-
ment of flow feature resolution automatically. For this pur-
pose adaptation indicators have been developed sensitive
to strong gradients and vorticity, so-called feature-based in-
dicators. However while engineers are interested in these
features qualitatively, they are often more interested in the
behaviour of functionals of the flow field, such as CD, quan-
titatively. The demands on accuracy made by quantitative
outputs is typically much higher than for qualitative out-
puts, and therefore adaptation is often more necessary for
the latter. Unfortunately good resolution of flow features
does not necessarily imply improvement in functional ac-
curacy. In fact, using feature-based indicators can lead to
apparent mesh convergence that results in erroneous values
for these functionals. A way to improve this situation is to
use the adjoint problem to obtain information about where
discretization errors in the solution have an impact on the
functional in question.

Pierce and Giles [3,26] use the adjoint problem for er-
ror correction of integral functionals in a structured finite
volume context. Their correction term is made up of point-
wise contributions which makes it an appealing choice for
an adaption indicator. In a series of papers, Venditti and
Darmofal [4,27] develop a correction and refinement strat-
egy for unstructured finite volume methods using a discrete
adjoint solver. This is derived via a Taylor series expansion
of the residual on a coarse mesh to an embedded fine mesh,
where then many terms are approximated to avoid most

computations on the fine mesh.
A similar adaption strategy has been implemented in

TAU. The indicator is evaluated as follows:
(i) Obtain non-linear and adjoint solutions on the initial

mesh.
(ii) Globally refine the mesh and linearly interpolate the

non-linear solution onto it.
(iii) Compute a single residual R on the fine mesh, and

sum its contributions to coarse grid cells on the orig-
inal mesh with volume weighting.

(iv) An optional smoothing of the residuals may be per-
formed [28], but was unnecessary here.

(v) The adaptation indicator εi is calculated point-wise
as εi = RT

i Λi.
The evaluation of the residual on the fine mesh is essential
as it is zero on the initial mesh by construction.

Given εi, those edges of the grid whose end-points satisfy

|εi| ≥ σ
εt

|εG|
where εG =

∑
i

εi, (46)

are marked for adaptation [29]. Here σ is the standard de-
viation of the εi, and εt is the prescribed uncertainty one
wishes to achieve in the functional. The quantity εG is a
global error estimate. Finally the mesh is adapted to these
criteria using a module [30].

This algorithm is applied to 2d inviscid flow about a
transonic NACA0012 at a Mach number of 0.85 and an-
gle of attack of 2◦. Results are compared against the base-
line of global grid adaption, as well as the feature-based
adaptation already mentioned. The comparison proceeds
on the basis of error in CL, an accurate estimate for which
is obtained by Richardson extrapolation from the results
of global adaptation.

The feature-based adaptation was set up to introduce ap-
proximately 30% more points into the mesh at each adap-
tation step, whereas the goal-oriented procedure flagged
as many elements of the mesh for refinement as it deemed
necessary to achieve the prescribed error tolerance. This
amount was usually well in excess of that produced by
the feature-based adaptation, which is desirable consider-
ing the relatively high computational cost of εi.

The convergence of all methods is shown in Figure 8,
whereby the horizontal axis gives number of mesh points,
aiming to represent the computational cost of each indi-
vidual flow calculation shown. Immediately apparent is the
surprising result that feature-based adaptation does not ap-
pear to converge at all. The goal-oriented adaptation gives
good results for all error tolerances. After three adapta-
tion steps all meshes provide a lift coefficient that is within
0.0003 of the exact value. Surprisingly, the mesh with the
lowest requested accuracy yields the best results for the
first two adaptation cycles.

The mesh after the third adaptation for εt = 0.001 can
be seen in Figure 9 together with the third feature-adapted
mesh, which has a similar number of points, but appears
much less dense due to the large number of points “wasted”

9

Points in Mesh

C
L

104 105 106 107

0.608

0.61

0.612

0.614

0.616

0.618

0.62

0.622

0.624

0.626

Global Refinement
Feature-based
Goal-based 0.0001
Goal-based 0.0005
Goal-based 0.001

Fig. 8. Convergence of CL w.r.t. grid size for various adaptation

strategies. Estimated exact solution is marked with a horizontal line.

in the wake, in resolving the discontinuities excessively, and
far above the profile in the main shock. In particular the
upper surface of the aerofoil – where numerical dissipa-
tion contributes to the position of the shock, and thereby
strongly influences the lift – is completely unrefined. Given
this the lack of convergence seen in Figure 8 is less surpris-
ing.

