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Description:

Modern mobile devices such as smartphones or personal digital assistants are not
only equipped with network connectivity, significant CPU-, memory- and display re-
sources but increasingly with GPS receivers as location sensors. The knowledge about
the user’s location is typically employed to facilitate so called “location-based” services
that aim to assist the user in tasks such as finding restaurants, shops or other places of
interest in personal navigation.
While the accuracy provided by the satellite-based global positioning system is sufficient
for many outdoor applications, it strongly suffers in indoor and urban canyon environ-
ments due to blockage of the line-of-sight between the satellite and the mobile device.
In contrast, other technologies for location determination, such as time-of-arrival, time
difference-of-arrival or angle-of-arrival measurements of signals in the mobile networks
or inertial measurement units suffer less from these factors but lack global coverage or
long-term stability.
A combination of the various techniques to join their strengths is therefore desirable.
The concept of “soft location” has been developed in order to achieve an optimum
combination of the information provided by the individual sensors. Bayesian filtering
algorithms are interesting candidates for realizing the soft location concept
The objective of this thesis is the implementation and integration of Bayesian filtering
algorithms into the MOSCITO (Mobile Simulation of Context Information Tool) soft-
ware platform. Sophisticated visualization (e.g. particles, probability density functions,
map and satellite imagery) is required in order to analyze the correctness and perfor-
mance of the algorithms. Simulations are to be performed in order to quantitatively
compare the effect of parameters and algorithmic nuances on the estimation result. The
algorithms are to be integrated and tested with hardware sensors (GPS receiver and
electronic compass) and real-time date to demonstrate and evaluate their applicability
and performance under real world conditions.
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Abstract

The mantra of location based services (LBS) is “to offer the right service, at the right
time and in the right place”. Accurate knowledge of a user’s location is required
to achieve this goal. Unfortunately, all location sensors suffer from environmental
conditions, such as GPS sensors suffering from signal blocking and multipath in urban
canyons. In consequence, the quality of location based services is often poor, due to
noisy locations measurements. Using multiple and complementing sensors might be
a good solution. However, optimally combining these noisy sensor measurements is a
challenge.

This work has started from the existing concept of Soft Location, i.e. represent-
ing and combining sensor output by probability density functions instead of “hard”
point estimates. Based on this concept the applicability of Bayesian filtering has been
investigated. A computationally efficient algorithm for Bayesian filtering, namely Par-
ticle Filtering has been selected, discussed in theory and implemented. An advanced
movement model for pedestrians, involving several aspects of a user’s situation, such as
emotional state or age, has been developed for the prediction stage of the Particle Fil-
ter. The Particle Filter implementation has been integrated in an experimental testbed
for indoor and outdoor positioning with a GPS sensor and an electronic compass. Sim-
ulations and real-time experiments have been successfully carried out to qualitatively
and quantitatively analyze the performance of the proposed solution. The results are
promising and presented and discussed with a focus on position and direction accuracy
in the light of the number of particles, a key factor in computational complexity of
Particle Filtering.
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Chapter 1

Introduction

1.1 Location Based Services

Location-based services (LBS) provide users of mobile devices with personalized ser-
vices tailored to their current location. They open a new market for developers, cellular
network operators, and service providers to develop and deploy value-added services:
advising users of current traffic conditions, supplying routing information, helping them
find nearby restaurants, and many more. Providing users with specific services that
fit their tastes is one of the hot issues in location-based services.

Location-based services answer questions like: Where am I? What’s around me?
How do I get there? They determine the location of the user by using one of several
technologies for determining position, and then use the location and other information
to provide personalized applications and services. As an example, let us consider
a wireless 911 emergency service that determines the caller’s location automatically.
Such a service would be extremely useful, especially to users who are far from home and
do not know local landmarks. Traffic advisories, navigation help including maps and
directions, and roadside assistance are natural location-based services. Other services
can combine present location with information about personal preferences to help users
find food, lodging, and entertainment to fit their tastes and budget.

1.2 Location estimation methods

To discover the location of the pedestrian, LBS must use real-time positioning meth-
ods. Accuracy depends on the method used and the environment in which the user is.
Locations can be expressed in spatial terms or as text descriptions. A spatial location
can be expressed in the widely used latitude-longitude-altitude coordinate system. Lat-
itude is expressed as 0-90 degrees north or south of the equator and longitude as 0-180
degrees east or west of the prime meridian, which passes through Greenwich, England.
Altitude is expressed in meters above sea level. A text description is usually expressed
as a street address, including city, postal code, and so on.

There are three competing principles for determining the position of a mobile radio
user. The first one operates with directional antennas at the receiver to determine angle
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16 CHAPTER 1. INTRODUCTION

of arrival (AOA) of a radio transmitter. But there are strong limitations in multipath
environments (indoor) due to reflections from wrong directions. The second principle
needs specialized hardware at the transmitter and the receiver to determine a distance
between two stations. This can be achieved by measuring the signal delay points (time
of arrival, TOA or time difference of arrival between different stations - TDOA). The
use of triangulation algorithms then leads to a position when several such stations are
in range. In general this can be the most precise method of location determination
depending on the complexity of the setup. The third technique uses signal strength
and other parameters measured from a radio link. The data is used either to directly
determine a distance (free-space transmission loss proportional to 1/r2) or to calibrate
a room or an area with typical measurement data.
Significant accuracy, availability & integrity improvements might be achieved if two or
more of the above mentioned methods could be combined. Several types of positioning
methods exist:

• Using the mobile phone network: The current cell ID can be used to identify the
Base Transceiver Station (BTS) that the device is communicating with and the
location of that BTS. Clearly, the accuracy of this method depends on the size
of the cell, and can be quite inaccurate. A GSM cell may be anywhere up to 35
kilometers in diameter. TOA, TDOA and AOA along with cell ID can achieve
accuracy within 150 meters.

• Using Global Navigation Satellite Systems (GNSSes): The Global Positioning
System (GPS), controlled by the US Department of Defense, uses a constellation
of 24 satellites orbiting the earth. Of course Galelio is the future alternative
GNSS. GPS determines the device’s position by calculating differences in the
times signals from different satellites take to reach the receiver (TDOA). The
mobile device has to be equipped with a GPS receiver in order to receive the
satellite signals. GPS is potentially the most accurate method (several meters if
the GPS receiver has a clear view of the sky), but it has some drawbacks: the
extra hardware can be costly, consumes battery while in use, and requires some
warm-up after a cold start (no initial position estimates or no almanac satellite
data) to get an initial fix on visible satellites. It also suffers from “canyon effects”
in cities, where satellite visibility is intermittent, or multipath reception disturbs
the range measurements.

• Using short-range positioning beacons: In relatively small areas, such as a single
building, a wireless local area network can provide locations along with other
services. The device’s position is determined using signal strength and other
parameters measured from the radio link. For example, appropriately equipped
devices can use Bluetooth, RFIDs and WLANs for short-range positioning.

• Accelerometers, optical tracking systems (like Lasertracker [1]) and the Cricket
Indoor Location System [2] are other sensors which can be used for position-
ing. Lasertracker and Cricket Indoor systems use TOA principle for location
estimation.
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In addition, location methods can connect to a mobile position center that provides an
interface to query for the position of the mobile subscriber. While applications can be
fully self-contained on the device, it is clear that a wider array of services is possible
when a server-side application is part of the overall service.

1.3 From location to situation

Three coordinates are needed to determine the exact position of any object. If it is
possible to estimate the position fix accurately, a significant improvement in location
based services can be achieved.
On the other hand if we extend the three coordinates to have more dimensions, then a
point in the space will specify a situation instead of location. Examples of these new
dimensions can be the time of the day, the direction of view, the speed, the activity,
the hungriness, the weather, the mood, the age, the interest, etc. In such paradigm we
will be talking about “Situation Based Services” instead of “Location Based Services”
[3]. Services provided to the end user can be personalized and improved according to
his situation. As a result, the quality of the service can be improved as illustrated in
the following examples:

• If the system knows the location of the pedestrian, it can offer him the next ice
cream shop, the next coffee shop, the next restaurant, etc.

• If the system additionally knows that the weather is cold, then offering the next
hot drink shop is preferable.

• If the system additionally knows that the end user is tired, then a hot drink shop
with a relaxing area is more convenient.

The story does not end on services limits. Location can be used to get information
about situation and vice versa. Examples of getting location knowledge from situation
are as follows:

• If the end user is clearly shopping, then he is not in an area without a shopping
facility.

• If the end user is active, then he is not resting in bed.

• If the end user is sporting - running, then he is most probably in an outdoor
recreation area.

Examples of getting situation knowledge from location are as follows:

• If the end user is on the bed, then most probably he is tired.

• If the end user is in a shopping mall, then most probably he is shopping.

• It the end user is in a restaurant, then he is most probably sitting or walking
slowly.
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Additionally, if the system knows the movement behavior of the pedestrian, then in-
formation regarding his activity, activeness, age and other situation states can be
approximated. For example if the variation of the angle of movement of the pedestrian
is high, then the pedestrian is most probably drunk.
Figure(1.1) shows an example of this coordinate extension. Some possible additional
dimensions are listed on the right side of the figure ordered from the slow changing
factors to the fastest.
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Size of display 
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connection 

Distance to persons and 
landmarks 

… 
 

Figure 1.1: Situation Space - General Model, originally found in [3]

1.4 Security and privacy

Many users consider location information to be highly sensitive, and are concerned
about a number of privacy issues [4], including:

• Target marketing: Mobile users’ locations can be used to classify customers for
focused marketing efforts.

• Embarrassment: One customer’s knowledge of another’s location may lead to
embarrassing situations.

• Harassment: Location information can be used to harass or attack a user.

• Service denial: A health insurance firm might deny a claim if it learned that a
user visited a high-risk area.
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• Legal restrictions: Some countries regulate the use of personal data.

For these and other reasons, users must know when and how their location is given to
any specific application.

1.5 Accuracy problem and solutions

Some applications don’t need high accuracy, but others will be useless if the location
isn’t accurate enough. Its okay for the location of a tourist walking around town to be
off by 10 meters, but other applications and services may demand higher accuracy. A
car on a highway may cope with perhaps 50m accuracy in order to achieve a certain
quality-of-service, where as a system for pedestrian user looking for a shop in the city
is only helpful with 5 - 10 meters tolerance. An aircraft on final approach may cope
with an accuracy of only few meters. A museum guide will also require an accuracy of
few meters.
A big challenge is indoor navigation where positioning data from GPS satellites are
inaccurate. That is due to multipath disturbance and shadowing. Other position
sensors like Bluetooth, Compasses, accelerometers, RFIDs and WLANs operate at
various degrees of accuracy and often suffer from independent errors.

Over the last years, there has been a proliferation of research and papers addressing
indoor navigation and suggesting solutions for its challenges.

Soft Location is one of the new paradigms which improve indoor navigation and
yields more accurate location estimation.
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Chapter 2

Background theory

2.1 Soft Location Concept

Soft Location “SoLo” is an estimate which tells the probability of a user being at a
location (“soft decision”), instead of giving a point estimate of the position (“hard
decision”) [5]. It uses Probability Density Functions (PDFs) for giving soft decisions.
An initial soft location method is to represent position sensors output in terms of
location more generally as a probability density function (PDF) of the location over
two or three dimensional space - typically Cartesian or other coordinates. Combining
two or more such PDFs yields a more accurate PDF of the location and improves
navigation under difficult circumstances like in indoor scenarios.

A more advanced soft location method is to use Bayesian filter techniques which
probabilistically estimate the state of a dynamic system from a sequence of noisy sensor
observations. In the most basic form of location estimation, the state of interest is the
location of a person or object, and observations are provided by sensors either placed
in the environment or carried by the person. Roughly speaking, it provides an answer
to the question “What is the probability that the person is at location l if the history
of sensor measurement is known?”

Bayesian filters provide a powerful tool to help manage measurement uncertainty
and multi-sensor fusion. Their statistical nature makes Bayesian filters applicable to
arbitrary sensor types and representations of environments. Bayesian filters provide a
sound approach to location estimation using GPS data along with street maps or signal
strength information along with topological representations of indoor environments.
Furthermore they have been applied with great success to a variety of state estimation
problems including speech recognition, target tracking, vision and robotics.
Bayesian filtering algorithms have improved the accuracy and the convergence of state
estimation, which is why they are widely used these days.

2.2 Initial Soft Location Method

Representing position sensors output in terms of location as a PDF and combining
two or more such PDFs yields a “more accurate” PDF of the location. It provides

21
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significant improvement in indoor position estimation where navigation faces difficult
circumstances. A PDF - based representation is selected for this soft decision issue [6]
because:

• Only a few parameters might be necessary to define the PDF.

• Super-positioning is an easy mathematical operation

• They can be positioned in an absolute coordinate system.

Now comes the question “how to combine the output of several positioning sources
to yield a probability density function (PDF) of the location over space?” First some
assumptions should be made:

1. The sources are assumed to be independently distributed, in other words each
source of position suffer from statistically independent errors.

2. Each individual positioning function or device i returns a PDF of the location.
The location is defined within the coordinate system (x, y, z).

3. The PDF is assumed to be accurate in the sense that it correctly models all
errors of the function. These errors must include technical failures, measurement
inaccuracies, malevolent attack on the system, and other frequent or infrequent
events. Many of these errors will result in the PDF taking on small but nonzero
values far from the peak or main area. As a result, the PDF is an accurate
indication of the reliability of the correct estimation, without being either too
optimistically or pessimistically accurate.

The independence criterion does not imply that positioning sources are uncorrelated;
in fact they are expected to be correlated. The PDF of source i is actually a conditional
density distribution, p

(i)
l (l|o(i)) conditioned on a specific set of discrete observations

or measurements o(i). For example, a GPS receiver will yield a PDF of the location
l conditioned in effect on its antenna input signal and HW/SW characteristics and
configurations, as well as the GPS’s current status.

Given a number n of these PDFs, p
(1)
l (l|o(1)) · · · p(n)

l (l|o(n)), we are able to compute

the total PDF of the location given all observations o(1) · · · o(n),p
(1)
l (l|o(1), o(2), . . . , o(n)).

The above assumptions can be formulated as follows:

P{o(i) = om|l = lx) = P{o(i) = om|l = lx, o(j) = on} ∀i 6= j; ∀om, on, lx (2.1)

This means that the probability of the estimator with index i receiving its observation
o(i) = om under the assumption of the location being lx is independent of the value on

of the set of observations of another estimator j.
Using Bayes’ Rule and the prementioned assumptions an equation for the optimal

combiner can be written as follows [6]:

p
(t)
l (l|o(1), o(2), . . . , o(n)) =

∏n
i=1(p

(i)
l (l|o(i))∫ ∞

−∞

∫ ∞
−∞

∫ ∞
−∞(p

(i)
l (l|o(i))dxdydz

(2.2)
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This means that PDFs are multiplied over location space and then the result is normal-
ized to unity in the integral. If discrete definitions of l - e.g. topological descriptions
- are used, then the PDFs can be replaced with probabilities P (i){l|o(i)} and the inte-
grals become sums. This also applied when a discrete grid is considered.

From equation (2.2) we can see that the location PDF is forced to zero for those
locations if any single estimator i has a zero in P (i){l|o(i)} at that location. As a
consequence, attention should be paid in modelling the PDF even for unlikely locations.
For instance, a localized beacon transmitter might carry the ID or the coordinates of
a room which is installed in. If this beacon is falsely installed, then it will lead to a
failure after any further processing, even if it is “outvoted” by other estimators.

The suggested soft location method has shown noticeable improvement in sensor
fusion, and location estimation as a result. On the other hand, it has also shown some
weaknesses. Those weaknesses are described next.

i. Error sources are assumed to be independent up to now. In a distributed system it
will be difficult to handle correlations between the errors of the different estimators
for practical reasons, even if such correlations could be represented mathematically
and be computed. Correlations which exist but are not taken into account usu-
ally result in over accentuation of the finally calculated PDF of the location. In
practice, such correlations will probably pose little problems due to different po-
sitioning techniques being used and combined. Errors such as a software bug in a
mobile radio system that affects base stations of multiple networks, for example,
will produce such correlations, or inaccuracies of commonly used HW elements of
a joint mobile radio and satellite navigation receiver.

ii. Another weakness of this initial soft location method is its ignorance of the system
dynamics. Using the knowledge of the pedestrian dynamics might improve location
estimation significantly.

iii. In addition, the need of a soft location method that estimate situation rather than
only location encourages researchers to search for alternative methods.

2.2.1 Example 1 - Initial Soft Location method

Two positioning sources in two dimensional space (i.e. for constant altitude) are used:

1. A “shark” fin PDF that represents the location PDF resulting from the reception
of sectorised mobile radio base station signal with a certain signal strength. For
a strong signal strength this PDF will be more pronounced, since the likelihood
is then high that the receiver is within the antenna sector. A three dimensional
view of the PDF is shown in figure (2.1), where x and y are the x- coordinate
and the y - coordinate respectively.

2. A round doughnut shaped PDF that depends on the time advance given by a
certain mobile radio base station (e.g. the same base station as above). A three
dimensional view of the PDF over is shown in figure (2.2), where x and y are the
x- coordinate and the y - coordinate respectively.
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Figure 2.1: PDF of the location using time advance (estimate 1)
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Figure 2.2: PDF of the location using multi-sector antenna (estimate 2)

Combing the two PDFs according to equation (2.2) results in the PDF in figure (2.3).
The sharp peak can be used to locate the person.
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Figure 2.3: PDF of the location after combining estimates 1 and 2

2.3 Advanced soft location method - Bayesian Fil-

ters

2.3.1 Motivation

Many real-world data analysis tasks require estimation of the state of a system that
changes over time using a sequence of noisy measurements made on the system. In
most of these applications, prior knowledge about the phenomenon being modelled is
available. This knowledge allows us to formulate a model that can be used to find



2.3. ADVANCED SOFT LOCATION METHOD - BAYESIAN FILTERS 25

a system state of interest at any time step given the previous one. Additionally, in
most cases there is one or more sensors that provide some noisy observations regarding
the state of interest. Such a system is a dynamic system in which the measurements
will be used to calculate likelihood functions relating the noisy observations to the
states, and the state transition model will be used to find a prior distribution for the
unknown states of interest. A model that is characterized by likelihoods and a state
transition model is called a Bayesian models. Accordingly, filters that use such models
are called Bayesian filters. They represent the state at time t by random variables
xt. At each point in time, the estimation of this random variable is provided as a
probability distribution over the state space. The key idea is to generate these posterior
distributions at each time step based on all available information, including the set of
received measurements. Bayesian filtering appears under different names according
to the field of interest, such as optimal(nonlinear) filtering, stochastic filtering and
on-line inference and learning. Examples of applications where Bayesian filtering can
play a major role include: tracking an aircraft using radar measurements, estimating
the position of a walking pedestrian, estimating a digital communications signal using
noisy measurements, or estimating the volatility of financial instruments using stock
market data.

