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Abstract 
 
This paper presents two new design tools for lightweight aerospace structures. The 
first tool is the Tailored Fibre Placement (TFP) design tool TACO. It is used to 
optimize the fibre orientations of structures made of Carbon Fibre Reinforcement 
Plastics (CFRP). The optimization concept is explained and results are given for a 
horizontal tail plane connection beam of an aircraft. The second tool, iBuck, is a 
fast, semi-analytical local buckling and post-buckling tool for stiffened panels that 
are loaded in-plane. The panels are assumed to be representative for an aircraft 
fuselage and are stiffened in axial and circumferential direction. Results are 
presented for axially loaded panels and compared to FE-results. 
 
Keywords: optimization tools, tailored fibre placement, composites, HTP-
connection beam, local buckling, stiffened panel, post-buckling, curved shells 
 
1  Tailored Fibre Placement Optimization Tool 
 
1.1 Introduction 
 
Tailored Fibre Placement (TFP) is a textile process for the production of fibre 
reinforced structures. Using TFP the carbon fibre rovings may be placed on a base 
material in almost any desired orientation, thus deploying calculated optimum fibre 
quantities and orientations for optimal performance. In common composite 
structures the anisotropic material properties are usually not fully exploited. 
 

In Figure 1.1 it is illustrated how the relative strength of a composite layer 
depends on the angle α  between the fibre (within that layer) and the load direction. 
In this simple example, only axial tension and compression is considered. If the 
direction of the load is only 10 degrees off the fibre direction, its load-carrying 
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capacity is reduced by 80%. It is thus plausible that the weight of composite 
structures could be significantly reduced if the fibres were fully exploited. In the 
simple example from Figure 1.1 the optimal fibre orientation would be at  =0. 
However, in a real structure under different loading conditions there may exist 
different solutions for each load case. It is therefore expected that the optimization 
potential is especially high, if only a few load cases need to be considered. 

 

Figure 1.1:  Dependence of relative strength and angle between fibre direction and 
load direction [1] 

 
Stress concentration at notches, edges and cut-outs are critical in view of the 

material failure behaviour in a structure. While in isotropic structures only a shape 
optimization is possible to reduce local stress concentrations, in orthotropic and 
composite structures an orientation of the fibres appropriate to the local stress 
condition can be used as an additional local design variable for strength and stiffness 
optimization.  

 
In the CAIO method [9, 10, 14], a procedure to optimize fibre arrangement in 

composite structures, the fibres of a loaded structure are locally aligned to the 
principal directions of the stresses. Since stress distribution and fibre orientation are 
coupled, an iterative procedure is necessary to align fibre orientation in the principle 
direction of the stress. As result of this procedure the shear stress and the 
corresponding failure response is reduced. 
 

Using an optimization criterion in combination with FEM provides a very 
efficient optimization method leading to a curvilinear fibre pattern in contrast to the 
constant fibre direction of traditional design [4-6, 8-16]. The application of such a 
procedure allows an optimized design for a specific composite light-weight-
component. It aims to fully exploit the uniaxial material properties, leads to a local 
reinforcement and a more efficient load transfer and improves the fracture 
behaviour. Main area of application are uniaxial loaded laminate structures with a 
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limited number of load cases. A typical application is an open-hole plate under 
unidirectional tensile loading. 

In [12, 17] it is pointed out how the manufacturing process affects the material 
properties. For example, in [12] the influence of stitching on fracture behaviour is 
considered in TFP structures. A challenging problem in the analysis of the 
anisotropic mechanical properties of composites has been the development of 
adequate failure criteria. A strength model for 3D fiber-reinforced plastics consisting 
of unidirectional layers with a high in-plane fiber density and additional 
reinforcements perpendicular to the layers with a significantly lower fiber density is 
presented in [19]. 

 
The tool TACO (Tailored Composite Design Code) was developed to optimize 

complex composite structures and it is embedded in the MSC PATRAN / 
NASTRAN environment. An optimization criterion instead of a mathematical 
optimization is used, because in the mathematical approach the number of design 
variables becomes too large. As optimization criterion the two-dimensional CAIO 
formulation was adapted. The tool changes the fibre orientations within a user-
defined layer of a finite-element (FE) model such that the fibres are as closely 
aligned to the direction of the principal stresses as possible. For failure analysis the 
so called Simple Parabolic Criterion (SPC) was implemented (cf. Section 1.3), 
which is able to distinguish between fibre fracture and inter fibre fracture as 
different failure modes. 
 