In contrast the error-adapted mesh concentrates points
close the to aerofoil, resolving the upper and lower surfaces
well. It also resolves the shocks over a broader area, and
refines the (critical) trailing edge at every iteration, a con-
sequence of a singularity in the adjoint solution.

These satisfying results are none the less preliminary.
The terms used for the adaption indicator can also be used
to compute a correction term for the functional, namely εG,
which may allow a more accurate solution on a given grid.
This and the further development of the adaption criteria
are to be the subject of future work.

8. Conclusions

Our immediate goal in the investigation of the discrete
adjoint method was to develop an solver which is at least
as robust and efficient as the non-linear solver, as only then
can it reliably be applied to practical engineering problems
in optimization and adaptation. The algorithms described
in this paper go a long way towards achieving this goal, in
particular the memory requirements and time per residual
evaluation are acceptable. The adjoints of the non-linear
solution algorithms allow robust and efficient convergence,
at least in cases which behave well non-linearly. For the
cases that behave poorly RPM offers a means of obtaining
a solution, provided there are not more than 10 to 20 un-
stable modes in the problem. However there remain cases

Fig. 9. Grid for transonic NACA0012 with goal- and feature-based

adaptation, left and right respectively. The two grids have similar
size.

that are presently insoluble with reasonable computer re-
sources. Some contain too many unstable modes, others
diverge before RPM has the chance to find a basis (for ex-
ample with an extremely large eigenvalue appearing in the
turbulence equations). The tackling of these problems rep-
resents the next challenge. It is envisaged that use of eigen-
system analysis will aid the design of FPIs especially suited
as preconditioners to RPM and Krylov methods. The par-
alleliziation of these algorithms is also necessary for prac-
tical applications.

With respect to gradient-based optimization and error
estimation we feel that both fields offer considerable poten-
tial; the former in the integration of its increasingly efficient
and maturing algorithms into the aircraft design process,
the latter in terms of new approaches and the systematic
study of existing solvers with respect to accuracy.

Acknowledgments

We are very grateful to Stefan Görtz for sharing his ex-
tensive insight into and experience of the recursive projec-
tion method.

References

[1] J. Brezillon, O. Brodersen, R. Dwight, A. Ronzheimer,

J. Wild, Development and application of a flexible and
efficient environment for aerodynamic shape optimisation,

in: Proceedings of the ONERA-DLR Aerospace Symposium

(ODAS), Toulouse, 2006.
[2] A. Griewank, Evaluating Derivatives, Principles and Techniques

of Algorithmic Differentiation, Number 19 in Frontiers in Appl.
Math. SIAM, Philadelphia, 2000, ISBN 08-987-1451-6.

[3] M. Giles, N. Pierce, Improved lift and drag estimates using

adjoint Euler equations, in: American Institute of Aeronautics

and Astronautics, Paper AIAA-1999-3293, 1999.
[4] D. Venditti, D. Darmofal, Adjoint error estimation and grid

adaption for funtional outputs: Application to quasi-one-
dimensional flow, Journal of Computational Physics 164 (2000)

204–227.

10

[5] T. Gerhold, M. Galle, O. Friedrich, J. Evans, Calculation of

complex 3D configurations employing the DLR TAU-Code, in:

American Institute of Aeronautics and Astronautics, Paper
AIAA-97-0167, 1997.

[6] R. Dwight, Efficiency improvements of RANS-based analysis and
optimization using implicit and adjoint methods on unstructured

grids, Ph.D. thesis, School of Mathematics, University of

Manchester (2006).

[7] A. Jameson, W. Schmidt, E. Turkel, Numerical solutions of the

Euler equations by finite volume methods using Runge-Kutta
time-stepping schemes, in: AIAA Paper, AIAA-81-1259, 1981.