Arnaud Doucet [7] points out that “If the data are modelled by a linear Gaussian
state-space model, it is possible to derive an exact analytical expression to compute
the evolving sequence of posterior distributions. This recursion is the well known and
widespread Kalman filter. If the data are modelled as a partially observed, finite state-
space Markov chain, it is also possible to obtain an analytical solution, which is known
as the Hidden Markov model HMM filter”. Details on the HMM filter can be found in
[8], [9]. The Kalman filter will be discussed in section (2.4.1).

Highly restrictive assumptions should hold in order to have a tractable solution for
any of the prementioned filters. Many of the real life applications involves elements of
non-linearity, high dimensionality and non-linearity. In such conditions, the assump-
tions that the analytical solutions are built on become invalid. Many approximations
schemes, such as extended Kalman filter, approximate grid-based filters, and particle
filters have been proposed to surmount this problem. Different approximations resulted
in different computation and design complexity, cost, flexibility and parallelization lim-
its.

2.3.2 Problem Statement

Our objective is to track the state of a system as it evolves over time. Sequentially
arriving (noisy or ambiguous) observations are given. The best possible estimate of
the state is required. The tracked system is dynamic and its underlined models are
nonlinear and non-Gaussian. This dynamic system is modelled using a state space
approach. According to Arulampalam [10] “the state space approach is convenient
for handling multivariate data and nonlinear/non-Gaussian processes, and it provides
a significant advantage over traditional time-series techniques for these problems”.
For dynamic state estimation, discrete-time formulation is widespread and convenient.
Thus, difference equations are used to model the evolution of the system with time, and
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measurements are assumed to be available at discrete times. Figure (2.4) summarize
what is given and what is required in discrete time.  

zk-1 

Xk-1 

zk zk+1 

Xk Xk+1 

Measurement 
(observed) 

States  
(cannot be observed, 
have to be estimated) 

Figure 2.4: Problem statement in discrete time

Often, the observations arrive sequentially in time and one is interested in process-
ing the data as they arrive. This means the that the probability densities should be
estimated sequentially conditioned on the noisy observations provided by the sensors.
It is therefore necessary to update the posterior distribution as data becomes available.
This is called on-line inference [11] and such filtering is called recursive filtering [10].
Computational simplicity is a key advantage of on-line inference, since there is no need
to store all the data nor to reprocess existing data if a new measurement becomes
available.

In order to analyze and make estimations regarding the state of the pre-described
dynamic system, at least two models are required: First, a model describing the evo-
lution of the state with time (the system model). It predicts the state PDF forward
from one measurement to the next. The prediction generally translates, deforms and
spreads the state PDF since the states are modelled as random variables using the
state transition model. Second, a model relating the noisy measurements to the state
(the measurement model). It modifies the prediction PDF according to the received
measurement. These models are assumed to be available in a probabilistic form. This
probabilistic state-space formulation and the need to update the probability densities
as new measurements arrive are well suited for the Bayesian approach. This represents
a general framework for dynamic state estimation problems.

2.3.3 Dynamic System Model

In the following, the two needed models to analyze any dynamic system will be ob-
tained. The first model is the state transition equation (system model) which is the
movement model in tracking problems. The state sequence {xk, k ∈ N} is given by:

xk = fk(xk−1, vk−1) (2.3)
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where fk : RDx × RDv → RDx is a possibly nonlinear function of the state xk−1 and
{vk−1, k ∈ N}, an i.i.d. process noise sequence;
Dx, Dv: are the dimensions of the state and process noise vectors, respectively;
N: is the set of natural numbers.
From the above equation we can see that a state xk at kth time is a function of the
previous state xk−1 and some process noise. The state transition equation can be
written in a probabilistic form as an a priori distribution “prior”: p(xk|xk−1), which is
the conditional probability of any state x at time k given the previous state xk−1.

The second model is the measurement model which is given by:

zk = hk(xk, nk) (2.4)

where hk : RDx ×RDv → RDx is a possibly nonlinear function;
{nk, k ∈ N} is an i.i.d. measurement noise sequence;
Dx, Dv are dimensions of the measurement and measurement noise vectors, respec-
tively.
From the above equation we can see that a measurement zk at kth time is a function
of the kth state and some measurement noise. The measurement model can be written
in a probabilistic as a likelihood:p(zk|xk), which is the conditional probability of any
measurement z at time k given the current state xk.

The measurements are observed out of some noisy sensors. The states can not
be observed and have to be estimated out of those noisy measurements. So they are
hidden variables. The System model together with the measurement model form a
first order Hidden Markov Model. Diagram (2.5) shows how these two models form a
first order Hidden Markov Model.
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Figure 2.5: First order Hidden Markov Model representing the dynamic system
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2.3.4 Bayesian Filter Algorithm

A mathematical formulation of the problem statement is given next. The following
prior information is given:

• The initial PDF p(x0|z0) ≡ p(x0) of the state, which is also known as the prior
(zo being the set of no measurements)

• The likelihood p(zk|xk) which is obtained from the measurement model.

• The prior p(xk|xk−1) which is obtained from the movement model.

• A set of noisy observations z1:k = {zi, i = 1, . . . , k}.

A State vector x0:k = (x0, . . . , xk) should be estimated. In other words, the pos-
terior distribution p(x0:k|z1:k) should be calculated. Storing the path xi

0:k−1, and the
history of observations z1:k−1 is inconvenient. Luckily it is more common that a fil-
tered distribution p(xk|z1:k) is required. In these cases Recursive Bayesian Filtering is
applicable, which only requires xi

k to be stored.
A Recursive Bayesian Filter consists of two stages:

• Prediction stage: The movement model is used to predict the state PDF from
one measurement to the next

• Update stage: The latest measurement is used to modify the prediction PDF.

A mathematical equation for each stage will be obtained. According to the total law
of probability:

p(xk) =

∫
p(xk|xk−1)p(xk−1)dxk−1 (2.5)

where,
p(xk): is the probability of any state xk at time k,
p(xk|xk−1): is the conditional probability of any state xk at time k given the previous
state xk−1.

An equation for the prediction stage could be derived using the pre-mentioned total
law of probability:

p(xk|z1:k−1) =

∫
p(xk|xk−1, z1:k−1)p(xk−1|z1:k−1)dxk−1 (2.6)

where,
p(xk|z1:k−1): is the prior PDF of the state xk at time k given the history of measure-
ments z1:k−1 up to time k − 1,
p(xk|xk−1, z1:k−1): is the joint probability of a state xk at time k given the previous
state xk−1 with the history of measurements z1:k−1 up to time k − 1,
p(xk−1|z1:k−1): is the PDF of the previous state xk−1 given the history of the measure-
ments z1:k−1 up to time k − 1.
The PDF p(xk−1|z1:k−1) is assumed to be available at time k − 1.
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Bayes theorem [12], is a mechanism for updating knowledge about the target state
in the light of extra information from new data. According to it:

p(xk|zk) =
p(zk|xk)p(xk)

p(zk)
(2.7)

where,
p(xk|zk): is the conditional probability of any state xk at time k given the measurement
at the same time zk,
p(zk|xk): is the conditional probability of any measurement zk at time k given the state
at the same time xk. It is also called the likelihood,
p(xk) and p(zk): are the probabilities of any state and any measurement at time k
consecutively.

An equation for the update stage can be derived using the pre mentioned Bayes
Rule:

p(xk|z1:k) =
p(zk|xk, z1:k−1)

p(zk|z1:k−1)
p(xk|z1:k−1) (2.8)

where,
p(xk|z1:k): is the conditional probability of any state xk at time k given the history of
measurements z1:k up to time k. It represents the posterior,
p(zk|xk, z1:k−1): is the joint probability of the conditional probability of any measure-
ment zk at time k given the state xk at the same time with the history of measurements
z1:k−1 up to time k − 1,
p(xk|z1:k−1): is the prior PDF of the state at time k given the history of measurements
z1:k−1 up to time k − 1, and it is calculated at the prediction stage,
p(zk|z1:k−1): is the probability of any measurement zk given the history of measure-
ments z1:k−1 up to time k − 1.

From the first order Hidden Markov Model, we notice that if the previous state
xk−1 is known, then the movement model can be used to find the current state xk

without the need for any previous measurement. Accordingly the prediction equation
can be simplified to:

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (2.9)

where p(xk|zk−1, z1:k−1) is replaced with p(xk|zk−1).
We also notice that if any state xk is known at time k then the measurement

model can be used to find the current measurement without the need for any previous
measurements. Accordingly, the update equation can be simplified to:

p(xk|z1:k) =
p(zk|xk)

p(zk|z1:k−1)
p(xk|z1:k−1) (2.10)

where p(zk|xk, z1:k−1) is replaced by p(zk|xk).
Again using the total law of probability the normalization constant p(zk|z1:k) can

be calculated to be:

p(zk|z1:k) =

∫
p(zk|xk, z1:k−1)p(xk|z1:k−1)dxk = constant : αk (2.11)
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The final two equations for prediction and update are as follows:

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (2.12)

p(xk|z1:k) = αkp(zk|xk)p(xk|z1:k−1) (2.13)

From the above prediction and update equations we can notice the following:

• The prediction equation uses the movement model and the given previous PDF
p(xk−1|z1:k−1) at time k − 1 to expect a PDF for the current state.

• At time step k, a measurement zk becomes available, and it will be used to
update our prediction. The arrived measurement gives an indication regarding
the correctness of our prediction.

• A closer look to the update equation shows that the update equation is the
prediction equation multiplied by the likelihood p(zk|xk) and a constant. The
likelihood is calculated from the measurement model. So update is nothing more
than the prediction weighted with the received measurement at time k.

• In the Bayesian process the prediction and the update are repeated as time
evolves. So prediction keeps going till a measurement is received. When a mea-
surement is received an update happens and then prediction continues.

2.3.5 Example 2 - Position estimation using Bayesian Filter

An example of the Bayesian filtering process will be shown. A walking person in one
direction should be tracked. A movement model is a person walking in one direction.
So the person position at time z+1 can be predicted according to this movement model.
Using the movement model, the prior p(xk|xk−1) is derived. The prior is needed in the
prediction stage as equation (2.9) shows.

This person reports whenever he sees a door. These reports are the only kind of
measurements which are available. Using these measurements a measurement model
is constructed. Using the measurement model the likelihood p(zk|xk) is derived. The
update is needed in the update stage to weight our prediction as equation (2.13) shows.

A prediction for the position of the pedestrian keeps going according to the move-
ment model. At the time the guy reports that he sees a door (a measurement is
received) the prediction will be weighted or corrected. This means that the prediction
distribution where the doors are will get high values and get low values elsewhere. As
we see from equation (2.10) the likelihood (from the measurement) is multiplied by
the prediction equation for this weighting purpose.
After this update the prediction goes on waiting for another measurement. A graphical
illustration is shown in figure (2.6).

The prediction and update equations form a recursive propagation which is only a
conceptual solution. In general, it can not be determined analytically. Typically, the
normalization constant p(zk|z1:k), the marginal of the posterior p(x0:k|y1:k), in particu-
lar p(xk|yk) can not typically be computed since they require the evaluation of complex
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Figure 2.6: Position estimation using Bayesian Filter, originally found in [13]
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high-dimensional integrals. Exact solutions exist but under many restrictions and as-
sumptions. On the other hand many approximations also exist for the cases when
optimal solution is intractable. The properties of these solutions and their imple-
mentations strongly differ in the way they represent the probability density functions
(PDFs) over the state x. This results in different types of Bayesian Filters. Accu-
racy, robustness, efficiency, sensor variety and complexity differ among different types
of Bayesian Filters accordingly. Kalman Filter, Multi-hypothesis tracking (MHT) and
grid-based filters provide an optimal but restrictive solution. They are optimal because
they solve the problem of recursively calculating the exact posterior density. They de-
duce a solution for this recursion. However, strong assumptions and restrictions have
to be made for a valid Kalman, MHT or grid-based solution. On the other hand,
Extended Kalman Filter, Approximate Grid Based and Particle Filter provide approx-
imate solutions. They approximate the optimal Bayesian solution. When assumptions
for optimal solutions do not hold, then approximate solutions are used. Each of the
Bayesian Filter techniques will be briefly discussed. Advantages and disadvantages of
each technique will be mentioned. Also the conditions under which each solution or
approximation is tractable will be pointed out.

2.4 Optimal Bayesian Algorithms

Optimal finite dimensions algorithms for recursive Bayesian state estimations are for-
mulated into two main categories. In a linear and Gaussian case, the functional recur-
sion of prediction and update results in the Kalman filter. However, if the state space
is discrete with a finite number of states, the grid-based methods are optimal. Each of
these optimal algorithms will be explained next.

2.4.1 Kalman Filter

The Kalman filter is the most widely used variant of Bayesian Filters. Roughly
speaking, the Kalman filter approximates probability distribution over x by unimodal
Gaussian distributions, represented by their mean and variance. While the mean
gives the expected state the variance represents the uncertainty in the estimate. Even
though Kalman filters make strong assumptions about the nature of the sensors and
the movement model, they have been applied with great success to various estimations
problems.

Following assumptions are made during Kalman filter derivations [14]:

• The movement model is affected by a process noise drawn from a Gaussian dis-
tribution and is represented by vk−1.

• The measurement model is affected by a measurement noise drawn from a Gaussian
distribution and is represented by nk.

• Movement model is a known linear function of xk−1 and vk−1 and is represented
by fk(xk−1, vk−1).
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• Measurement model is a known linear function of xk and nk and is represented
by hk(xk, nk)

If the above assumptions hold and the prior PDF p(xk−1|z1:k−1) is Gaussian, then
the posterior PDF p(xk|z1:k) is also Gaussian. As a result, the movement model equa-
tion (2.3) and the measurement model equation (2.4) can be re-written as:

Xk = Fkxk−1 + vk−1 (movement model) (2.14)

Zk = Hkxk + nk (measurement model) (2.15)

where Fk and Hk are known matrices defining the linear functions of the movement
and the measurement models.

In order to derive the prediction and update equation updates of the Kalman filter
the following is considered:

• The covariances of vk−1 and nk are named Qk−1 and Rk.

• vk−1 and nk are assumed to be statistically independent.

• vk−1 and nk are considered having zero mean.

• The system matrix Fk and the measurement matrix Hk, as well as noise para-
meters Qk−1 and Rk are allowed to be time variant.

Accordingly, the prediction equation (2.9) and the update equation (2.10), can then
be viewed as the following recursive relationship:

p(xk−1|z1:k−1) = N (xk−1; mk−1|k−1, Pk−1|k−1) (2.16)

p(xk|z1:k−1) = N (xk; mk|k−1, Pk|k−1) Prediction Equation (2.17)

p(xk|z1:k) = N (xk; mk|k, Pk|k) Update Equation (2.18)

where

mk|k−1 = Fkmk−1|k−1 (2.19)

Pk|k−1 = Qk−1 + FkPk−1|k−1F
T
k (2.20)

mk|k = mk|k−1 + Kk(zk −Hkmk|k−1) (2.21)

Pk|k = Pk|k−1 −KkHkPk|k−1 (2.22)

where,
N(x; m, P ): is a Gaussian density with argument x, mean m, and covariance P ,
zk −Hkmk|k−1: is an innovation term having a covariance Sk,
Kk: is the Kalman gain, and the transpose of a matrix M is denoted by MT .
The covariance Sk and the Kalman gain Kk can be calculated according to:

Sk = HkPk|k−1H
T
k + Rk, (2.23)

Kk = Pk|k−1H
T
k S−1

k (2.24)
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The derived Kalman solution provides an optimal solution for tracking and many
Bayesian processes if its highly restrictive assumptions hold. In other words, no algo-
rithm can ever do better than a Kalman filter in this linear Gaussian environment. A
description of how to obtain the same result using a least square approach is described
in [15].

The Kalman Filter’s main advantage is its computational efficiency. Typical sensors
used for Kalman filter based estimation are cameras, laser range-finders, and GPS
systems. The Kalman filter’s weakness is its too restrictive assumptions. Because of
such restrictions the Kalman filter is not able to deal with common distributions and
models. Example of which are: non-linear models, non-Gaussian noise or posterior,
multi-modal distributions and skewed distributions.

2.4.2 Multi-hypothesis tracking (MHT)

Multi-hypothesis tracking extends Kalman filters to multi-modal beliefs[11]. MHT
represents the belief by mixture of Gaussians where each hypothesis is tracked using a
Kalman filter. The weights of the hypothesis are determined by how well they predict
the sensor measurements. Due to their ability to represent multi-modal probability
densities, MHT approaches are more widely applicable than the Kalman filter. Details
on MHT can be found in [16].

2.4.3 Grid-based method

The Grid-based method is another optimal Bayesian algorithm. It provides an opti-
mal recursion of the filtered density p(xk|z1:k) if the state space is discrete and consists
of a finite number of states. It overcomes the restrictions imposed on Kalman filters
by relying on discrete, piecewise constant representations of the probability distribu-
tions. For indoor estimation, grid-based filters tessellate the environment into small
parches, typically of size between 10cm and 1m. Each grid cell contains the probability
distribution over the cell. It gives the belief that the person is currently in the cell.

In order to derive the prediction and update equations for the Grid-based filter the
following assumptions are made:

• The state space at time k − 1 consists of discrete states xi
k−1, i = 1, . . . , Ns,

• For each state xi
k−1, the conditional probability of that state, given measurements

up to time k − 1 is denoted by wi
k−1|k−1, that is,

Pr(xk−1 = xi
k−1|z1:k−1) = wi

k−1|k−1 (2.25)

Accordingly, the posterior PDF at k − 1 can be written as:

p(xk−1|z1:k−1) =
Ns∑
i=1

wi
k−1|k−1δ(xk−1 − xi

k−1) (2.26)
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where δ(.) is the Dirac delta measure.
Substitution of equation (2.26) into the prediction equation (2.9) and the update equa-
tion (2.10) yields:

p(xz|z1:k−1) =

∫ Ns∑
i=1

p(xi
k|xk−1)p(xk−1|z1:k−1)δ(xk − xi

k)dx

=

∫ Ns∑
i=1

p(xi
k|x

j
k−1)p(xk−1 = xj

k−1|z1:k−1)δ(xk − xi
k)δ(xk−1 − xi

k−1)dxk−1

=
Ns∑
i=1

Ns∑
j=1

p(xi
k|x

j
k−1)p(xk−1 = xj

k−1|z1:k−1)δ(xk − xi
k) (2.27)

and by definition:

wi
k|k−1 ,

Ns∑
j=1

p(xi
k|x

j
k−1)p(xk−1 = xj

k−1|z1:k−1) (2.28)

Substituting 2.28 in 2.27) the prediction and update equations of the Grid-based filer,
respectively.

p(xk|z1:k−1) =
Ns∑
i=1

wi
k|k−1δ(xk − xi

k) Prediction Equation (2.29)

p(xk|z1:k) =
Ns∑
i=1

wi
k|kδ(xk − xi

k) Update Equation (2.30)

Substituting equation (2.25) in equation (2.28) yields:

wi
k|k−1 ,

Ns∑
j=1

wj
k−1|k−1p(xi

k|x
j
k−1), (2.31)

wi
k|k ,

wi
k|k−1p(zk|xi

k)∑Ns

j=1 wj
k|k−1p(zk|xj

k)
(2.32)

The movement model p(xi
k|x

j
k−1) and the measurement model p(zk|xi

k) are assumed to
be known during Grid-based filter derivation, but the particular form of these discrete
densities is not constrained. Again, Grid-based filter is an optimal solution if the
assumptions hold.