An effective method to calculate the 3D stress state using only 2D shell elements 
was suggested in [18]. In the same way as TACO, this method is implemented in an 
add-in program for MSC/PATRAN named TRAVEST. In future, combining 
TRAVEST and TACO with a powerful 3D strength criterion allows for an improved 
and efficient TFP design even for thicker composite structures. 

 
TACO was applied to optimize a preliminary version of the horizontal tail plane 

(HTP)-connection beam of an Airbus A340 airplane for which experimental data 
were available. The HTP-beam was subjected to three independent load cases: 
tension, combined tension/compression and bending. Three specimens were 
manufactured at Airbus Germany (plant Stade) according to the optimized solution 
obtained by TACO and were tested for all three different load cases [2]. The 
experimental results were compared to the TACO predictions. The results for the 
optimized HTP-beams were also compared to the results for the conventional 
composite beams made of fabrics that had been tested earlier. 

 
The first part of this paper aims to demonstrate the TFP capability on the HTP-

connection beam as a real industrial structure and aims to show that the structural 
behaviour is predictable applying the TFP design tool TACO. 
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1.2 Optimization Concept 
 
Before the optimization procedure starts, a linear plane stress analysis of the 
structure is carried out. Based on a two-dimensional stress state, the two orthogonal 
principal directions of the stress 
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The two principal stresses must be compared to decide in which of the two 

principal directions the fibres should be aligned. 
 

In a simplified method to design TFP structures one starts with a plane stress 
analysis for a given structure with an arbitrary isotropic material. According to the 
isotropic stress analysis the fibres are aligned to the direction of principal stresses. In 
such an approach the coupling of stress state and anisotropy is neglected.  
 

In order to fully exploit the fibres, they are aligned in the direction of the 
principal stress. However, fibre orientation and stress state are coupled: as the fibre 
orientation changes, so does the stress state. Thus, another linear plane stress 
analysis of the structure must be carried out and afterwards it must be checked 
whether the fibres need to be re-aligned. If so, the process of re-aligning and 
checking is repeated until convergence is reached. As a result of this procedure the 
shear stresses becomes small. For the test cases considered in this paper, this only 
took a few iterations. 
 
Main Subroutines in TACO 
 
TACO is written in Patran Command Language (PCL) and contains four main 
subroutines or session files (Properties, Results, Optimization, Failure). A schematic 
view of the tool and the optimization procedure is given in Figure 1.2. Properties are 
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attached to the elements to define fibre orientation for any element. If a FE-model 
with an appropriate property definition exists and if results of a first stress 
calculation are given, the optimization procedure can be started. To get all 
information and settings in a consistent way the sub-routines must be applied in a 
defined sequence. Applying the subroutines in the described iterative way, results 
for optimized fibre orientation, stress and strength-analysis are given as result-case 
in the Patran database.  
 

Patran-Database

FE-model Result
case

Properties

Results Failure

Result-data (*.op2)

Result-data (*.f06)

Nastran

Optimisation

Input-data (*.bdf)

Iteration

 

Figure 1.2: TACO Overview  

 
1.3 Failure Criterion 
 
In order to optimize the load-carrying capacity of a structure, a criterion for the onset 
of fracture must be chosen. There are different criteria for the determination of 
fracture of composite materials. A good overview can be found in Cuntze et al. [3]. 
For the failure analysis of a TFP-layer, it is recommended to distinguish between 
Fibre Fracture (FF) and Inter Fibre Fracture (IFF) as different failure modes (cf.   
[3, 19]). In the following, these criteria, which are implemented in TACO, are 
explained. 