[8] J. Edwards, S. Chandra, Comparison of eddy-viscosity
transport turbulence models for three-dimensional shock-

seperated flowfields, AIAA Journal 34 (4) (1996) 1–16.

[9] R. Dwight, J. Brezillon, Effect of various approximations of the

discrete adjoint on gradient-based optimization, in: Proceedings

of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno
NV, AIAA-2006-0690, 2006.

[10] D. Mavriplis, Personal communication (2004).

[11] S. Yoon, A. Jameson, An LU-SSOR scheme for the Euler and
Navier-Stokes equations, AIAA Journal 26 (1988) 1025–1026.

[12] M. Giles, On the iterative solution of adjoint equations,
Automatic Differentiation: From Simulation to Optimization
(2001) 145–152.

[13] G. Schroff, H. Keller, Stabilization of unstable procedures:
The Recursive Projection Method, SIAM Journal of Numerical
Analysis 30 (4) (1993) 1099–1120.

[14] H. Keller, RPM: A remedy for instability, in: D. Estep,
S. Tavener (Eds.), Collected Lectures on the Preservation of

Stability under Discretization, SIAM Proceedings in Applied
Mathematics 109, 2002, pp. 185–196.

[15] J. Möller, Aspects of the Recursive Projection Method applied

to flow calculations, Ph.D. thesis, NADA, KTH, Stockholm,
Sweden, ISBN 91-7283-940-6, TRITA-NA-0444 (2005).

[16] S. Görtz, J. Möller, Evaluation of the Recursive Projection
Method for efficient unsteady turbulent CFD simulation, ICAS

2004.

[17] M. Campobasso, M. Giles, Stabilization of a linear flow solver

for turbomachinery aeroelasticity by means of the recursive

projection method, AIAA Journal 42 (9) (2004) 1765–1774.

[18] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,

J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, D. Sorensen, LAPACK Users’ Guide, 3rd Edition,

Society for Industrial and Applied Mathematics, Philadelphia,

PA, 1999.

[19] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel,

I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, R. C. Whaley, ScaLAPACK Users’ Guide,

Society for Industrial and Applied Mathematics, Philadelphia,

PA, 1997.

[20] O. Pironneau, On optimum design in fluid mechanics, Journal

of Fluid Mechanics 64 (1974) 97–110.

[21] A. Jameson, Aerodynamic design via control theory, Journal of

Scientific Computing 3 (1988) 233–260.

[22] J. Brezillon, R. Dwight, Discrete adjoint of the Navier-Stokes

equaitons for aerodynamic shape optimization, in: Evolutionary
and Deterministic Methods for Design, EUROGEN, 2005.

[23] J. Wild, Acceleration of aerodynamic optimization based on
RANS-equations by using semi-structured grids, in: Design

Optimization International Conference, Athens, 2004.

[24] A. Ronzheimer, Shape based on freeform deformation in

aerodynamic design optimization, in: ERCOFTAC Design

Optimization International Conference, Athens, 2004.

[25] J. Reuther, J. Alonso, M. Rimlinger, D. Sanders, A. Jameson,

Constrained multipoint aerodynamic shape optimization using
an adjoint formulation and parallel computers, Journal of

Aircraft 36 (1999) 51–60.

[26] N. Pierce, M. Giles, Adjoint recovery of superconvergent

functionals from PDE approximations, SIAM Review 42 (2)

(2000) 247–264.
[27] D. Venditti, D. Darmofal, Anisotropic grid adaptation for

functional outputs: Application to two-dimensional viscous

flows, Journal of Computational Physics 187 (2003) 22–46.
[28] J.-D. Müller, M. Giles, Solution adaptive mesh refinement using

adjoint error analysis, in: American Institute of Aeronautics and
Astronautics, Paper AIAA-2001-2550, 2001.

[29] H.-J. Kim, K. Nakahashi, Output-based error estimation and

adaptive mesh refinement using viscous adjoint method, in:
American Institute of Aeronautics and Astronautics, Paper
AIAA-2006-1395, 2006.

[30] T. Alrutz, M. Rütten, Investigation of vortex breakdown over
a pitching delta wing applying the DLR TAU-Code with full,

automatic grid adaptation, Paper 5162, AIAA (2005).

11