A key advantage of these approaches is that they can represent arbitrary distri-
butions over the discrete state space. The disadvantage of grid-based approaches is
the computational complexity, which makes them applicable to low dimensional es-
timation problems only, such as estimating the position and the orientation of the
person. The computation complexity of grid-based methods can be avoided by non-
metric representations of an environment. Details on grid based methods can be found
in [17].
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2.5 Sub-Optimal Bayesian Algorithms

In many situations of interest, the restrictive assumptions of the optimal solutions
do not hold. Optimal solutions are intractable in such cases. The Kalman filter and
grid-based methods cannot, therefore, be used as some approximations are necessary.
Three approximate nonlinear Bayesian filters are considered next:

(a) Extended Kalman filter (EKF)

(b) Approximate grid-based methods;

(c) Particle filters.

2.5.1 Extended Kalman Filter

Extended Kalman Filter (EKF) generalizes the standard Kalman filter so that it works
for non linear systems also. The Gaussianity condition of the system’s noise remains as
a restriction for the EKF. EKF continually updates a linearization around the previous
state estimate, starting with an initial guess. In other words, it only considers a linear
Taylor approximation of the system function at the previous state estimate and that of
the observation function at the corresponding predicted position. This approach gives
a simple and efficient algorithm to handle a nonlinear model. However, convergence
to a reasonable estimate may not be obtained if the initial guess is poor or if the
disturbances are so large that the linearization is inadequate to describe the system.

If the movement model equation (2.3) and the measurement model equation (2.4)
are not linear, then they cannot be rewritten in the form of the Kalman movement
model equation (2.14) and the Kalman measurement model equation (2.15). However,
a local linearization of the equations may be a sufficient description of the nonlinearity
starting from an initial guess. The EKF is based on this approximation.

According to the Gaussian assumptions, the posterior p(xk|z1:k) can be approxi-
mated as follows:

p(xk−1|z1:k−1) ≈ N (xk−1; mk−1|k−1, Pk−1|k−1) (2.33)

p(xk|z1:k−1) ≈ N (xk; mk|k−1, Pk|k−1) (2.34)

p(xk|z1:k) ≈ N (xk; mk|k, Pk|k) (2.35)

where

mk|k−1 = fk(mk−1|k−1) (2.36)

Pk|k−1 = Qk−1 + F̂kPk−1|k−1F̂
T
k (2.37)

mk|k = mk|k−1 + Kk(zk − hk(mk|k−1)) (2.38)

Pk|k = Pk|k−1 −KkĤkPk|k−1 (2.39)

and where now fk(.) and hk(.) are non-linear functions and Fk and Hk are local lin-
earizations of these non-linear functions. Fk and Hk are matrices now and can be
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formulated as:

F̂k =
dfk(x)

dx

∣∣∣∣
x=mk−1|k−1

(2.40)

Ĥk =
dhk(x)

dx

∣∣∣∣
x=mk|k−1

(2.41)

(2.42)

Accordingly, the covariance of the innovation term of the Kalman filter zk−Hkmk|k−1,
and the Kalman gain respectively are as follows:

Sk = ĤkPk|k−1Ĥ
T
k + Rk (2.43)

Kk = Pk|k−1Ĥ
T
k S−1

k (2.44)

As mentioned above the EKF utilizes the first term in a Taylor expansion of the
nonlinear system. A higher order EKF that retains further terms in the Taylor expan-
sion exists, but the additional complexity has prohibited its widespread use. Examples
of such filter is the “Unscented Kalman filter” [18], [19].

The EKF solution is intractable if the approximation of the p(xk|z1:k) by a Gaussian
does not hold. In other words, if the true density is bimodal or heavily skewed, then
a Gaussian does not describe it well. In such cases, approximate grid-based filters
and particle filters are more suitable approximations and will yield an improvement in
performance [20].

2.5.2 Approximate Grid-Based Methods

Approximate Grid-based methods generalize Grid-based methods for cases where the
state space is continuous. However, it should be possible to decompose the state space
into Ns ’cells’, {xi

k, i = 1, . . . , Ns}, in order to be able to approximate the posterior
density with a Grid-based approach.

If the above described decomposition is possible, then the equality in the posterior
pdf of the Grid-based methods at k− 1 in equation (2.26) becomes an approximation:

p(xk−1|z1:k−1) ≈
Ns∑
i=1

wi
k−1|k−1δ(xk−1 − xi

k−1) (2.45)

Additionally, the equality in the prediction and the update equations of the Grid-based
methods in equation (2.29) and equation (2.30) becomes an approximation:

p(xk|z1:k−1) ≈
Ns∑
i=1

wi
k|k−1δ(xk − xi

k) Prediction Equation (2.46)

p(xk|z1:k) ≈
Ns∑
i=1

wi
k|kδ(xk − xi

k) Update Equation (2.47)
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The grid points xi
k, i = 1, . . . , Ns, represent regions of continuous state space, and

thus, the probabilities must be integrated over these regions. Accordingly, the prior
p(xi

k|x̄
j
k−1) can be written as:

p(xi
k|x̄

j
k−1) =

∫
x∈xi

k

p(x|x̄j
k−1)dx (2.48)

Substituting equation (2.48) in equation (2.31) and (2.32) yields:

wi
k|k−1 ,

Ns∑
j=1

wj
k−1|k−1

∫
x∈xi

k

p(x|x̄j
k−1)dx, (2.49)

wi
k|k ,

wi
k|k−1

∫
x∈xi

k
p(zk|x)dx∑Ns

j=1 wj
k|k−1

∫
x∈xj

k
p(zk|x)dx

(2.50)

where x̄j
k−1, denotes the center of the jth cell at time index k − 1.

For simplicity, a further approximation is made in the evaluation of weights wi
k|k

in practice. Specifically, these weights are computed at the center of the “cells” corre-
sponding to xi

k:

wi
k|k−1 ,

Ns∑
j=1

wj
k−1|k−1p(x̄i

k|x̄
j
k−1), (2.51)

wi
k|k ≈

wi
k|k−1p(zk|x̄i

k)∑Ns

j=1 wj
k|k−1p(zk|x̄j

k)
(2.52)

Selecting the appropriate number of cells is a challenge in approximate Grid-based
methods. The grid must be sufficiently dense in order to get a good approximation to
the continuous state space. However, as the dimensionality of the state space increases,
the computational cost of the approach therefore increases dramatically. The grid-
based approach shows poor results if the state space is not finite in dimensions. This is
due to the truncation of the state space caused by the approach. Another disadvantage
of grid-based methods is that the state space must be predefined and, therefore, cannot
be partitioned unevenly to give greater resolution in high probability density regions,
unless prior knowledge is used. More on approximate grid-based methods can be found
in [8].

2.5.3 Particle Filtering Methods

Particle Filters represent probability densities over the states xk by a set of random
samples distributed according to the PDF. This random sampling is called Monte Carlo
sampling. These samples are called particles. The continuous PDF is represented
by N discrete samples (particles). Each of these particles has an associated weight.
The points of higher density of the continues PDF will have more particles and those
particles will have higher weights. Estimates are computed based on the number of



2.5. SUB-OPTIMAL BAYESIAN ALGORITHMS 39

Figure 2.7: Particles representation of continuous PDF

particles and weights. The estimated state is the one at which there are the most
number of particles and highest weights. This can be seen in figure (2.7). The discrete
equation which is representing the continues PDF is:

p(xk|z1:k) =
Ns∑
i=1

wi
kδ(xk − xi

k) (2.53)

where:
Ns: number of samples(particles),
{xi

k, i = 0, . . . , Ns}: set of sampled states,
{wi

k, i = 0, . . . , Ns}: weights of sampled states.
For large numbers of samples the Random (Monte Carlo) Sampling approximation

converges to the usual functional description of the posterior PDF, and the particle
filter approaches the optimal Bayesian estimate.

Monte Carlo(MC) methods have the great advantage of not being subject to any
linearity or Gaussianity constraints in the model, and they also have appealing conver-
gence properties. It is, however seldom possible to obtain samples from these posterior
distributions p(xk|z1:k) directly. One therefore has to resort to alternative MC meth-
ods, such as importance sampling in which sampling happens from what is called
Importance density. By making this general MC technique recursive, one obtains the
sequential importance sampling (SIS) method. Unfortunately, it can easily be shown
that SIS is guaranteed to fail as time increases. This problem can be surmounted
by including an additional selection (resampling) step [21]. According to ARULAM-
PALAM [22] “Since the introduction of Resampling, research activity in this field has
dramatically increased, resulting in many improvements of particle filters and their
numerous applications”.

I. The Sequential Importance Sampling (SIS) Algorithm

Importance sampling [23], [24] is a general Monte Carlo (MC) integration method
that is applied to perform nonlinear filtering approximation for the optimal Bayesian
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solution. Monte Carlo are numerical methods that can be loosely described as sta-
tistical simulation methods, where statistical simulation is defined in quite general
terms to be any method that utilizes sequences of random numbers to perform the
simulation. Accordingly, the Monte Carlo term refers to random sampling. The
Sequential Importance Sampling (SIS) algorithm is a Monte Carlo method that
forms the basis for most sequential Monte Carlo filters developed over the past
decades [25], [7]. This sequential Monte Carlo (SMC) as the name describe deals
with sequentially arriving data. It is known variously as bootstrap filters [21], the
condensation algorithm [26], particle filters[27], Monte Carlo filters, interacting
particle approximations [28] and survival of the fittest [29].

The key idea of SIS is the same general particle filtering key idea, which is repre-
senting the required posterior density p(xk|z1:k) by a set of random samples with
associated weights and to compute estimates based on these samples and weights.

In order to develop the details of the algorithm, let xj = {xj, j = 0, . . . , k} repre-
sents the sequence of all target states up to time k. The joint posterior density at
time k is denoted by p(x0:k|z1:k). Let {xi

0:k, w
i
k}

Ns
i=1 denote random measure that

characterizes the posterior PDF p(x0:k|z1:k), where {xi
0:k, i = 0, . . . , Ns} is a set

of support points with associated weights {wi
k, i = 1, . . . , Ns}. The weights are

normalized such that
∑

i w
i
k = 1. Accordingly, the posterior density up to time k

can be approximated as:

p(x0:k|z1:k) ≈
Ns∑
i=1

wi
kδ(x0:k − xi

0:k), (2.54)

We therefore have a discrete weighted approximation to the true posterior p(x0:k|z1:k).
The normalized weights are chosen using the principle of importance sampling.
This principle relies on the following. Suppose p(x) ∝ π(x) is a probability den-
sity from which it is difficult to draw samples but for which π(x) can be evaluated
[as well as p(x) up to proportionality]. In addition, let xi ∼ q(x), i = 1, . . . , Ns

be samples that are easily generated from a proposal q(.) called an importance
density. Then, a weighted approximation to the density p(.) is given by:

p(x) ≈
Ns∑
i=1

wiδ(x− xi), (2.55)

where

wi ∝
π(xi)

q(xi)
(2.56)

is the normalized weight of the ith particle.

Therefore, if the samples, xi
0:k, were drawn from an importance density q(x0:k|z1:k)

then the weights in (2.54) are defined by (2.56) to be:

wi ∝
p(xi

0:k|z1:k)

q(xi
0:k|z1:k)

(2.57)
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Importance density is defined to be factorized such that:

q(x0:k|z1:k) , q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1) (2.58)

This means that samples from xi
0:k ∼ q(x0:k|z1:k) by augmenting each of the ex-

isting samples xi
0:k−1 ∼ q(x0:k−1|z1:k−1) with the new state xk ∼ q(xk|x0:k−1, z1:k).

However, if q(xk|x0:k−1, z1:k) = q(xk|xk−1, zk) , then the importance density be-
comes only dependent on xk−1 and zk. This assumption holds only if filter esti-
mates of p(xk|z1:k) are required at each time step. Practically, this is the case in
most of the Bayesian applications.

Using the previous assumption and as derived in [10] and [22], the weight update
is found to be:

wi
k = wi

k−1

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1, zk)
(2.59)

and the posterior filtered density p(xk|z1:k)can be approximated as:

p(x|z1:k) ≈
Ns∑
i=1

wi
kδ(xk − xi

k), (2.60)

where the weights are defined in (2.59). It is visible that as N →∞ the approx-
imation (2.60) approaches the true posterior density p(xk, z1:k).

Filtering via Sequential Importance Sampling (SIS) thus consists of recursive
propagation of importance weights wi

k and support points xi
k as each measure-

ment is received sequentially. A pseudo-code description of this algorithm is given
by algorithm 1. SIS is a general algorithm that forms the basis of most particle
filters. The choice of importance density functions plays a critical role in particle
filtering process.

ALGORITHM 1: SIS PARTICLE FILTER

[{xi
k, w

i
k}

Ns
i=1 = SIS [{xi

k−1, w
i
k−1}

Ns
i=1, zk]

• FOR i = 1 : Ns

– Draw xi
k v q(xk|xi

k−1, zk)

– Evaluate the importance weights up to a normalizing constant according
to equation (2.59)

w̃i
k = wi

k−1

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1, zk)
(2.61)

• END FOR

• Calculate total weight: t = SUM [{w̃i
k}N

i=1]

• For i = 1 : N

– Normalize: wi
k = t−1w̃i

k

• END FOR
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Degeneracy Problem

In the ideal case, the importance density should be the posterior density itself
p(xi

k|z1:k). Drawing random samples using the importance density equation (2.58)
results in an increase of the variance of the importance weights over time [24]. This
means the samples will be spread over the state space. As a result, after a certain
number of recursive steps, all but one particle will have negligible normalized
weights. This has a harmful effect on the accuracy and leads to a common
problem with the SIS particle filter. This phenomena is called the degeneracy
problem.

The degeneracy problem is impossible to avoid in the SIS framework and hence
it was a major challenge in the development of sequential Monte Carlo methods.
Effectively a large computational effort is devoted to updating particles whose
contribution to the approximation of p(xk|z1:k is almost zero. This is a waste of
time and memory. A suitable measure of degeneracy of any SIS process is the
effective sample size Neff introduced in [23] and [30], and defined as:

Neff =
1∑Ns

i=1(w
i
k)

2
(2.62)

where wi
k is the normalized weight obtained using (2.59) and 1 6 Neff 6 N .

Hence, small Neff indicate a severe degeneracy and vice versa. Using a very
large number of random samples Ns is valid solution for the degeneracy problem.
However, this is often impractical; because of the extra computation time and
effort needed. Accordingly, two other methods are applied in practices to solve
the problem of degeneracy. They are the Good Choice of Importance Density and
the use of resampling. A description of each of the approaches is shown next.

a) Good Choice of Importance Density
The choice of importance density q(xk|xi

k−1, zk) is one of the most critical
issues in the design of particle filter. Obtaining and optimal importance den-
sity function helps minimizing the variance of the importance weights and as
a result reduces the degeneracy problem. The optimal importance density
conditioned upon xi

k−1 and zk has found to be [24]:

q(xk|xi
k−1, zk)opt = p(xk|xi

k−1, zk)

=
p(zk|xk, x

i
k−1)p(xk|xi

k−1)

p(zk|xi
k−1)

. (2.63)

Substitution of (2.63) into (2.59) yields:

wi
k ∝ wi

k−1p(zk|xi
k−1) (2.64)

which states that importance weights at time k can be computed before the
particles are propagated to the next time step. Additionally, resampling can
be carried out if needed before going to the next step.

Using the optimal importance function requires:
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i. Sampling from p(xk|xi
k−1, zk)

ii. Evaluating up to a normalizing constant the probability:

p(zk|xi
k−1) =

∫
p(zk|xk)p(xk|xi

k−1)dxk (2.65)

The above requirements are major drawbacks of the “good choice of impor-
tance density” degeneracy solution technique. That is because generally either
of the two requirements may not be straightforward.

However, in some special cases it is possible to use the optimal importance
density. The first case is when xk is a member of a finite set. In such case,
sampling from p(xk|xi

k−1, zk) is possible since the integral in equation 2.65
becomes a sum. Tracking maneuvering targets is an example where xk is a
member of a finite set [31]. The second special case where it is possible to use
the optimal importance density is where the prior p(xk|xi

k−1, zk) is Gaussian
[24], [32].

Generally, the most popular and convenient choice of importance density is
the transitional prior,

q(xk|xi
k−1, zk) = p(xk|xi

k−1) (2.66)

Substitution of equation (2.66) into equation (2.59) then yields

wi
k ∝ wi

k−1p(zk|xi
k) (2.67)

The above choice is widely spread since it is intuitive and easy to implemented.
However, there are many other densities that can be used.

Using the transitional prior as the importance density instead of the optimal
one has the following disadvantages:

a) If the optimal importance density is used, then according to equation (2.64)
importance weights can be computed before the particles are propagated to
time k. Equation (2.67) states that this is not possible with the transitional
prior.

b) Using the much broader distribution of the transitional prior p(xk|xi
k−1)

compared to the likelihood p(zk|xk) results in having the degeneracy prob-
lem again. This is because after some time only few particles will be having
high weights.

Methods exist for encouraging the particles to be in the right place. Of course,
regions of high likelihood are the right places where the particles should con-
gregate. The auxiliary particle filter [10] is one of these methods. Additionally,
bridging densities and progressive correction provide alternative solutions. De-
tails on both algorithms can be found in [7].

b) Resampling
The second method by which the effects of degeneracy can be reduced is to
use resampling. Resampling is done in the SIS algorithm whenever a signifi-
cant degeneracy is observed. In other words, whenever Neff falls below some
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threshold NT ). Resampling eliminates particles with low importance weights
and multiplies samples with high importance weights. Furthermore, resam-
pling allows to apply a particle filter in situations in which the true distribution
differs from the proposal.