 
For FF an appropriate criterion is the simple maximum stress criterion: 
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||σ  is the stress and  are the strengths of a unidirectional layer for tensile (+) 
and compressive (-) loads in fibre direction, respectively. For IFF of unidirectional 
composite layers a physically based criterion called 

( , )
||R + −

Simple Parabolic Criterion 
(SPC) has been developed and experimentally verified by Cuntze et al. [3]. The 
fracture hypothesis of Mohr for brittle materials is used as a basis. Therefore the 
criterion is formulated solely in stresses and strengths of the fracture plane (cf. 
Figure 1.3): 
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( , )p + −  represents gradients of the fracture body defined by Equations (1.5) and 

(1.6). Cuntze et al. [3] developed the following strength model for unidirectional 
layers using basic strengths of the layer with respect to the material axes: 
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Figure 1.3: Components of the stress tensor and stresses in the fracture plane of an 

unidirectional composite layer 
 
The above mentioned criteria were developed for unidirectional layers in a three-

dimensional stress state, but they can also be used for TFP-layers because the 
uniaxial symmetry is preserved. Only the material strength values are reduced due to 
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reasons mentioned in the next section. The failure criteria for the plane stress, which 
are implemented in TACO, are a simplified case of the described criteria. 

 
 
 

1.4 Material Properties 
 
Comparing TFP material properties to prepreg material properties, one can assume 
that TFP exhibits similar stiffness but smaller material strength values. The material 
strengths are reduced due to the increased fibre waviness. In addition, the carbon 
rovings are slightly damaged by the needle threads during the manufacturing 
process. This leads locally to spatially varying material properties. In a first ply 
failure analysis this is usually taken into account by a global reduction of the basic 
material strength values. 

 
The reduction factor depends on the kind of material (fibre and resin) and the 

manufacturing process. The compressive strength, for instance, which had the most 
significant influence on fracture for the geometries considered, can be between 40% 
and 70% of prepreg compressive strength. Even higher values were recently 
achieved by Hightex [1]. Still, it is difficult to assume exact material strengths 
values for the simulation of structures made in TFP technology. 

 
For the optimization of the HTP connection beam (cf. Section 1.5) the following 

material strengths were taken: 
1) In a first approach the best known TFP material strengths values (e.g. the 

compressive strength is 70% of prepreg compressive strength) were assumed 
in order to find the load carrying capacity limits of the HTP connection beam 
made in TFP technology. 

2) After testing of the optimized HTP connection beam the computed maximum 
loads at first ply failure and maximum test loads were equalized and realized 
material strength values were estimated. 

 
1.5 Optimization of the HTP Connection Beam in TFP Technology 
 
General  
 
The tool TACO was applied to design a preliminary version of the horizontal tail 
plane (HTP)-connection beam in TFP technology. The HTP-connection beam is the 
back connection between the horizontal tail plane and the Section 19 of the fuselage 
(cf. Figure 1.4). For the A340 version it is currently made of fabrics using composite 
technology. In the design phase, several geometries and layouts were designed by 
Airbus. One of the geometries that were built and tested is depicted in Figure 1.5. In 
the following of this paper this structure will be called conventional HTP connection 
beam. 
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In order to increase the load carrying capacity of the conventional HTP 
connection beam, the orientations of the rovings and their lay-up were considered 
for the optimization. The geometry and the total thickness were defined by the 
testing equipment and the mold available. 

 
 

Figure 1.4: Position of the HTP connection beam 
within Section 19 of the fuselage [2] 

Figure 1.5: HTP connection 
beam [2] 

Position of the HTP-
connection beam

 
TACO can be used to optimize the fibre orientations in a certain layer. In order to 

simplify the optimization for the HTP connection beam, TACO was applied to 
optimize the 0°-layers only. The 90°-layers were assumed to be orthogonal to the 
optimized 0°-layers or were omitted. The ±45°-layers were left unchanged. In order 
to find the optimal ratio of optimized 0°/90°-layers and ±45°-layers, calculations 
were performed for different realistic ratios. The optimal ratio was selected. In order 
to find out the necessity of the 90°-layers, calculations were performed for different 
ratios with and without these layers. The result was that for the geometry considered 
and a constant number of total layers, the load carrying capacity was without 90°-
layers maximal. Due this reason the lay-up of the following optimizations 
considered only optimized 0°-layers and unchanged  ±45°-layers. 
 
Load Cases  
 
The HTP-connection beam is loaded at the central eye by the tail plane. The loads 
are transferred through the beam to the outer eyes and into the fuselage section. Due 
to the geometry of the beam, three independent load cases (tension, combined 
compression/tension and bending) had to be considered. 
 

Test results for the conventional HTP-connection beam are given in Table 1.1. 
All loads are normalized by the reference load P. 

 
Modelling 
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The HTP connection beam was modelled using 9000 shell-elements (3-node and 4-
node). The geometry of the structure is depicted by the illustration in Table 1.1. 
During the experiment, the eyes were loaded using metallic bolts that were kept in 
place by an adhesive. In the FE model, the bolts, which are significantly stiffer than 
the HTP connection beam, were modelled as rigid bodies. The adhesive was 
considered as elastic material. During loading the adhesive generally breaks in the 
tension area between the metallic bolt and the HTP connection beam. The main load 
is therefore brought into the structure in the compression area between the bolts and 
the HTP connection beam. In order to take this in the linear TACO computation into 
account, the adhesive material properties in the tension area are artificially reduced 
to 10% of the compressive values. 

 
 

 Load case 1 
Tension 

Load case 2 
Tension / Compression 

Load case 3 
Bending 

    P 

0.81 P 

Eye 3 
0.85 P 

Eye 2 
Eye 1 

0.94 P 

Eye 1 0.94 P  P Fixed 
Eye 2 Fixed Fixed 0.81 P 
Eye 3 0.85 P  0.85 P Fixed 

   P:  Reference load 

Table 1.1: Test results for the conventional HTP-connection beam 

 
Validation of the Finite Element Model 
 
In order to test the selected FE model and the loading assumptions, the conventional 
HTP connection beam was simulated for all 3 load cases given in Table 1.1. 
Compared was the maximum load at the first ply failure with the maximum test 
loads. In all 3 load cases the loads at the first play failure were not more than 8% 
below the corresponding maximum test loads. This is an acceptable agreement and 
justifies the assumptions that were made in the FE model. 
 
Optimization for the Combined Load Case Tension and Bending (not 
recommended) 
 
The optimization of the HTP connection beam in TFP technology was performed for 
different load case combination as well as for all single load cases. The optimization 
for load combinations with the load case 3 (bending) did not lead to an improvement 
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of the load carrying capacity. Exemplary for these investigations, only results 
obtained for the combined load case 1 and 3 (tension and bending) are given here. 
For the optimization, the roving orientations of all 0°-layers were considered. The 
90°-layers were omitted and the ±45°-layers were left unchanged. Figure 1.6 shows 
the solution for the optimized 0°-layers. It can be seen that the rovings are not 
symmetric due to the non-symmetric load case bending. In addition, the distance of 
the rovings near the outer eyes is not constant which leads to varying thickness of 
the structure as well as varying fibre volume content. Such a non-symmetric 
distribution of rovings is therefore not acceptable for a reasonable production. In 
addition, the load carrying capacity of that optimized structure could not be 
increased in comparison to the conventional HTP connection beam. Based on these 
results one can conclude that it is not reasonable to apply the optimization procedure 
to the HTP connection beam for non-symmetric load cases. 
 

 

Figure 1.6:  Rovings of the HTP connection beam, optimized for the combined load 
case tension and bending (not recommended) 

 
Optimization for the Load Case Tension  
 
The best optimization approach was obtained when considering only the single load 
case 1 (tension). For the optimization, the roving orientations of all 0°-layers were 
considered. The 90°-layers were omitted and the ±45°-layers were left unchanged. 
Figure 1.7 shows the solution for the optimized 0°-layers. 
 

 

Figure 1.7:  Rovings of the HTP connection beam, optimized for the load case 1 
(tension) 

 
Figure 1.7 was generated by reading the orientations of the optimized finite 

elements from the result files. They were then converted to continuous lines. 
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Manufacturing restrictions were taken into account. This figure was used during the 
manufacturing process for placing the TFP rovings. 

 
Table 1.2 shows the expected maximum loads at first play failure, the kind of 

failure and its layer. These loads are compared to the maximum test loads of the 
conventional HTP connection beam. The last row gives the expected improvement 
in percentage. It can bee seen that load case 3 is the most critical one. For that load 
case the load carrying capacity could be improved by 27.1%. For the other load 
cases there is a significant higher capacity. However, it must be emphasized that the 
best known material strength were taken and therefore probably too high load levels 
are expected. On the other hand, limits of TFP are made visible. 
 