Resampling involves a mapping of a random measure {xi
k, w

i
k} into a random

measure {xi∗
k , 1/Ns} with uniform weights. Accordingly, the resampled parti-

cles are having uniform weights of wi
k = 1/Ns. The mapped random samples

xi∗
k are generated by resampling(with replacement) Ns times from an appro-

priate discrete representation of p(xk|z1:k) given by:

p(xk|z1:k) ≈
Ns∑
i=1

wi
kδ(xk − xi

k) (2.68)

so that P{xi∗
k = xj

k} = wj
k. Resampling can be implemented by generat-

ing Ns independent identically-distributed (i.i.d) random variables from the
uniform distribution, sorting them in ascending order and finally picking the
corresponding mapped samples [33], [27]. Sorting complexity increase in a log-
arithmic order of the number of samples Ns. It represents a major limitation
in the SIS particle filter.

Systematic resampling [34] is an efficient scheme, simple to implement and
above all it has a low computational complexity. Additionally, it reduces the
Monte Carlo variations. The pseudocode of the systematic resampling is de-
scribed in Algorithm 2, where U[a, b] is the uniform distribution on the interval
[a, b]. With systematic resampling, the index of the parent ij for each resam-
pled particle xj∗

k is stored if needed.
By now, all the steps needed for a generic particle filter are explained. Its
pseudocode is given in algorithm 3.

ALGORITHM 2: RESAMPLING ALGORITHM

[{xj∗
k , wj

k, i
j}Ns

j=1 = RESAMPLE [{xi
k, w

i
k}

Ns
i=1]

• Initialize the CDF: c1 = w1
k

• FOR i = 2 : Ns

– Construct CDF: ci = ci−1 + wi
k

• END FOR

• Start at the bottom of the CDF: i = 1

• Draw a starting point: u1 ∼ U[0, N−1
s ]

• FOR j = 1 : Ns

– Move along the CDF: uj = u1 + N−1
s (j − 1)

– WHILE uj > ci

∗ i = i + 1

– END WHILE

– Assign sample: xj∗
k = xi

k
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– Assign weight: wj
k = N−1

s

– Assign parent: ij = i

• END FOR

ALGORITHM 3: GENERIC PARTICLE FILTER

[{xi
k, w

i
k}

Ns
i=1 = PF [{xi

k−1, w
i
k−1}

Ns
i=1, zk]

• Filtering via SIS according to algorithm 1:
[{xi

k, w
i
k}

Ns
i=1 = SIS [{xi

k−1, w
i
k−1}

Ns
i=1, zk]

• Calculate N̂eff using equation (2.62)

• IF N̂eff < NT

– Resample using algorithm 2: [{xi
k, w

i
k,−}

Ns
i=1 = RESAMPLE[{xi

k, w
i
k}

Ns
i=1]

• END IF

Although resampling reduces the effects of the degeneracy problem, it intro-
duces other practical problems:

i. The opportunity of building the implementation using parallel processors
is limited since all particles should be combined now.

ii. Resampling results in statistically selecting the particles that have high
weights wi

k many times. This results in a loss of diversity among the par-
ticles as the resultant samples will contain many repeated points. This is
a known problem in particle filtering and is called sample impoverishment.
As a result of sample impoverishment, all the particles will collapse to a
single point within a few iterations.

iii. Any smooth estimates based on the particles paths degenerate as a result
of the particles diversity reduction.

Over the last few years, a lot of research has been done to find solutions
for the pre-mentioned disadvantages. The forward-backward filter [35] and
the Markov chain Monte Carlo (MCMC) move step [36] are two suggested
solution for the degeneration of smooth estimates problem. On the other
hand, the resample-move algorithm [37] and the regularization step [7] are
two suggested solutions for the sample impoverishment.

As a general rule, the accuracy of any estimate can only decrease as a result of
resampling. Therefore if statistical quantities such as mean and variances of
the particles are to be reported, these should be calculated prior to resampling.

II. Other Versions of Particle Filters
Over the last few years, many versions of particle filters have been developed.
However, the sequential importance sampling (SIS) algorithm presented in the
previous section forms the basis for most of them. The various versions of particle
filters proposed in the literature can be considered as special cases of this general
SIS algorithm. They differ in their choice of the importance sampling density and
the resampling step. The most famous versions of particle filters are [10]:
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(a) Sampling importance resampling (SIR) filter;

(b) Auxiliary sampling importance resampling (ASIR) filter;

(c) Regularized particle filter (RPF).

(d) Local linerization particle filters.

(e) Multiple-model particle filter.

In practise these particle filters can be combined according to the application and
to avoid the disadvantages linked to some particle filters.

During this work, SIS particle filter, SIR particle filter and SIR particle filter
with Neff are implemented and tested. Their accuracy and performance are also
analyzed. The SIS particle filter is explained in the previous section. The SIR
particle filter will be explained next.

Sampling Importance Resampling Filter

Sampling importance resampling (SIR) is a very commonly used particle filtering
algorithm, which approximates the filtering distribution by a weighted set of
particles. It was first proposed in [21] under the name “bootstrap” filter. It is a
MC method that can be applied to recursive Bayesian filtering problems.

Very weak assumptions are required to use the SIR filter. These assumptions are:

(a) The state dynamics and measurement functions fk(., .) and hk(., .) in (2.3)
and (2.4), respectively, need to be known.

(b) Sampling from the process noise distribution of vk−1 and from the prior
(p(xk|xi

k−1)) should be possible.

(c) The likelihood function p(zk|xk) needs to be available. Its availability should
be at least up to proportionality.

If the above weak assumptions hold, the SIR algorithm is derived from the
SIS algorithm by choosing the importance density to be the transitional prior
(p(xk|xi

k−1)) and by performing resampling step at every time index k.

According to the above selection of importance density, samples from the transi-
tional prior (p(xk|xi

k−1)) are required. A sample xi
k ∼ p(xk|xi

k−1) can be generated
in two steps. First, a process noise sample vi

k−1 ∼ pv(vk−1) is generated, where
pv(.) is the PDF of vk−1. Second, setting the support points xi

k = fk(x
i
k−1, v

i
k−1).

According to the selected importance density, the importance weights can be cal-
culated using equation (2.67). Using the fact that resampling is applied every
time index, importance weights at k − 1 can be simplified to wi

k−1 = 1/N for
all i = 1, . . . , N . This has two meanings: first, there is not need to pass on the
importance weights from one time step to the next; and second, relation (2.67)
simplifies to:

wi
k ∝ p(zk|xi

k). (2.69)
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The above simplifications make the computation efforts of the SIR particle filter
much simpler compared to other particle filters. It has to be noticed that the
weights given by the proportionality in (2.69) have to be normalized before the
resampling stage. An iteration of the algorithm is then described in Algorithm 4.

ALGORITHM 4: SIR PARTICLE FILTER

[{xi
k}

Ns
i=1] = SIR [{xi

k−1}
Ns
i=1, zk]

• FOR i = 1 : Ns

– Draw xi
k ∼ p(xk|xi

k−1)

– Calculate w̃i
k = p(zk|xi

k)

• END FOR

• Calculate total weight: t = SUM[{w̃i
k}

Ns
i=1]

• FOR i = 1 : Ns

– Normalize: wi
k = t−1w̃i

k

• END FOR

• Resample using algorithm 2: [{xi
k,−,−}Ns

i=1] = RESAMPLE [{xi
k, w

i
k}

Ns
i=1]

The SIR particle filter has two main disadvantages:

a) In the SIR particle filter, the importance density is selected to be the tran-
sitional prior p(xk|xi

k−1) and it is independent of the measurements zk. As a
result, the filter will explore the state space without making use of the obser-
vations. Accordingly, this filter can be inefficient and is sensitive to outliers.

b) The filter may suffer from loss of diversity among the particles and the re-
sultant samples will contain many repeated points. This is due to applying
resampling at every time step.

On the other hand, the main advantages of the SIR particle filter are as follows:

• It is easy to sample from the importance density since it is selected to be
the transitional prior.

• It is also easy to evaluate the importance weights since they are equal to the
likelihood.

2.5.4 Example 3 - Position estimation using Particle Filter

The tracking of a walking person in one direction has been demonstrated in example
2 using Bayesian Filters. In this section, the same process will be illustrated but using
Particle Filtering. The same movement and measurement models applies. A graphical
illustration is shown in figure (2.8)
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Figure 2.8: Position estimation using Particle Filter, originally found in [13]
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2.5.5 Comparison between Bayesian Filter and Particle Filter

Figure (2.9) illustrates a comparison between location estimation using Bayesian Filters
(example 2) and the approximation done using Particle Filter (example 3). From the
illustrated comparison between Bayesian Filter and Particle Filter in figure (2.9) the
following could be noticed:

• Bayesian filtering uses continuous PDFs to represent soft decisions and decisions
are made upon states where high PDF densities occur.

• Particle filtering uses discretely sampled PDFs and decisions are made upon
states where more particles and more weights occur.

• If the number of samples ’particles’ tends to infinity then a Particle filtering will
approach Bayesian filtering.

• Particle filtering provides an efficient approximation for Bayesian filtering.

• Particle filtering is easy to formulate and implement.
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Figure 2.9: Comparison between Bayesian Filter and Particle Filter, originally found
in [13]



Chapter 3

Human movement model

3.1 Introduction

Having a movement model that reproduces the behavior of the real dynamic system
is a prerequisite in Bayesian algorithms. The Prediction stage depends entirely on
the movement model to predict where most probably the pedestrian will be at the
next time step. With a good movement model, the system can predict accurately the
position of the pedestrian at time k + 1. This will decrease the dependency on the
measurements for estimation. It will also allow the system to take correct decisions
regarding the position of the pedestrian at the prediction stage, since we will have
less contradiction between the prediction and the measurements later on. Developing
a good movement model was one of the main tasks during this work. A detailed
explanation of the developed movement model and its elements will be given in this
chapter.

Several parameters affect the movement of the human being. Speed and direction
and as a result the position vary according to these parameters. Some of these para-
meters affect the movement more than the others. Activity, activeness, disorientation
and emotions are examples of these parameters.

Human movement is parameterized by physical parameters like speed, direction and
position. Movement constraints that control these physical parameters are categorized
into two groups. The first category includes parameters that the system can determine
accurately such as age, weather, time of day and weekday and parameters that can be
derived from external data such as ground steepness or obstacles at the pedestrian’s
position. The other category includes parameters that are varying according to the
human behavior. The system is not capable of answering questions regarding this cat-
egory. Examples of the members of this group are activity, disorientation, activeness,
arousal and emotions.

Eleven parameters that affect the human movement are considered during this
work. Figure (3.1) shows an illustration of these parameters. Previous speed and
direction are used to calculate the new position which is needed in order to specify the
condition of some of the states. For example this new position is needed to specify the
geographical situation of the area where the pedestrian is navigating.
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1. Emotions
2. Disorientation
3. Activity
4. Activeness
5. Arousal

8. Weather

6. Time of day
7. Weekday
8. Age

10. Obstacles
11. Ground steepness

Time dependent parameters

Geographical dependent parameters

Behavior dependent parameters

SpeedDirection

Position

Figure 3.1: States that affect the human movement

The system is capable of answering question like telling the weather condition, the
day of the week, the time of the day and the age of the pedestrian. The system is
also capable of telling the obstacles and the steepness conditions at the location of the
pedestrian.

The system is not capable of measuring the emotions, the arousal, the activeness,
the activity and the disorientation states of the pedestrian. These variables are mod-
elled via Markov models. Transition probabilities are set according to some statistics.
For example, if at t = 0 the pedestrian is half drunk then at time t+1 his disorientation
state will change according to some transition probability following a Markov model.

By knowing the specific condition of our eleven states, the situation of the pedes-
trian could be specified accurately. From this situation we can speculate how his
movement will be at the next time step using some biological statistical data.

We used some biological statistics to parameterize our model assuming Gaussian
distributions for its random variables. For example, for a totally drunk walking pedes-
trian we assume a mean speed of about 43 m/minute, standard deviation of 22m/sec,
mean direction which is same as the old direction, standard deviation of direction of
900. Eleven constraints will result in eleven mean and variance for speed and direc-
tion. Single mean and variance are calculated by performing a weighted average over
the eleven states. The two means and variances are used to build a two dimensional
Gaussian distribution. New speed and new direction are sampled out of this two di-
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mensional Gaussian distribution. The new position is calculated out of the speed and
the direction using the equations of motion. This new position will be the input for
the next time step.

As time evolves changes in the states of the first category items are received from
the system, while changes in the states of the second category items are calculated using
their Markov models. Speed, direction and the resulting position are then calculated
at every time step.

The prediction stage became more accurate as a result of this improved movement
model. Accordingly, the system is capable of approximating the position of pedestrian
more accurately before the measurement comes. This results in less contradiction
between the prediction and the measurement. The developed movement model has
shown promising results in location estimation. Location based services may improve
considerably with accurate movement models. A flow diagram of how the developed
movement model works is shown in figure (3.2).

3.2 Markovian States

As can been seen from figure (3.2), activity, disorientation, emotions, arousal and
activeness are modelled using Markov models. The idea of using Markov chains for
describing human behaviors could be found also in [38], [39] and [40]. Transition
probabilities of the Markov models are set according to some statistics [41] and common
sense. The measurements arrive every second, so transition probabilities are set on a
one second time interval base. The input for each of the Markov models is the previous
state and the output will be the new state. For example, if the pedestrian’s activeness
old state was “active”, then his new activeness state might remain “active” with a
probability of 90%, might change into “just ok” with a probability of 5% and might
change into “tired” with a probability of 5%. The state and transition probabilities
of the Markov models of the five Markov processes are demonstrated in tabular forms
in tables (3.1) to (3.5). Vertical table elements are old states, while horizontal table
elements are new states.

3.3 System states

From figure (3.2) we can see that there are two types of system states. The first type
includes states that the system is able to reply with their condition without the need
of knowing their previous states. Examples of those states are weather, weekday, time
of day and age. Currently those are configured using an XML file.
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Activity Escaping
Sporting
(running)

Harry
walk

City
walk

Hiking Shopping Stopping

Escaping 0.9 0.005 0.03 0.02 0.02 0.02 0.005
Sporting
running

0.01 0.9 0.03 0.02 0.03 0.005 0.005

Hurry walk 0.01 0.025 0.9 0.025 0.02 0.01 0.01
City walk 0.01 0.015 0.02 0.9 0.015 0.02 0.02
Hiking 0.01 0.02 0.025 0.02 0.9 0 0.025
Shopping 0.01 0.01 0.02 0.03 0 0.9 0.03
Stopping 0.01 0.01 0.015 0.025 0.015 0.025 0.9

Table 3.1: Activity Markov model

Disorientation Sober Quarter drunk Half drunk 3Q drunk Totally drunk
Sober 0.95 0.03 0.02 0 0

Quarter drunk 0.1 0.85 0.04 0.01 0
Half drunk 0.04 0.11 0.82 0.02 0.01
3Q drunk 0 0 0.25 0.7 0.05

Totally drunk 0 0 0 0.3 0.7

Table 3.2: Disorientation Markov model

Emotions Sad Normal Happy
Sad 0.9 0.07 0.03

Normal 0.05 0.9 0.05
Happy 0.03 0.07 0.9

Table 3.3: Emotions Markov model

For the second type of states, the system needs to know the new position to give
any information regarding their conditions. Old speed and old direction are used to
calculate the new position of the pedestrian. Ground steepness and obstacles are the
members of this type. To model these two states, a map of the simulated/demonstrated
area should be used. The map is colored using a gray scale in which each gray level
represents some steepness condition. Another gray scale map could be generated in
which each gray level represents some obstacles condition. An 8 level gray scale map is
used in the current implementation. The same map is used for steepness and obstacles.
A Java class that takes the new position as input and produce a steepness and obstacles
conditions using the gray scale map is implemented. A satellite image for DLR is shown
in figure (3.3). A gray scale map for DLR premises is shown in figure (3.4).

3.4 From states to movement

A specific condition for each of the states is determined as explained in the two previous
sections. Each specific condition is used to calculate a mean and standard deviation
for speed and direction as shown in figure (3.2). For example an escaping pedestrian
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Figure 3.3: Satellite image of DLR premises



3.4. FROM STATES TO MOVEMENT 57

 

Figure 3.4: Gray scale map for DLR premises using 8 colors depth
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Madness Calm Neutral Angry
Calm 0.9 0.07 0.03

Neutral 0.05 0.9 0.05
Angry 0.03 0.07 0.9

Table 3.4: Arousal Markov model

Activeness Tired Just Ok Active
Tired 0.9 0.08 0.02

Just Ok 0.05 0.9 0.05
Active 0.02 0.08 0.9

Table 3.5: Activeness Markov model

will have a mean speed of 250 m/min, standard deviation of speed of 5 m/min, mean
direction which is the same as the old direction and standard deviation of direction of
15◦.
To get such values statistical biological information [41], [42] is used. Some of these
statistics are shown in table (3.6).

Speed (m/minute) Status
40 average slow walk
82 average normal walk
110 average fast walk

above 130 start running speed
200 average running speed
300 maximum runnig speed (normal pedestrian)
618 maximum running speed (athlete)

Table 3.6: Some statistics used to build the movement model

The maximum running speed ever was achieved by Michael Johnson. It takes an
athlete like Michael Johnson or Maurice Greene 5 to 6 seconds to reach their maximum
speed [43]. However, the designed movement model was meant for a normal pedestrian,
so average normal human limits were used.

Equations that relate mean and standard deviation of speed and direction to the
human states were generated under consideration of these biological statistics. This
resulted in four equations for each of the eleven states. For simplicity mean direction
is always assumed to be the same as the old direction. This reduce the number of
equations needed for each of the states to three.

To generate such equations a table was created for each of the states. This table
contains various conditions of the state on one side, and the resultant mean and the
standard deviation of speed and direction on the other side. As mentioned previously,
biological statistical data and some common sense were used to create these tables.
For simplicity, the correlation between speed and direction was assumed to be zero
while creating these tables. Curves for mean speed, standard deviation of speed and



3.4. FROM STATES TO MOVEMENT 59

direction were created out of the tables. No curve was needed for mean direction since
it was assumed to be the same as the old direction. Curve fitting was used to create
three equations for each of the states out of the curves. The generated table for age
state is shown in table (3.7). The rest of the tables for the other ten states are shown
in appendix (A).

Age (walking)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

Kid 45 old direction 15 45
Youth 82 old direction 13 15
Old 60 old direction 11 30

Age (running)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

Kid 120 old direction 25 20
Youth 200 old direction 34 15
Old 160 old direction 20 17

Table 3.7: Age statistics

Using the resultant tables, three charts for each of the states are generated. These
charts relate mean speed, sigma speed and sigma direction as functions of the specific
condition of each of the states. Curve fitting is used to generate an equation out of
each of those charts. The generated charts for age state are visualized in figure (3.5)
up to figure (3.10). The rest of the charts for the other ten states are visualized in
appendix (B). The curve fitted equation is also visualized in each chart.

The conditions of each of the states are represented by numbers in the x-axis of the
charts. For example kid age state is represented by zero in the age charts.

Curve fitting is applied to generate a mathematical equation for each of the charts.
This was done using Microsoft Excel. Trendlines are used for this curve fitting purpose.
Trendlines are used to graphically display trends in data and to analyze problems of
prediction. Such analysis is also called regression analysis. Regression analysis are
forms of statistical analysis used for forecasting. Regression analysis estimates the
relationship between variables so that a given variable can be predicted from one or
more other variables. By using regression analysis, trendlines can be extended in a
chart beyond the actual data to predict future values. Trendline is most reliable when
its R-squared value is at or near 1. R-squared value is a number from 0 to 1 that
reveals how closely the estimated values for the trendline correspond to the actual
data. R-squared is also known as the coefficient of determination. When a trendline
is fitted to the data, Excel automatically calculates its R-squared value.

The generated equation and the R-squared values are displayed on each of the chart.
A summary of the resultant equations that relate age state to the means and standard
deviations (σ) of speed and direction are shown in equation (3.1) up to equation (3.8).
The rest of the equations that relate the other ten states to the means and standard
deviations of speed and direction are shown in appendix (C).
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Figure 3.5: Mean speed as a function of the age during walking
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Figure 3.6: Sigma speed as a function of the age during walking
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Figure 3.7: Sigma direction as a function of the age during walking
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Figure 3.8: Mean speed as a function of the age during running
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Figure 3.9: Sigma speed as a function of the age during running
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Figure 3.10: Sigma direction as a function of the age during running
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Age state

• Walking

µv = −118(age state)2 + 133(age state) + 45 (3.1)

σv = −4(age state) + 15 (3.2)

µα = α(k − 1) (3.3)

σα = 90(age state)2 − 105(age state) + 45 (3.4)

• Running

µv = −240(age state)2 + 280(age state) + 120 (3.5)

σv = −46(age state)2 + 41(age state) + 25 (3.6)

µα = α(k − 1) (3.7)

σα = 14(age state)2 − 17(age state) + 20 (3.8)

where,
µv: is the mean speed,
σv: is the standard deviation of speed,
µα: is the mean direction,
σα: is the standard deviation of direction.

By now eleven means and standard deviations for speed and direction can be cal-
culated. Next step as can be seen from figure (3.2) is to combine these means and
standard deviations into a single mean and a single standard deviation for both speed
and direction. This is done using the Mean - Standard Deviation combiner. An expla-
nation of how this combiner works is shown below.

3.5 µ - σ Combiner

Specific weights are assigned for each of the states according to its importance for the
human movements. The assigned weights are shown in table (3.8).

Using the weights specified in table (3.8) weighted sums for the change in µv , µα,
σv and σα for each of the states are calculated. Equations used to calculate these
weighted sums of changes are shown from equation (3.9) up to equation (3.12).
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State Weight
Activity 11
Disorientation 12
Age 6
Time of day 4
Weather 5
Activeness 6
Obstacles 8
Steepness 8
Weekdays 4
Emotions 2
Arousal 3

Table 3.8: State weights according to their importance for human movement

11∑
i=1

4µvi
× γi = γactivity ×4µv,activity

+ γdisorientation ×4µv,disorientation

+ γage ×4µv,age

+ γtime of day ×4µv,timeofday

+ γweather ×4µv,weather

+ γactiveness ×4µv,activeness

+ γobstacles ×4µv,obstacles

+ γsteepness ×4µv,steepness

+ γweekdays ×4µv,weekdays

+ γemotions ×4µv,emotions

+ γarousal ×4µv,arousal (3.9)

where, γ is the weight of the state and 4 is how much change has happened to the
quantity of interest since last time step.
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11∑
i=1

4µα,i × γi = γactivity ×4µα,activity

+ γdisorientation ×4µα,disorientation

+ γage ×4µα,age

+ γtime of day ×4µα,timeofday

+ γweather ×4µα,weather

+ γactiveness ×4µα,activeness

+ γobstacles ×4µα,obstacles

+ γsteepness ×4µα,steepness

+ γweekdays ×4µα,weekdays

+ γemotions ×4µα,emotions

+ γarousal ×4µα,arousal (3.10)

11∑
i=1

4σv,i × γi = γactivity ×4σv,activity

+ γdisorientation ×4σv,disorientation

+ γage ×4σv,age

+ γtime of day ×4σv,time of day

+ γweather ×4σv,weathe

+ γactiveness ×4σv,activeness

+ γobstacles ×4σv,obstacles

+ γsteepness ×4σv,steepness

+ γweekdays ×4σv,weekdays

+ γemotions ×4σv,emotions

+ γarousal ×4σv,arousal (3.11)
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11∑
i=1

4σα,i × γi = γactivity ×4σα,activity

+ γdisorientation ×4σα,disorientation

+ γage ×4σα,age

+ γtime of day ×4σalpha,time of day

+ γweather ×4σα,weather

+ γactiveness ×4σα,activeness

+ γobstacles ×4σdirection,obstacles

+ γsteepness ×4σα,steepness

+ γweekdays ×4σα,weekdays

+ γemotions ×4σα,emotions

+ γarousal ×4σα,arousal (3.12)

where,

4 µv = µv(k)− µv(k − 1) (3.13)

4 µα = µα(k)− µα(k − 1) (3.14)

4 σv = σv(k)− σv(k − 1) (3.15)

4 σα = σα(k)− σα(k − 1) (3.16)

Weighted averages for 4µv , µα, σv and σα for each of the states are calculated out
of the weighted sums according to equations (3.17) up to (3.20).

Weighted average4 µv =

∑11
i=14µv,i × γi∑11

i=1 γi

(3.17)

Weighted average4 µα =

∑11
i=14µα,i × γi∑11

i=1 γi

(3.18)

Weighted average4 σv =

∑11
i=14σv,i × γi∑11

i=1 γi

(3.19)

Weighted average4 σα =

∑11
i=14σα,i × γi∑11

i=1 γi

(3.20)

µv, µα, σv and σα are generated out the weighted sums according to equations
(3.21) up to (3.24).



3.5. µ - σ COMBINER 67

µv(k) = µv(k − 1)

+max(min(weighted average 4 µv,4vmax),4vmin) (3.21)

µα(k) = µα(k − 1)

+max(min(weighted average 4 µα,4αmax),4αmin) (3.22)

σv(k) = σv(k − 1)

+max(min(weighted average 4 σv,4σvmax),4σvmin
) (3.23)

σα(k) = σα(k − 1)

+max(min(weighted average4 σα,4σαmax),4σαmin
) (3.24)

where,
4v: is how much change in speed might happen in 4t if old speed is given.
4α: is how much change in direction might happen in 4t if old direction is given.
4σv: is how much change in standard deviation of speed might happen in 4t if old
standard deviation of speed is given.
4σα: is how much change in standard deviation of direction might happen in 4t if
old standard deviation of direction is given.

From the above equations we can observe that the changes in the means and the
standard deviations are limited between a maximum and a minimum values. These
two bounds represent the maximum and the minimum changes that a normal human
being can make during the time interval of interest. For example, the change in the
mean speed is not allowed to be more than 4vmax or less than 4vmin.

An acceleration profile is created to set limits for the change of4µv. This is done so
that the change in speed will not be more or less than what the human can accelerate
or de-accelerate in one second.

Again statistics are used to create this acceleration profile. Some of the facts that
are used to create this profile are as follows:

• At speed zero human can only accelerate, so the de-acceleration is zero.

• Maximum speed that a human can reach is about 8 m/s or 480 m/min, which
gives an acceleration of 1.35 m/s2. This is the maximum acceleration a human
can have.

• Maximum human acceleration happens when the human is at zero speed.

• Human de-accelerate faster than his acceleration. So maximum de-acceleration
is set to be -2.7 m/s2, which is double the maximum acceleration.

• At maximum speed the human can have his maximum de-acceleration.

• At maximum speed the human being can only de-accelerate. So his acceleration
will be zero.

• A linear profile is assumed between these maximas and minimas.
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Figure 3.11: Acceleration -deacceleraation profile

A graphical illustration of the resulting profile is shown in figure (3.11).

The movement model normally suggests that the pedestrian will make a change in
speed of some amount during an interval of one second. This change will be passed to
the acceleration profile and according to the old speed of the pedestrian an allowable
change will be decided. If the suggested change by the model was more than the
profile allows, the change will be limited to the maximum at that old speed point.
For each old speed point there are two limiting points, acceleration limit and de-
acceleration limit. If the suggested speed change was positive acceleration limit will be
used, while de-acceleration limit will be used if suggested speed change was negative.
To calculate these two limiting points for each old speed point, curve fitting is used.
Using curve fitting, an equation for the acceleration part and another equation for the
de-acceleration part of the profile are created. The two generated equations are also
shown in figure (3.11).

For simplicity, no limiting profiles are implemented for the mean direction, the
standard deviation of the direction and the standard deviation of the speed. This is
means whatever change is suggested by the movement model regarding these quantities
will be accepted. This might be improved by including some human factors that affect
how much the human being can change his direction, σv and σα in one second. These
factors might be used to create the limiting profiles.

At this point µv, µα, σv and µα are available. According to figure (3.2) the four
values will parameterize a two dimensional Gaussian block. Speed and direction are
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assumed to be independent. So instead of sampling from a two dimensional Gaussian,
sampling is done from two separate one dimensional Gaussian [12]. Equation (3.25)
shows the Gaussian distribution equation which is used for the sampling purpose.

fX(x) =
1√
2πσ

e(−(x−µ)2)/(2σ2) (3.25)

where,
fX(x): is the probability function (also called the probability density function (PDF)
or density function) of a continuous distribution.

The sampling process results in a sampled speed and a sampled direction. Accord-
ing to figure (3.2) the sampled speed and direction will be used to calculate the new
position for the next time step. The distance l walked by the pedestrian within a time
duration of vartrianglet and with a speed v can be calculated according to:

l = v . M t (3.26)

Using Pythagorean Theorem, the new position can be calculated as follows:

x(k + 1) = l.cos[α(k + 1)] (3.27)

y(k + 1) = l.sin[α(k + 1)] (3.28)

The new position is a prediction for the pedestrian position. When a measurement
arrives, it gives a weight for this prediction according to prediction and update equa-
tions (2.9) and (2.10). The new position will be the input to the movement model at
the next time step and prediction continues. The movement model will use this new
position to calculate obstacles and steepness states at the next time step. While it
will use the old activity, orientation, arousal, emotions, activeness conditions to cal-
culate the new conditions at the next time step. Figure (3.12) demonstrate how the
movement model evolves with time and its causal relationships.

3.6 Inferring pedestrian situation from his move-

ment

Till now the developed movement model uses the pedestrian situation to give informa-
tion regarding his movement and as a result his position. But, isn’t it possible to use
the pedestrian position to get information regarding his situation? In this case we will
be able to infer the pedestrian’s situation from his movement.

Figure (3.12) represents a Bayesian network that can be used to go back from the
effect to the cause. Noisy position and direction observations are used to estimate the
position of the pedestrian at any time step. For example at time k+1, the particle filter
will use these noisy observations to give a better estimation for the position. On the
other hand, the estimated position at that time step might be used to get information
regarding his speed and direction at the previous time step k. It is also noticeable
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Figure 3.12: Movement model evolution with time and its causal relationships
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from the figure that the pedestrian speed and direction at time k might be used to
get an indication about his situation. As a result states like: activity, disorientation,
emotions, arousal, activeness, age, weather, time of the day, weekday, obstacles and
ground steepness might be approximated (inferred) out of the speed and the direction.
Another inference application is described in [40].

To include the inference in the particle filtering paradigm several issues are consid-
ered. First, particles states are extended to have not only position and direction, but
additionally all the eleven states. As a result, each particle can have different activity,
disorientation, emotions, arousal, activeness, age, weather, time of the day, weekday,
obstacles and ground steepness conditions. Second, particles are initialized with ran-
dom conditions of each of the eleven states. As time evolves particles will start moving
according to their specific conditions of each of the eleven states. In other words, they
will start moving according to their situations. This means that particles with differ-
ent situation compared to the pedestrian will not move as he does. So, they will move
“away” from him. When the next measurement arrives, it will be used to weight the
prediction according to equation(2.10). This means that particles will get weights ac-
cordingly. As a result, particle that moved far from the pedestrian will get low weights,
while particles that are close to the pedestrian will get high weights. The resampling
step explained in section (2.5.3) will cause the distant particles to vanish, while parti-
cles that are close to the pedestrian will be propagated. Finally, the situation of the
surviving particles is used to give an indication for the situation of the pedestrian.
This might be done by counting how many particles are in each specific condition of
the eleven states, and by taking their weights into account. The number of particles
in a specific condition indicates the situation of the pedestrian. For example, if the
number of particles that are in the “totally drunk” condition of the disorientation state
is more than the others, then the pedestrian is most probably “totally drunk”.

Inferring high level states (situation) from low level data (location) marks the ad-
vance from solely location based services to situation-aware services with large poten-
tial for increased user benefit. For example, if the system knows from the pedestrian
movement that he is tired, then the next chill out point is the best service that can be
offered to him.
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Chapter 4

System design

4.1 Problem statement

A simulator and a demonstrator for an indoor/outdoor positioning system for pedes-
trians were implemented using Particle filtering. The implementation was a part of
the Mobile Simulation of Context Information Tool project (MOSCITO). The goal of
this project is to investigate different location estimation techniques and analyze their
performance. The objective of this work was to analyze particle filter as a location
estimation algorithm and integrate it into the MOSCITO suite.

A real time implementation in which a pedestrian is trackable was required. Fur-
thermore, real time inference of his situation was also required. The demonstrator
shall facilitate an evaluation of the particle filtering approach and the functionality of
the movement model.

Indoor navigation is challenging due to measurement noise caused by multipath and
signal blocking. It is therefore of utmost importance to derive accurate estimations
out of these noisy measurements that encompass the entire available knowledge about
the pedestrians. In addition, the inference of the pedestrian’s situation out of his
movement may improve the quality of location based services significantly.

4.2 Requirements

The application of particle filtering for improvements of indoor/outdoor navigation
accuracy was required. Inferring the pedestrian situation from his movement was
an additional requirement. It was also required to implement a GUI which shows
the measurements, the estimations and the inferred pedestrian situation. Accuracy
calculations of the particle filtering algorithm should also be done.

4.3 System setup

Figure (4.1) illustrates the needed setup to achieve the pre-mentioned requirements.
The setup shows a pedestrian carrying a backpack that is equipped with position

and direction sensors (implementation of more sensors is going on). The backpack is
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Figure 4.1: Setup functionality

also equipped with a laptop that collects the sensors readings and transmits them over
an IP network to a server. This client-server environment was needed because this
is the situation in most location based services, where the providers collect the data,
process it and accordingly response to the user with the appropriate services.

The sensors are connected to the laptop either wireless or wired. Example of
wireless connection is bluetooth, while serial port connection is an example of a wired
connection. A wireless connection is used to connect the laptop to the IP network.
Examples of such wireless connection could be WLAN or 3G/GPRS.

Data that are provided by the sensors are noisy. The server processes the noisy
data using particle filtering algorithms and visualizes the estimates for the positions
and the directions. Situation Inference from the pedestrian’s movement is also done at
the server side. For this purpose, a separate display is created for each of the eleven
states described in section (3.1). Each display shows the current inference of that state
of the pedestrian. For example, if the disorientation display is turned on, it shows
what is the inferred pedestrian disorientation from his movement. Inference accuracy
is also analyzed. The following is visualized at the server side:

• A Map of the pedestrian’s vicinity.

• The received measurements for the position and the direction of the pedestrian.

• The estimated position and direction of the pedestrian.
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• Soft Location estimation for the position of the pedestrian using probability
density functions (PDFs).

• Probability density function is visualized in gray scale.

• Error and accuracy calculations.

As the pedestrian moves around DLR premises, measurements keep arriving and are
visualized at the server side. Soft and point estimates are visualized accordingly. The
Accuracy and the performance of the particle filtering algorithm for location estimation
were investigated.

4.4 Simulation setup

A simulator for the positioning system has been implemented. The functionality of
the particle filtering in positioning, the implemented movement model and inference
were simulated before applying them in the real world. This was helpful during the
development stage, since it offers the chance to test the functionality of the current
step before going to the next. Other benefits of the simulator are as follows:

• Testing purpose, since it is easy in the simulation to change many parameters
that are hard to play with in the real time test.

• Test some behaviors of the pedestrian which are hardly generated in the real
world.

• Error calculations, due to the lack of reference measurements in the real system.
This offers a better evaluation of the accuracy of the particle filtering algorithm.

• Debugging purpose, since the whole implementation is under control in the sim-
ulation mode.

• Checking the functionality of the new ideas and thoughts without the need of
building them, which saves time and effort.

Next is a summary of the considered scenario in the simulation mode. A simulated
pedestrian who walks with some speed and in some direction is considered. He starts
at time t with random speed, direction, position, activity, disorientation, activeness,
etc. His position, activity, activeness, disorientation, etc. at time t + 1 are calculated
according to the developed movement model. The pedestrian is equipped with GPS
sensor and electrical compass. As a result, position and direction measurements should
be simulated. The simulated measurements are calculated out of the known pedestrian
information. Additive White Gaussian Noise is added to the position and direction
to get the GPS-measurement (x, y) and the heading (α). The particle filter receives
only the noisy measurements. Prediction is done using the developed movement model,
while the simulated measurements are used to update the prediction. The particle filter
estimates the simulated pedestrian position and direction from the noisy measurements.
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Estimated position and direction are compared with the simulated ones. Different kinds
of errors are calculated and visualized to allow a better estimation for the accuracy
of the algorithm. Linear errors, squared errors and filtered errors are calculated. The
simulated pedestrian situation (i.e. disorientation, activity, age, emotions, etc.) is
inferred out of the measurements. In order to study the behavior and the accuracy of
the particle filter for situation estimation the following is visualized:

• DLR satellite map which is used for the simulation.

• The simulated position and direction of the pedestrian.

• A soft estimation of the location of the pedestrian using probability density
function (PDF).

• A point estimation of the location and the direction of the pedestrian.

• Error calculations are done and visualized in a separate panel.

• A separate display is generated for each of the states for the inference purpose.
Each state display shows what is the inferred state at that time step. The real
simulated state is also shown in the panel.

Comparisons are made between the real states and the inferred states and the accuracy
of the inference was evaluated.

4.5 Software design

The noisy sensor measurements are transmitted from the sensor platform to the server
via the IP network. At the server, the position and the direction measurements are
processed using particle filtering. Estimations for position, direction, activity, active-
ness, disorientation, etc. are done. The received measurements for position and direc-
tion, the estimations and the inference are visualized. Figure (4.2) shows the system
components and their interactions at the server side.

The main components of the MOSCITO core are the location server and the vi-
sualization server. Likelihood functions, fusion engine and movement model are the
main components of the particle filter plugin. MOSCITO core, particle filter plugin
and their dependencies are shown in figure (4.2).

A network transmitter transmits the noisy sensor measurements via the IP network
to the server side. A network receiver receives the measurements at the server side and
passes them to a location server. The location server passes the measurements to the
particle filter plugin and specifically to the likelihood functions. The arrived noisy
measurements are used to prepare likelihood functions (p(zk|xk)) which will be used
in the update stage according to equation (2.13). The fusion engine starts the particle
filtering process with the prediction stage according to equation (2.12). Prediction
depends on the developed movement model in chapter (3). At one side, the fusion
engine uses the movement model block outputs to predict pedestrian location and
direction at time t + 1. At the other side, it uses the likelihood functions at time
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t + 1 to update the prediction. The fusion engine sends the posterior (particles and
their weights) to the location server, whose main task is to manage, handle and store
localized entities. It also delivers those entities to the visualization server in order to
analyze them. Examples of location server tasks are as follows:

• Registers all the elements that are needed to be visualized like particles, mea-
surements, persons and estimations. It also assigns an ID for each of them.

• Updates the registered entities if any change happens regarding any of their
associated parameters.

As the visualization server receives the entities it starts analyzing them and visualizing
the estimation results. Examples of the tasks assigned to the visualization server
are as follows:

• Analyzes and visualizes the map data.

• Analyzes measurement entities and visualizes them.

• Analyzes particles and visualizes the particles cloud.

• Interpolates particles to create probability density function (PDF) of location.
The PDF is visualized using a gray scaled cloud, where the probability of location
increase with the increase of the color depth.

• Generates and visualizes a point estimate out of particle cloud.

Figure (4.2) shows also the display of the visualization server. The map, the simu-
lated pedestrian (pink), the noisy measurement (green), the PDF (gray cloud) and the
estimated position (cyan) are shown.

If no measurements are available, the fusion engine keeps predicting using the
movement model and sends the posterior to the location server for analysis and visual-
ization. As the measurements arrive, the likelihoods are prepared and used for update.
By then, a more accurate posterior will be sent to the location server for visualization.
Prediction and update continues as time evolves.

The fusion engine also uses the movement model for inference. According to the
situation of the surviving particles, the fusion engine approximates the situation of
the pedestrian. For example, if most of the particles that survived where the initially
totally drunk particles, then the pedestrian is mostly totally drunk. Inspection panels
are created by the particle plugin and inference results are shown on them. As an
example, the arousal inference display is shown in figure (4.2).



Chapter 5

Implementation aspects

5.1 Hardware

This section discusses implementation aspects with respect to the hardware necessary
to the system described in chapter 4. It gives brief information about each of the
used hardware components. Additionally, it demonstrates where each of the hardware
members fits in the system design and what functionality it contributes to achieve the
implementation target.

5.1.1 Hardware components

1. Server host that has Windows XP operating system and Java Virtual machine.

2. Backpack.

3. Mobile host that has Windows XP operating system and Java Virtual machine.

4. 3G/GPRS data card. It is a Vodafone PCMCIA Type II Card [44] with a SIM
card slot. The card supports UMTS 2100 MHz, GPRS/UMTS 850 MHz, 900
MHz, 1800 MHz and 1900 MHz. The card provides a link to the mobile net-
work operator, and the connection is established through the operator to DLR’s
network.

5. Bluetooth adapter (3COM). Spontaneous wireless connections between a desktop
or notebook PC and other Bluetooth devices is possible with this card. It provides
reliable connections with speeds up to 720 kbps at up to 10 meters.

6. Vluetooth GPS receiver (RoyalTek) [45]. It provides location information in the
form of longitude, latitude and height. The location information is sent to the
coupled mobile device through bluetooth. The RoyalTek GPS receiver is a 12
channel GPS receiver that allows continuous tracking of all visible satellites. The
GPS receiver measurements are send via bluetooth to the laptop in the NMEA
format [46]. Details about the NMEA protocol are given in appendix (E).
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7. Electronic compass. A Palm Navigator that is produced by Precision Navigation,
Inc. [47] was used. If aligned and calibrated correctly it gives the heading of the
user. The electronic compass provides four vectors from which the angle of the
pedestrian related to north are calculated.

8. Wireless voice communication devices (walkie-talkie system or mobiles).

Photos of the equipment used are shown in appendix (D).

5.1.2 Hardware functionality

In this section the functionality of the hardware list is summarized. The bluetooth
GPS mouse and electronic compass measure position and direction fixes respectively.
Measurements are then collected by the Laptop. The bluetooth adapter is connected to
the laptop to allow data transfer from and to the laptop through bluetooth medium.
The Bluetooth GPS mouse is connected to the Laptop via the bluetooth adapter,
while the electrical compass is connected to the Laptop via the R232 connector. The
3G/GPRS data card is used to connect the laptop to the server through the DLR
network. The Laptop, the 3G/GPRS data card, the bluetooth adapter, the bluetooth
GPS receiver and the electrical compass are equipped in the backpack. The backpack
is carried by the user who starts his walk around the DLR premises. A photo of the
backpack equipped and ready to be carried by the user is shown in figure (5.1)

Figure 5.1: The backpack equipped with the laptop, the 3G/GPRS data card, the
bluetooth adapter, the bluetooth GPS receiver and the electrical compass.
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As the measurements arrive to the server side through the mobile and DLR IP net-
works, the following should be done:

• Visualizing the received position and direction measurements on the map.

• Performing Particle filtering algorithms using the received measurements.

• Visualizing the estimated position and direction using soft estimation (PDF).

• Visualizing the estimated position and direction as a point estimate.

• Performing and visualize some accuracy calculations.

• Inferring each of the eleven states out of the movement in a separate display.

Wireless voice communication devices (walkie-talkie system or mobiles) are used to
communicate between the user who is walking inside DLR premises and the other
operator who is sitting at the server side. This communication medium gives the
opportunity to check the accuracy of the particle filtering algorithm. It allows the
server user to confirm the visualized estimated position with the real position of the
other user. It also gives the opportunity for the server user to ask the walking user
to act differently according to one condition of the eleven states described in section
(3.1). This allows the server user to check the accuracy of our inference.

Hardware setup and its functionality is illustrated in figure (5.2).

5.2 Software

Java S2SE v1.4 [4] was the selected programming language for MOSCITO and was
therefore also used for the particle plugin. This section describes a general overview
of the main packages and classes of the the system. The relationships between these
classes and how they interact to achieve the design goals are also discussed.

Unified Modelling Language (UML) diagrams are used for demonstrating the re-
lationships between the classes, attributes, methods implemented in these classes and
the properties of the attributes. UML [48] is a general-purpose visual modelling lan-
guage that is used to specify, visualize, construct, and document the artifacts of a
software design. It captures decisions and understanding about systems that must be
constructed. It is used to understand, design, browse, configure, maintain, and control
information about such systems. It is intended for use with all development methods,
lifecycle stages, application domains, and media.

As explained in section (4.5), the main task of the location server is to manage
and store localized entities. This means that different kind of entities should be han-
dled by the location server. Examples of such entities are particles, measurements,
persons, estimations, buildings, barriers and landmarks. Some of these entities are
having common associated attributes. For example, most of the mentioned entities
are having position, direction of view, velocity, name and acceleration. It is conve-
nient to generate a parent class in which all those common attributes are implemented
and then generate the specific entities (instances) out of it. The specific entities may
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implement more attributes. They may also implement some of the attributes differ-
ently compared to the parent class. Creating an interface that contains the needed
methods for calculating these common attributes is also useful. With this interface
it will be easier to change the way any of the required methods are implemented
without affecting all the entities. Abstract Localized Entity was the constructed
parent class, while Localized Entity was the constructed interface. Example of child
classes that are derived from the Abstract Localized Entity class are Particle,

Barrier, Landmark, Person, Building, Measurement and Estimation.

Server side: noisy measuements are 
processed and estimations are visualized

Pedestrian equipped with laptop, bluetooth 
adapter, electronic compass, bluetooth GPS 
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Figure 5.2: Hardware setup and functionality.

The UML diagram which shows the Abstract Localized Entity parent class, the
Localized Entity interface class and the instantiated children is shown in figure
(5.3). The Location Server class which register, manage and update those entities



5.2. SOFTWARE 83

is also visualized in the figure. It delivers all those entities to the Visualization Server
for visualizing them.

The GPS receiver readings are in polar coordinates. All the visualization at the
server side is done in rectangular coordinates. To transform a point from polar coor-
dinates to rectangular, the radius of the circle and the angle of that point are needed.
The difficulty with the earth is that it is not ideally spherical. That is why a special
model for the earth that takes into consideration the ellipticality of the earth and other
deviations from ideal shape was needed. The used model for the earth is the World
Geodetic System 1984 (WGS84) model. It is the geodetic reference system used by
GPS. A class that reads the polar coordinates of the position displayed by the GPS
receiver and transfer them into rectangular coordinates using the earth model was im-
plemented. A UML diagram for the transformation utility package is demonstrated
in figure (5.4). The figure shows a General Earth Model class and the WGS84 Earth

Model class which extends it. The Translated Earth Coordinates class is respon-
sible of coordinates transformation. It extends an Earth Coordinates class in which
the resultant rectangular coordinates will be written, while it uses Polar Coordinates

as input.
Figure (5.5) shows a stack diagram for the particle filtering package. Starting the

stack from bottom to top an explanation of the particle filtering package follows:

• A Sensor class extracts and provide the measurements that are read by the
physical sensors.

• A Measurement class collects the measurements from the Sensor class and pre-
pares them to be delegated to the Likelihood Function class.

• The Likelihood Function class use the measurements delegated by the Measurement
class to build likelihood functions (p(zk|xk)). Likelihood functions will be used
according to equation (2.13) in the update stage of particle filtering.

• Entity Characterization and the Movement Model will be used to predict the
pedestrian position according to equation (2.12). Entity Characterization

tells what kind of entity is tracked and give some details about it. It will be
used by the Movement Model class to select the appropriate movement model for
the entity. The selected movement model will be used in the prediction stage to
calculate (p(xk|xk−1)), which is the position and the direction at time k+1 given
the position and the direction at time k. Details of the implemented movement
model are explained in chapter (3).

• The Fusion Engine class represents the particle filtering engine. It uses the
Movement Model class from one side for prediction and the Likelihood class
from the other side for updates. The Fusion Engine calculates the posterior
(p(x1:k|z1:k)) every time that a measurement is received. If no measurements are
received, the Fusion Engine will keep predicting the pedestrian’s position and
direction using the movement model. As measurements arrive and likelihoods get
ready, the predicted pedestrian’s position and direction will be updated according
to the measurements.
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• The Entity Location Management class act as a communication and manage-
ment interface. The class that implements it has a location server, to which
it delegates the management and storage of entities. The main roles of the
Location Management class are as follows:

– Registers the entities and assigns them IDs.

– Collects measurements and estimations and passes them to the visualization
server to show them.

– Checks for entities updates and sends the updates for visualization.

– Prepares the inference panels according to the number of the states consid-
ered in the movement model.

– Updates the inference panels according to the particles states. Each state
panel shows the number of the particles in each condition of that state.
For example the age panel, shows the number of particles that are young,
youth and old. If most of the particles are in the “youth” condition then
the pedestrian situation could be inferred as youth.

• The Context Fusion class fuses the location data that are coming from the
Entity Location Management class. It combines, refines and uses these data.
For example location data that are coming from the Entity Location Management

class could be combined with the some context information like the weather sta-
tus to have a complete description of the situation of the pedestrian.

• The Application class uses the situation description of the pedestrian to offer
him some location based service. The Application class represents the front end
of the implementation. An example of an Application class could be a lunch
advisory service.

Context information could also be propagated backwards from the Context Fusion

class to the Fusion Engine to improve location estimation process. For example if
a context information like “the pedestrian is in his car” is available, then passing
this information to the particle filter will help it excluding some areas from location
estimation process. This will improve the efficiency and the calculation complexity of
the fusion process.

Figure (5.6) shows a component diagram of the particle filtering package. It shows
some extended components of the stack diagram shown in (5.5). The following should
be noticed from the figure:

• The Bayesian Filter class is a Fusion Engine since prediction and update
(fusion) are also needed in the Bayesian process. The Fusion Engine is a
Likelihood Listener since it needs the likelihoods for updates. Additionally,
a Particle Filter represents a Bayesian Filter.

• The Likelihood Function is a Measurement Listener since it senses measure-
ments that will be used to build the likelihoods. It is also a PDF since the output
of it will be in a form of probability density function.



5.2. SOFTWARE 87

• The Runnable Measurement class extends the Measurement interface and keeps
running to collect measurements from the sensors .

• The Measurement State class which currently has three dimensions (x-position,
y-position and direction) extends the State interface class. Human State which
has more dimensions also extends the State interface. Examples of these addi-
tional dimensions are disorientation, arousal, activity, age and weather.

Figure (5.7) shows a UML diagram for the particle filtering package. From the figure
we can notice the following:

• The General Particle Filter class implements the Fusion Engine. It is
the center class of the implementation since it predicts using the Movement

Model, updates using the Likelihood Function and delegate results to Entity

Location Management class for demonstration.

• Three different types of particle filters are implemented. They extend the General
Particle Filter central class. They are the Sampling Importance Sampling

(SIS), the Sampling Importance Resampling particle filter (SIRPF) and
the SIR with Neff particle filters. A detailed explanation of each of them is
given in section (2.5).

• The General Particle Filter uses a Resampler class for resampling. The
reasons why resampling is needed in particle filtering processing, and how it
works is explained in section (2.5).

• A Systematic Resampler class implements the Resampler.

• The General Particle Filter uses the Movement Model interface class for pre-
dicting the pedestrian location at each time step. A Human Movement Model class
(not shown in the figure) implements the Movement Model interface class. De-
tails of the Human Movement Model class specifications are explained in chapter
(3).

• The General Particle Filter class uses a specific number of particles speci-
fied at run time. An equivalent amount of particles is needed by the General

Particle Filter class for resampling. The needed particles are obtained from
the Particle interface class by instantiating children classes out of it.

• The General Particle class implements the Particle interface class. All asso-
ciated methods that are needed in the Particle interface are implemented in the
General Particle class. The Location Particle class extends the General

Particle class and adds some additional specific location methods.

• The Particle interface uses the Discrete Particle PDF class to calculate the
particles weights. Particle weight is the posterior (p(x1:k|z1:k)) value at the par-
ticle position.
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• The General State class implements a State interface. The State interface
includes common states that entities have and their associated methods. Example
of such states are position and direction. Human and Measurement States are
examples of classes that extend the General State class according to their need.

Soft Location Visualization

It was required to generate and visualize a probability density function (PDF) of the
pedestrian’s location at the visualization server display. The visualized PDF offers
insight into the soft decision criteria at the area of interest. PDF generation and
visualization were required in both simulation mode and real time system. The PDF
was generated out of the particles cloud by interpolation. Following steps were done
to generate the PDF:

• A gaussian distribution was assumed around each of the particles. The mean of
the Gaussian function was set to the position of the particle. The amplitude of
the Gaussian distribution was set to the weight of the particle. The variance of
the Gaussian distribution was formulated to be dependent on the distribution of
the particles. If the particles are spread the variance increases and vice versa.

• The PDF value at any pixel point of the display was calculated by summing the
values of all the Gaussian functions of all the particles at that point.

• The overall PDF was created by calculating the PDF values for all the pixels in
the panel.

• Calculating the PDF at all the pixels of the panel is time and memory consuming.
To solve this problem, the PDF was calculated only around the area in which
the particles had weights above an adjustable threshold.

• A gray scale was selected to visualize the PDF, where darker points represented
pixels with higher densities. On the other hand, pixels with low PDF values (i.e.
low densities) were visualized with lighter colors in the gray scale.

• A double buffer was used to draw the PDF in order to speed the visualization
process. In such case, the PDF at the previous time step will be stored in the
visual buffer till the new PDF is calculated. As soon as the new PDF gets ready,
it will be passed to the visual buffer and displayed.
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Chapter 6

Test, Integration and Experiments

6.1 Simulation setup

The implementation started with the simulation setup. The simulation setup was an
obvious starting point since it allows class wise test and integration. Additionally, it
gives the opportunity to check the software functionality before connecting the hard-
ware needed in the real system. Simulating different possible hardware components
helps selecting among different possible vendors. Also, different new ideas might be
tested without the need of the costly real system tests.

A summary of the test and integration steps in simulation mode is given next.
First, classes and packages were tested separately before integrating them into the
whole project. Then, modifications were done on them in order to achieve the required
behavior and functionality. After that, related classes were integrated to form packages
and simulations were run on these packages to confirm functionality and performance.
Packages were integrated to achieve the system design demonstrated in figure (4.2).
Next, simulations were done on the whole system and testing of some simulated be-
haviors of the pedestrian was performed. Finally, optimizations were done one class
and package level in order to achieve minimal memory and time consumption.

For error and accuracy calculations of the implemented location estimation tech-
nique, pedestrian exact position would have to be known to the system for every time
step k. This is not an easy task in both indoor and outdoor environments. Since no
suitable reference measurement system was available, the mean square errors (MSE)
and other accuracy calculations were performed using the simulation setup.

6.2 Real system integration

After test and integration in simulation mode, the real system test and integration was
performed. A summary of the process is explained next.

The manuals and the data sheets of the RoyalTek bluetooth GPS receiver [45], the
electronic compass [47] and the 3G/GPRS Vodafone data card [44] were reviewed in
order to understand their functionality. The format of their output data and how such
data could be read by a PC were investigated. Calibrations and test were done on
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those devices to confirm their performance and functionality. Then, these devices were
connected to the laptop which was in turn fitted to a backpack as shown in figure (5.1).

A GPS reader and a compass reader classes were implemented at the laptop side.
The reader classes read the compass measurements from the serial port and GPS mea-
surement from the bluetooth port. It also encapsulates the measurements to be send
via the network. The two classes were tested by comparing positions and directions
read by classes with some known values. A network transmitter class was needed at
the laptop side in order to transmit the measurements over the IP network to the
server. The reader class delegates the measurements to the transmitter class which in
turns create a TCP/IP socket connection to the server. Connection to the server with
the transmitter class was established and tested. First, the connection was tested via
a normal LAN cable, then via GPRS and UMTS wireless connections.

A network receiver class was implemented at the server side. It receives the mea-
surements from the transmitter class via the established socket connection. Measure-
ments are collected, extracted and delegated to the location server class. The location
server class passes the measurements to the likelihood class in the particle filter plugin.
Likelihoods are used in the update stage as explained in section (2.5.3). The network
receiver class was tested by comparing the transmitted measurements with the visu-
alized ones by the class. Functionality of both transmitter and receiver classes were
tested using a normal LAN connection and the wireless 3G/GPRS connection.

At this stage the real system integration process was completed and the system
was ready for experiments and additional tests. Experiments and additional test were
divided into different stages. First, the electronic compass and the GPS receiver were
located at accurately pre-known positions and the visualized measurements at the
server side were compared to these pre-known values. Tests were started at positions
where the laptop was beside the server so as to get a full access and control of the
whole system. Other positions were tested after that. This offers a functionality test
of software and hardware at both laptop and server sides. The next step was to do
stationary experiments where the electrical compass and the GPS receiver were in fixed
positions and directions. Stationary experiments were needed in order to orient the
map correctly on the visualization panel and to calibrate the panel so that it shows
directions and positions correctly. After that, the GPS receiver was kept stationary
while changing the direction of the compass. Estimated positions were compared
with the real positions and initial accuracy measures were observed. After stationary
experiments, then came the mobile experiments. In these experiments, the pedestrian
was equipped with the backpack and a Walk Talky and tracked inside DLR premises.
The estimated positions and directions using particle filtering were compared with the
real ones. The accurate positions and directions were received from the pedestrian via
the walkie-talkie. Accuracy and error calculations were performed in order to get an
impression of the performance of the implemented technique.

The next step was to run experiments on inference in both stationary and mobile
states. Experiments on inference of all the eleven states considered in the designed
human movement model in chapter (3) were performed. This was done by asking
the pedestrian to behave according to the different conditions of these states while
monitoring their inference panels. An example of a stationary inference experiment
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is to keep the GPS stationary and keep changing the direction of the compass. In
these experiments the disorientation inference was of interest. An example of a mobile
inference experiment is to ask the pedestrian to do a fast walk and check the activity
panel. Accuracy and performance of the inference was investigated. Communication
between the pedestrian and the server side user was done using the walkie-talkie.

Finally, mean square error (MSE) curves were generated. This was done in the
simulation mode as explained in the previous section. The number of particles and
the number of time steps were varied and the resulting error curves were investigated.
Curves for the case where only one of the two sensors was functioning were also gener-
ated. The curves were generated by logging the calculated mean square errors to text
files. Then, MATLAB R© was used to generate the MSE curves out of these text files.
MSE curves are a good measure of the accuracy and the performance of the particle
filtering algorithm. The MSE curves are discussed in detail in the following simulation
results chapter.
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Chapter 7

Simulation results

Some of the simulation results will be visualized and commented in this chapter. They
are divided into two categories: The first category includes screen captures of some
illustrating visualizations at the server side for qualitative analysis (7.1). Example of
such visualizations are the measurements, the particles cloud, the probability density
function (PDF) of the location, the point estimation (“hard estimation”) and the
inference panels. The second category includes curves of mean errors over time for
quantitative analysis (7.2. Several curves were generated by varying the number of
particles, changing what the particle filter knows about the pedestrian or setting the
pedestrian to a fixed situation (like totally drunk) over the entire simulation period.

7.1 Qualitative analysis

Category one figures offers a qualitative measures for the performance of particle fil-
tering. They are screen captures of some important results at the server display. A
summary of what might be visualized in these figures is given next:

• A map of the area of interest (DLR premises) is visualized in the background of
the visualization server display. It gives a better sense regarding the position of
the pedestrian and the accuracy of the estimations.

• The simulated pedestrian has a position and a direction at each time step. The
pedestrian is visualized always using the pink color, where a small circle represent
his position and an arrow represents his direction.

• The position and the direction of the simulated measurement are visualized into
a single small circle with an arrow. Green color was used to visualize the mea-
surements. The position of the small circle represents the simulated position
measurement while the arrow represents the simulated direction measurement.

• The particles are visualized as small circles and the blue color is used to visualize
the particle cloud.

• The probability density function (PDF) of location is visualized using the gray
scale cloud. The dark gray represent points with high density.
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• Hard estimations (point estimations) for position and direction were also calcu-
lated out of the particle cloud. Hard estimations are visualized using the cyan
color. The small circle represent the point estimation for the position while the
arrow represent the point estimation for the direction.

Figure (7.1) shows the simulated pedestrian versus the simulated received measure-
ment. From the figure we can see that the measurements are really noisy in position
and direction. The particle filter has to use these noisy measurements and produce
more accurate estimates for position and direction.

Figure 7.1: Simulated pedestrian(pink) and received noisy measurement(green).

Figure (7.2) shows the simulated pedestrian, the simulated received measurements
and the particle cloud. It is visible that the particle cloud is concentrated around the
simulated pedestrian position. More particles are accumulated closer to the pedestrian
than to the measurement. This indicates the output of the particle filter is a more ac-
curate estimate of the pedestrian’s position and direction than the noisy measurement.

Figure (7.3) shows the simulated pedestrian, the simulated received measurements
and probability density function (PDF) of location.

Figure (7.4) shows the simulated pedestrian, the simulated received measurements
and a point (hard) estimate for the pedestrian position and the direction. Point esti-
mate are generated out of the particle clouds by performing a weighted average over
the particles position and direction.

Figure (7.5) shows the simulated pedestrian, the simulated received measurements,
PDF of location, point estimate (hard estimate) for the pedestrian position and the
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Figure 7.2: Simulated pedestrian(pink), received measurement(green) and particle
cloud(blue).

Figure 7.3: Simulated pedestrian(pink), received measurement(green) and PDF of
location(gray cloud).
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Figure 7.4: Simulated pedestrian(pink), received measurement(green) and point esti-
mation(cyan).

direction. If a maximum likelihood (ML) estimation is required then the darkest po-
sition of the PDF should be the estimate. On the other hand, if a minimum mean
square error (MMSE) estimation is required then the point estimate should be the one.
If we compare these two estimations in the figure we can see that they are close to
each other.

Figure (7.6) shows the simulated pedestrian, the simulated received measurements,
particles cloud, PDF of location and point (hard) estimate for the pedestrian position
and the direction. The qualitative results obtained from the simulations hint that the
particle filter offers a reasonable approximation for Bayesian filters with a promising
accuracy.

The following two figures are captured from the real time tests where a pedestrian
is tracked while he is having a walk around DLR premises. They demonstrate the ex-
ploring particles phenomenon. This phenomenon shows that if any of the sensors fails
for any reason, the particles will use the available sensors and the movement model
and try to explore the area where the pedestrian might be.
Figure (7.7) shows the particle cloud behavior when the GPS receiver fails. The sce-
nario is as follows: The GPS receiver fails after some time (manually switched off
during the tests) while the compass is still on and reporting direction measurements.
The particles will start from the last reported position, and using both the arriving
direction measurements and the movement model to explore where most probably
the pedestrian will be at the coming time steps. If the GPS receiver is switched on
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Figure 7.5: Simulated pedestrian(pink), received measurement(green), PDF of loca-
tion(gray cloud) and point estimation(cyan).

Figure 7.6: Simulated pedestrian(pink), received measurement(green), PDF of loca-
tion(gray cloud), estimation(cyan) and particle cloud.
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again, an update will happen and particle cloud will collapse around the position of
the measurement.

Figure 7.7: Particles cloud, measurement, estimation during a real time run when the
GPS receiver fails.

Figure (7.8) shows the PDF behavior when the GPS fails. The same behavior and
explanation of the particle cloud applies for the PDF.

Figure (7.9) shows the activity inference panel. This panel is captured during real
time tests. The pedestrian was stopping somewhere inside the institute building. Most
of the particles are also in the stopping state (1262 particles). This indicates a good
accuracy of the inference and accordingly the designed movement model in chapter
(3).

All the created panels for the considered eleven states in chapter (3) were tested
during real time demonstrations. All the panels have shown very interesting and
promising inference results.
The panels are designed in a way such that it is possible to tell the particle filter about
the pedestrian situation directly. This can be imagined as if the pedestrian passes
through a sensor that tells one of his states. An example of such situation aware
services sensor could be an alcohol percentage sensor. Particle filtering performance
and accuracy were investigated under such learning process.

In the simulation setup, inference panels are designed to allow one more testing
possibility. It allows varying the simulated pedestrian states during the simulations.
For example the simulated pedestrian could be set to be tired, drunk or any of the
other conditions of the states during the simulations. This allows checking the inference
accuracy and performance under different situation states.
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Figure 7.8: PDF, measurement, estimation during a real time run when the GPS
receiver fails.

Figure 7.9: Inference panel of activity - pedestrian is stopping.
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7.2 Quantitative analysis

Figures (7.10 - 7.15) include mean error curves of positions and direction and offer a
quantitative measure of the particle filtering performance.

The simulation setup is used for the performance analysis of particle filters. The
main reason of using it is the lack of a reference position and direction measurements
in the real system. The knowledge of the reference measurements would allow numeric
comparison with the estimations. Accordingly, mean errors of positions and directions
could be calculated and the accuracy of particle filtering could be estimated.

As explained in section (4.4), the measurements in simulation setup are drawn
from the simulated positions and directions of the pedestrian. A Gaussian noise is
added to the simulated positions and directions to get the simulated measurements.
Simulated position measurements are having x and y directions. Accordingly, position
measurements are drawn from a two dimensional Gaussian with mean equal to the
pedestrian position and with variance specified at the run time. Direction measure-
ments are drawn from one dimensional Gaussian with mean equal to the pedestrian
direction and with variance specified at the run time. For simplicity, x and y positions
are assumed to be independent and accordingly, position samples are drawn from two
separate Gaussian distributions.

In order to know how much improvement does the particle filter offer, mean errors
should be compared with and without the particle filter. Mean errors without the filter
can be calculated analytically or numerically. Measurements samples are normally
distributed in both x and y directions. Accordingly, the error in any of the directions
can be calculated by subtracting the measurement sample from the mean value of the
Gaussian distribution in that direction (i.e. the simulated pedestrian position in that
direction). The error is then calculated using Pythagorean theorem;

ε(k) =
√

d2
x(k) + d2

y(k) (7.1)

where
dx is the distance between the simulated measurement and the mean of the Gaussian
distribution in the x direction at time k.
dy is the distance between the simulated measurement and the mean of the Gaussian
distribution in the y direction at time k.
And accordingly, the mean error will be:

ME =
1

N

N∑
k=1

ε(k) (7.2)

where N is the number of time steps.
In order to find the mean error for the case where no filtering is done, N samples

are drawn from the Gaussian distribution and the ME is calculated for each sample.
Then, the mean value of all these errors is evaluated. For example, if 10000 samples
are drawn, and a standard deviation of 25 meters is considered, the mean error is found
to be 31.3676 meters.
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The pre-mentioned error evaluation technique is a numerical approach. For an analyt-
ical approach, the following well known statement is used.
As explained in [49], if two random variables x and y are normal, independent, with
zero mean and equal variance, then the function:

z =
√

x2 + y2 (7.3)

has a Rayleigh density. The mean of the Rayleigh distribution is E{z} = σ
√

π
2

and
variance σ2

z = (2− π
2
)σ2

x = (2− π
2
)σ2

y .
Accordingly, the mean error of our Rayleigh distribution with the same previous stan-
dard deviation of 25 meters result in a mean error of E{z} = 25

√
π
2

= 31.33285m.
It is clear that analytical and numerical solutions has led to approximately the same
result.

The mean error for the case where particle filtering is used will be calculated next.
A numerical approach is the appropriate method in this case, since the distribution in
both directions is not known. For the selected number of time steps and the specified
number of particles, a vector of mean errors is stored. Then, the mean value of this
vector indicates the mean error for the specified number of particles. Finally, all the
mean errors are averaged to get an indication of the performance of particle filtering.
An example in which the number of particles was varied from 50 up to 10000 was
considered. For each variation, 10000 errors were logged. The mean of the 10000
errors represents the average error for the specified number of particles. Running over
10000 values provides more accurate statistical analysis.
The average position errors versus the number of particles are plotted in figure (7.10).
It can be observed in the figure that the mean error of position decreases as the number
of particles increases. The explanation of this behavior is described in section (2.5.3).
An increase of the number of particles from 50 to 2000, resulted in more than 10 meters
error reduction. It can also be noticed that there is an optimal number of particles
after which, no significant reduction in error was achieved. For the selected example
this optimal number was 2000 particles at which the error was 9.2m. Compared to the
31.3676 meters obtained without particle filtering, more than three times improvement
in location estimation was obtained due to particle filtering.

The average angle errors versus the number of particles are plotted in figure (7.11).
The figure shows that the mean error of direction goes down as the number of particles
increases. An increase in the number of particles from 50 to 450 particles, resulted in
only 2.2◦ error reduction. Increasing the number of particles above 450 did not provide
further significant error reduction.

Figure (7.12) shows the mean position errors for different standard deviations of
the noise of the GPS receiver and fixed one of 25◦ for the compass. It is visible
that as the standard deviation decreases, the average position error decreases also.
As expected, using a more accurate GPS receiver resulted in more accurate location
estimation. Additionally, in the region of large number of particles, when the noise
standard deviation of the GPS receiver was decreased from 80m to 5m an improvement
of only 15 meters was achieved. This means that having a larger number of particles
compensates for the noisy GPS receiver since this large number will be exploring a
wider area.
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Figure 7.10: Mean position error vs. number of particles averaged over 10000 time
steps, standard deviation of the compass = 20◦ and of the GPS receiver = 25m. An
increase of the number of particles, results in a decrease in the mean error. For numbers
of particles over 2000, no further significant error reduction can be achieved.
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Figure 7.11: Mean angle error vs. number of particles averaged over 10000 time steps,
standard deviation of the compass = 20◦ and of the GPS receiver = 25m. An increase
of the number of particles, results in a small reduction in the mean error. For numbers
of particles over 450, no further significant error reduction can be achieved.
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Figure 7.12: Mean position error vs. number of particles averaged over 5000 time
steps, standard deviation of the compass = 25◦ and variable for the GPS receiver. It is
obvious that as the noise standard deviation of the GPS receiver decreases, the average
position error decreases also. Large number of particles compensates for having a noisy
GPS receiver.

Figure (7.13) shows the mean angle errors for different standard deviations of the
noise of the electronic compass and fixed one of 25m for the GPS receiver. It is visible
that as the standard deviation decreases, the average angle error decreases also. As
expected, using a more accurate compass results in more accurate direction estimation.

It has been found that the compass noise does not only affect the direction esti-
mation, but it also affects position estimation. This is demonstrated in figure (7.14)
which shows the mean position errors for different standard deviations of the noise of
the electronic compass and fixed one of 25m for the GPS receiver. It can be observed
in the figure that increasing the accuracy of the compass reduces position errors to
some extent. A closer look to the curve of 0.5◦ standard deviation of compass noise
shows that no average errors could be obtained for less than 2000 particles. The ex-
planation of this phenomenon is as follows: due to the restricted standard deviation of
the noise of the compass, few of the particles will have weights above the adjustable
threshold. Only these particles will survive due to resampling. After certain number
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Figure 7.13: Mean angle error vs. number of particles averaged over 5000 time steps,
standard deviation of the GPS receiver = 25m and variable for the compass. It is
obvious that as the noise standard deviation of the compass decreases, the average
direction error decreases also.
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Figure 7.14: Mean position error vs. number of particles averaged over 5000 time
steps, standard deviation of the GPS receiver = 25m and variable for the compass.
An accurate compass results in not only accurate direction measurements, but also
position measurements. More particles are needed if an accurate compass is used since
it will cause many particles to vanish due to resampling.
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of time steps, all the particles will be having lower weights than the threshold, and
they will vanish. Above 2000 particles, there will always be particles that are having
angles in this small noise variance range of the compass, and positions in the relaxed
noise variance range of the GPS receiver. This is because more angles and positions
ranges will be covered by the particles in the prediction stage. Accordingly, there will
always be surviving particles and the algorithm will converge 1. A costly result is the
need of more particles for the error curve to reach the steady state.
If we compare the curve of the 5◦ standard deviation of compass noise with the 80◦

curve the following could be noticed:

• For a small number of particles, a non accurate compass shows better results
compared to the accurate one. This is because, the 5◦ standard deviation compass
causes many of the particles to get low weights and vanish due to resampling.
On the other hand, the 80◦ standard deviation compass is a wider range that
allow more particles to survive and accordingly shows better performance.

• At some point, with the increase of the number of particles more of them will be
having angles in the 5◦ small noise variance range of the compass. As a result,
the average error of the 5◦ compass will decrease till both curves intersects.

• After the intersection point, there will always be enough number of particles in
this range and the 5◦ curve will always show less average error compare to the
80◦ curve.

• It takes the restricted 5◦ standard deviation compass curve longer to reach the
steady state.

The GPS receiver noise does not only affect the position estimation, but it also
affects the direction estimation. This is demonstrated in figure (7.15) which shows the
mean angle errors for two standard deviations of the noise of the GPS receiver and
fixed one of 25◦ for the compass. It can be observed from the figure that increasing the
accuracy of the GPS receiver results in reduction in the angle errors. If we compare
the two curves in figure (7.15), we can see that for small number of particles the less
accurate GPS receiver performs better and vice versa for large number of particles.
Same explanations and observations that were given when comparing the 5◦ and the
80◦ curves in figure (7.14) are also valid here.

1The restricted standard deviation of the compass of 0.5◦ makes the compass like a restricted
maths teacher who fails any student who does not really knows everything. On the other hand, the
unrestricted standard deviation of the noise of GPS receiver of 25m makes the GPS receiver like a
relaxed English teacher who requires less effort to pass his exam. With less than 2000 particles, there
will be no enough of them to pass the two exams. While above 2000 particles, there will always be
some of them that are perfect in math and just ok in English.
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Figure 7.15: Mean angle error vs. number of particles averaged over 5000 time steps,
standard deviation of the compass = 25◦ and variable for the GPS receiver. An accurate
GPS receiver results in not only accurate position measurements, but also direction
measurements. More particles are needed if an accurate GPS receiver is used since it
will cause many particles to vanish due to resampling.



Chapter 8

Conclusions and Outlook

8.1 Conclusions

Bayesian filtering has been presented during this work as a general framework for loca-
tion estimation. Our focus was on particle filtering as a selected approximation for cases
where optimal Bayesian solution is intractable. This work has proven theoretically and
from experimental results that particle filter is a good and reliable approximation for
Bayes filter.

The applications of Bayesian filtering goes beyond location estimation. The gener-
ation of hierarchial models allows the seamless integration of location estimation into
user activity estimation. During this work inference was done to estimate the situation
of the pedestrian from his movement. Inference of many of the pedestrian situations
was successfully shown. Bayesian techniques are considered to be extremely promising
tool for situation aware services.
The main advantages of particle filtering are as follows:

• Particle filtering is able to represent arbitrary density.

• Particle filtering has no problem dealing with multi-modal distributions.

• Particle filtering converges to a true posterior even for non-Gaussian and nonlin-
ear systems.

• Particle filtering is efficient in the sense that particles tend to focus on regions
with high probability.

• Particle filtering is easy to formulate and easy to implement.

On the other hand particle filtering has two disadvantages. First, the complexity of the
particle filter algorithm grows exponentially with the dimensions of the state space.
Second, particle filtering is computationally expensive. However this computational
burden could be handled by implementing particle filtering using parallel processors.
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8.2 Outlook

Over the last few years, there has been a proliferation of scientific papers on particle
filters and their application. This has opened the door for a wide range of possible
further work in the direction of theocratical research and implementation.

Implementation wise more sensors like RF IDs, Bluetooth, WLANs, etc. are going
to be added to the current implemented sensors. Other types of particle filters are going
to be implemented in order to compare their accuracy and performance. Additionally,
different particle filters are going to be combined with other Bayesian filters in order
to get the advantage of each and avoid the disadvantages.
Some of the research directions are as follows:

• High-level Representations: The location of the pedestrian provides only
very limited information about the person’s current activity for the provider in
order to improve their quality of service. Richer representations might include
information such as the time of the day, the weather, the activity, the disorien-
tation, the age, the mode of transportation, the destination of the current trip
and the purpose of a specific location. During this work inference was done to
estimate pedestrian situation from his movement in order to provide the service
providers with more information. However some questions remain: What are
important locations in a person life? How can they be described in a general
way and learned from sensor data? How can we transfer experience gained from
one person to another person? Relational probabilistic models [50], which can
represent relations between classes of objects, provide a promising framework for
addressing these problems.

• Adaptive estimation: Most current Bayes filters use the same, fixed repre-
sentation of state space during the entire estimation process. However, in the
context of location estimation, this is not appropriate. For example if GPS and
compass, combined with a street-map were enough for the particle filter to esti-
mate the pedestrian location accurately in an urban area, they will not be enough
for sure in an indoor environment. Furthermore, even within the same building,
different areas might be covered by completely different types of sensors requiring
different representations of likelihoods. A key question is thus when and how to
switch between different representations in a statistically sound way.

• User Errors: If the system learns the pedestrian behavior in some situations,
then the offered service will be unreliable incase of unusual pedestrian’s attitude.
Online model selection [11] is a technique that can potentially solve this problem.
Model selection aims at identifying the model that is best suited to explain the
observed data. To apply model selection in the location context, one could
generate generic and user specific Bayes models of activities. Both models are
able to track a user’s activities, but the specific model is tuned towards the
typical actions of one particular user. The specific model additionally contains
all errors that are typical for the user. The idea is that as long as the user
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performs his usual activities, the tuned model will be much better in predicting
these activities. Surprising actions, i.e. potential errors, however, are not well
predicted by the specific model, in which case the generic model receives higher
probability. For example if the pedestrian is having lunch everyday at the same
time, then the specific model predicts this action with very high probability.
If the pedestrian didn’t has lunch at the usual time, then the general model
predict it with higher probability, thereby triggering the detection of a potential
user error. Another example is in the context of assisting cognitively impaired
people, where the detection of when a person seems to be lost is an important
aspect of location estimation. Obviously, such an approach can provide valuable
information to user intervention modules.

This is in addition to wide range of other research directions in Bayesian filters and
location based services.
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Appendix A

Statistics tables

Activity
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

Escaping 250 old direction 50 45
Sporting (Running) 200 old direction 34 15
Hurry walk 110 old direction 6 15
City walk 82 old direction 13 15
Hiking 75 old direction 8 15
Shopping 40 old direction 13 50

Table A.1: Activity statistics

Disorientation (walking)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

Sober 82 old direction 13 15
Half drunk 68 old direction 17 300
Totally drunk 43 old direction 22 600

Disorientaton (Running)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

Sober 200 old direction 34 15
Half drunk 180 old direction 37 400
Totally drunk 120 old direction 40 700

Table A.2: Disorientation statistics
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Time of day (walking)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

Morning 70 old direction 16 20
Midday 82 old direction 13 15
Night 90 old direction 10 13

Time of day (running)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

Morning 220 old direction 45 17
Midday 200 old direction 34 15
Night 170 old direction 39 13

Table A.3: Time of day statistics

Weather (walking)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

Very cold 100 old direction 10 15
Nice 82 old direction 13 15
Very hot 60 old direction 16 15

Weather (running)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

Very cold 250 old direction 30 15
Nice 200 old direction 34 15
Very hot 160 old direction 38 15

Table A.4: Weather statistics
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Activeness (walking)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

Tired 45 old direction 15 15
Just Ok 82 old direction 13 15
Active 105 old direction 11 15

Activeness (running)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

Tired 120 old direction 38 15
Just Ok 200 old direction 34 15
Active 280 old direction 29 15

Table A.5: Activeness statistics

Obstacles (walking)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

No obstacles 82 old direction 10 15
Quarter obstacles 72 old direction 11 22
Half obstacles 62 old direction 12 30
3Q obstacles 52 old direction 13 37
Full obstacles 42 old direction 14 45

Obstacles (running)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

No obstacles 200 old direction 32 15
Quarter obstacles 183 old direction 35 22
Half obstacles 165 old direction 37 30
3Q obstacles 149 old direction 39 37
Full obstacles 130 old direction 42 45

Table A.6: Obstacles statistics

Steepness (walking)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

Flat 82 old direction 13 25
Half steep 110 old direction 10 20
Tottaly Steep 140 old direction 7 15

Steepness (running)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

Flat 200 old direction 34 20
Half steep 300 old direction 25 15
Tottaly Steep 450 old direction 15 10

Table A.7: Ground steepness statistics
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Weekdays (walking)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

Saturday 70 old direction 16 20
Tuesday 82 old direction 13 15
Friday 90 old direction 10 13

Weekdays (running)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

Saturday 220 old direction 45 17
Tuesday 200 old direction 34 15
Friday 170 old direction 39 13

Table A.8: Weekdays statistics

Emotions (walking)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

Sad 60 old direction 17 14
Normal 82 old direction 13 20
Happy 100 old direction 10 28

Emotions (running)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

Sad 140 old direction 32 13
Normal 200 old direction 30 15
Happy 260 old direction 28 17

Table A.9: Emotions statistics

Arousal (walking)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

Calm 60 old direction 17 14
Neutral 82 old direction 13 20
Angry 100 old direction 10 28

Arousal (running)
Mean speed
(m/min)

Mean direction
(degrees)

Sigma speed
(m/min)

Sigma direction
(degrees)

Calm 140 old direction 32 13
Neutral 200 old direction 30 15
Angry 260 old direction 28 17

Table A.10: Arousal statistics
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Statistics figures
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Figure B.1: Mean Speed as a function of the activity
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Figure B.2: Sigma speed as a function of the activity
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Figure B.3: Sigma direction as a function of the activity
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Figure B.4: Mean speed as a function of the activeness during walking
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Figure B.5: Sigma speed as a function of the activeness during walking
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Figure B.6: Mean speed as a function of the activeness during running
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Figure B.7: Sigma direction as a function of the activeness during running
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Totally Drunk

Half Drunk

Sober1

y = -22x2 - 17x + 82
R2 = 1

0

10

20

30

40

50

60

70

80

90

0 0.2 0.4 0.6 0.8 1 1.2

Disorientation states (normalized)

M
ea

n 
sp

ee
d 

(m
/m

in
ut

e)

 
Figure B.8: Mean speed as a function of the disorientation during walking
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Figure B.9: Sigma speed as a function of the disorientation during walking
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Figure B.10: Sigma direction as a function of the disorientation during walking
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Figure B.11: Mean speed as a function of the disorientation during running
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Figure B.12: Sigma speed as a function of the disorientation during running
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Figure B.13: Sigma direction as a function of the disorientation during running
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Figure B.14: Mean speed as a function of the emotions during walking
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Figure B.15: Sigma speed as a function of the emotions during walking
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Emotions - Walking
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Figure B.16: Sigma direction as a function of the emotions during walking
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Figure B.17: Mean speed as a function of the emotions during running



130 APPENDIX B. STATISTICS FIGURES

Emotions - Running

Sad

Normal

Happy

y = -4x + 32
R2 = 1

27.5

28

28.5

29

29.5

30

30.5

31

31.5

32

32.5

0 0.2 0.4 0.6 0.8 1 1.2

Emotions states (normalized)

S
ig

m
a 

sp
ee

d 
(m

/m
in

ut
e)

 
Figure B.18: Sigma speed as a function of the emotions during running

Emotions - Running

Happy

Normal

Sad
y = 4x + 13

R2 = 1

0

2

4

6

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8 1 1.2

Emotions states (normalized)

Si
gm

a 
di

re
ct

io
n 

(d
eg

re
es

)

 
Figure B.19: Sigma direction as a function of the emotions during running
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Arousal - Walking

Angry

Neutral

Calm

y = 40x + 60.667
R2 = 0.9967

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1 1.2

Arousal states (normalized)

M
ea

n 
sp

ee
d 

(m
/m

in
ut

e)

 
Figure B.20: Mean speed as a function of the arousal during walking
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Figure B.21: Sigma speed as a function of the arousal during walking
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Figure B.22: Sigma direction as a function of the arousal during walking
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Figure B.23: Mean speed as a function of the arousal during running
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Arousal - Running
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Figure B.24: Sigma speed as a function of the arousal during running
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Figure B.25: Sigma direction as a function of the arousal during running
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Obstacles - Walking
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Figure B.26: Mean speed as a function of the obstacles during walking
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Figure B.27: Sigma speed as a function of the obstacles during walking
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Obstacles - Walking
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Figure B.28: Sigma direction as a function of the obstacles during walking
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Figure B.29: Mean speed as a function of the obstacles during running
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Obstacles - Running
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Figure B.30: Sigma speed as a function of the obstacles during running
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Figure B.31: Sigma direction as a function of the obstacles during running
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Steepness - Walking
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Figure B.32: Mean speed as a function of the steepness during walking
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Figure B.33: Sigma speed as a function of the steepness during walking
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Figure B.34: Sigma direction as a function of the steepness during walking
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Figure B.35: Mean speed as a function of the steepness during running
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Steepness - Running

Flat

Half steep

Totally steep

y = -19x + 34.167
R2 = 0.9991

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1 1.2

Steepness states (normalized)

S
ig

m
a 

sp
ee

d 
(m

/m
in

ut
e)

 
Figure B.36: Sigma speed as a function of the steepness during running
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Figure B.37: Sigma direction as a function of the steepness during running



140 APPENDIX B. STATISTICS FIGURES

Time of day - Walking

Night

Midday

Morning
y = 20x + 70.667

R2 = 0.9868

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1 1.2

Time of day states (normalized)

M
ea

n 
sp

ee
d 

(m
/m

in
ut

e)

 
Figure B.38: Mean speed as a function of the time of day during walking
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Figure B.39: Sigma speed as a function of the time of day during walking
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Figure B.40: Sigma direction as a function of the time of day during walking
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Figure B.41: Mean speed as a function of the time of day during running
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Figure B.42: Sigma speed as a function of the time of day during running
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Figure B.43: Sigma direction as a function of the time of day during running
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Figure B.44: Mean speed as a function of the weather during walking
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Figure B.45: Sigma speed as a function of the weather during walking
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Figure B.46: Sigma speed as a function of the weather during running
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Figure B.47: Sigma direction as a function of the weather during running
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Weekdays - Walking
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Figure B.48: Mean speed as a function of the week day during walking
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Figure B.49: Sigma speed as a function of the week day during walking
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Figure B.50: Sigma direction as a function of the week day during walking
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Figure B.51: Mean speed as a function of the week day during running
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Figure B.52: Sigma speed as a function of the week day during running
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Figure B.53: Sigma direction as a function of the week day during running
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Appendix C

States equations

I. Activity

µv =− 3.1458(activity state)4 + 43.458(activity state)3

− 196.48(activity state)2 + 279.2(activity state) + 127.5 (C.1)

σv =− 0.52(activity state)4 + 7(activity state)3

− 28.2(activity state)2 + 23.545(activity state) + 48.8 (C.2)

µα =αold (C.3)

σα =1.3542(activity state)4 − 18.727(activity state)3

+ 93.7(activity state)2 − 200.5(activity state) + 169.2 (C.4)

II. Disorientation

• Walking

µv = −22(disorientation state)2 − 17(disorientation state) + 82 (C.5)

σv = 2(disorientation state)2 + 7(disorientation state) + 13 (C.6)

µα = αold (C.7)

σα = 300(disorientation state)2 + 555(disorientation state) + 15 (C.8)

• Running

µv = −80(disorientation state)2 − 9E−13(disorientation state) + 200
(C.9)

σv = 6(disorientation state) + 34 (C.10)

µα = αold (C.11)

σα = −170(disorientation state)2 + 855(disorientation state) + 15
(C.12)
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III. Age

• Walking

µv = −118(age state)2 + 133(age state) + 45 (C.13)

σv = −4(age state) + 15 (C.14)

µα = αold (C.15)

σα = 90(age state)2 − 105(age state) + 45 (C.16)

• Running

µv = −240(age state)2 + 280(age state) + 120 (C.17)

σv = −46(age state)2 + 41(age state) + 25 (C.18)

µα = αold (C.19)

σα = 14(age state)2 − 17(age state) + 20 (C.20)

IV. Time of day

• Walking

µv = 20(time of day state) + 70.667 (C.21)

σv = −6(time of day state) + 16 (C.22)

µα = αold (C.23)

σα = 6(time of day state)2 − 13(time of day state) + 20 (C.24)

• Running

µv = −50(time of day state) + 221.67 (C.25)

σv = 32(time of day state)2 − 38(time of day state) + 45 (C.26)

µα = αold (C.27)

σα = −4(time of day state) + 17 (C.28)

V. Weather

• Walking

µv = −20(weather state) + 80.667 (C.29)

σv = 3(weather state) + 13 (C.30)

µα = αold (C.31)

σα = 15 (C.32)

• Running

µv = −45(weather state) + 203.33 (C.33)

σv = 4(weather state) + 34 (C.34)

µα = αold (C.35)

σα = 15 (C.36)
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VI. Activeness

• Walking

µv = −28(activeness state)2 + 88(activeness state) + 45 (C.37)

σv = −4(activeness state) + 15 (C.38)

µα = αold (C.39)

σα = 15 (C.40)

• Running

µv = 160(activeness state) + 120 (C.41)

σv = −9(activeness state) + 38.167 (C.42)

µα = αold (C.43)

σα = 15 (C.44)

VII. Obstacles

• Walking

µv = −40(obstacle state) + 82 (C.45)

σv = 4(obstacle state) + 10 (C.46)

µα = αold (C.47)

σα = 30(obstacle state) + 14.8 (C.48)

• Running

µv = −69.6(obstacle state) + 200.2 (C.49)

σv = 9.6(obstacle state) + 32.2 (C.50)

µα = αold (C.51)

σα = 30(obstacle state) + 14.8 (C.52)

VIII. Ground Steepness

• Walking

µv = 58(steepness state) + 81.667 (C.53)

σv = −6(steepness state) + 13 (C.54)

µα = αold (C.55)

σα = −10(steepness state) + 25 (C.56)

• Running

µv = 250(steepness state) + 191.67 (C.57)

σv = −19(steepness state) + 34.167 (C.58)

µα = αold (C.59)

σα = −10(steepness state) + 20 (C.60)
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IX. Weekdays

• Walking

µv = 3.3333(weedays state) + 70.667 (C.61)

σv = −(weedays state) + 16 (C.62)

µα = αold (C.63)

σα = 0.1667(weekdays state)2 − 2.1667(weedays state) + 20 (C.64)

• Running

µv = −8.3333(weedays state) + 221.67 (C.65)

σv = 0.8889(weekdays state)2 − 6.3333(weedays state) + 45 (C.66)

µα = αold (C.67)

σα = −0.6667(weedays state) + 17 (C.68)

X. Emotions

• Walking

µv = 40(emotions state) + 60.667 (C.69)

σv = −7(emotions state) + 16.833 (C.70)

µα = αold (C.71)

σα = 14(emotions state) + 13.667 (C.72)

• Running

µv = 120(emotions state) + 140 (C.73)

σv = −4(emotions state) + 32 (C.74)

µα = αold (C.75)

σα = 4(emotions state) + 13 (C.76)

XI. Arousal

• Walking

µv = 40(arousal state) + 60.667 (C.77)

σv = −7(arousal state) + 16.833 (C.78)

µα = αold (C.79)

σα = 14(arousal state) + 13.667 (C.80)

• Running

µv = 120(arousal state) + 140 (C.81)

σv = −4(arousal state) + 32 (C.82)

µα = αold (C.83)

σα = 4(arousal state) + 13 (C.84)
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Equipment photos

Figure D.1: Vodafone 3G/GPRS data card

Figure D.2: Bluetooth adapter
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Figure D.3: Bluetooth GPS receiver

Figure D.4: Electronic compass



Appendix E

NMEA protocol

NMEA (National Marine Electronics Association) is a standard protocol, used by GPS
receivers to transmit data. NMEA output is EIA-422A but for most purposes it can
considered RS-232 compatible. It uses 4800 bps, 8 data bits, no parity and one stop
bit. NMEA 0183 (which is the case in the used receiver) sentences are all ASCII. Each
sentence begins with a dollar sign and ends with a carriage return linefeed. Data is
comma delimited. A checksum is optionally added (in a few cases it is mandatory)
The most important NMEA sentences include the GGA which provides the current Fix
data (provides 3D location and accuracy data), the RMC which provides the minimum
gps sentences information, and the GSA which provides the Satellite status data. For
example if the following GSA sentence is read:
$GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47
Then it can be explained as follows:
GGA Global Positioning System Fix Data
123519 Fix taken at 12:35:19 UTC
4807.038,N Latitude 48 deg 07.038’ N
01131.000,E Longitude 11 deg 31.000’ E
1 Fix quality
8 Number of satellites being tracked
0.9 Horizontal dilution of position
545.4,M Altitude, Meters, above mean sea level
46.9,M Height of geoid (mean sea level) above WGS84 ellipsoid
*47 the checksum data, always begins with *
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