 Load case 2 
Load case 1  

Load 
case 3 

Load case 
Tension  
(Eye 1) 

Tension  
(Eye 3) 

Compression 
(Eye 1) 

Bending 
(Eye 2) 

Failure mode  
Layer 

FF  
 (±45°-layer)

FF  
 (±45°-layer)

IFF  
 (0°-layer) 

FF  
 (0°-layer)

Maximum load at first ply failure 

Si
m

ul
at

io
n 

Optimized HTP 
connection beam  
(best known TFP 
material strengths) 2.09P 1.88P 2.65P 1.03P 

Maximum test load 

E
xp

er
i

-m
en

t Conventional HTP 
connection beam 
(cf. Table 1.1) 0.94P 0.85P P 0.81P 

Expected improvement in % 122.3 121.2 165 27.1 

Table 1.2: Expected maximum loads of the optimized HTP connection beam in 
comparison to the conventional HTP connection beam 
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Figure 1.8: Distribution of the material efforts for load cases 1 and 2  

he given loads of Table 1.1 and a fixed geometry, this optimized solution 
lead to a reduced thickness of 27%. For this case, Figure 1.8 shows the 
tion of material efforts. It can be seen that for load cases 1 (tension) and 2 
ed tension/compression) first failure would occur in the eyes and that in the 

e there are still large reserve capacities. For load case 3 (bending) first failure 
 the knee of the outer geometry. This behaviour is plausible. 
Load case 3:
 

 

Figure 1.9: Distribution of the material efforts (load case 3) 

sults 

Germany (plant Stade) manufactured three nominally equal HTP-connection 
ccording to the result obtained by TACO and tested each of them for one of 
e different load cases [2]. In order to estimate the actual material properties, 
imum test loads and the simulated loads at first ply failure of the TFP 

ed HTP connection beam were equalized. The test results were compared to 
ailable test results for the conventional HTP-connection. Table 1.3 
izes all these results.  
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 Load case 2 
Load case 1  

Load 
case 3 

Load case 
Tension  
(Eye 1) 

Tension  
(Eye 3) 

Compression 
(Eye 1) 

Bending 
(Eye 2) 

Maximum load at first ply failure 

Si
m

u-
la

tio
n Optimized HTP connection 

beam (realized TFP 
material properties) 1.60P 1.41P 1.78P 0.75P 

Maximum test load Optimized HTP connection 
beam 1.51P 1.36P 1.79P 0.75P 

E
xp

er
i-

m
en

t 

Conventional  HTP 
connection beam  0.94P 0.85P P 0.81P 

Improvement in % 61 60 79 -8 

Table 1.3: Comparison of maximum loads of the HTP connection beam 
 
The last row in Table 1.3 shows how the load carrying capacity of the HTP 

connection beam is improved by the TFP optimization. One can see that for load 
case 3 the structural behaviour of the HTP connection beam is 8% worse. One 
reason for the early onset of failure within that load case can be interlaminar stresses 
due to the accumulation of needle threads at the boundaries of the layers between the 
sub-preforms. For load case 1 and 2 there is, however, a significant improvement of 
60% and 79%, respectively. 

 
Based on these results one can conclude that the TFP technology is not suitable 

for structures which are subjected to too many different load cases. However, if a 
structure is loaded by only 1 or 2 clearly defined load case, TFP promises large 
reserve capacities which can lead to significant weight reduction. 

 
1.6 Concluding Remarks 
 
The TFP optimization tool TACO is capable of changing the fibre orientations 
within a selected layer of a composite Finite Element model. For a given load case, 
the fibres are aligned as closely as possible to the direction of the principal stresses. 
In this way, the shear stresses in the structure are minimized and thus its load-
carrying capacity is increased. 
 

TACO was used to optimize a preliminary version of the HTP connection beam - 
a part of the Airbus A340-500/600 fuselage structure - in TFP technology. The HTP 
connection beam is currently manufactured in conventional composite technology 
made of fabrics and is subjected to three independent load cases; that is, two 
symmetric (tension and compression) load cases and one non-symmetric load case 
(bending). 
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In a first approach the combined load case tension and bending was considered. 

Due to the non-symmetric load case bending the optimized fibre orientations are 
also non-symmetric. The load-carrying capacity could not be increased. In a second 
approach the structure was optimized for the load case tension only. This concept 
led to a reasonable solution for which manufacturability could be ensured. 

 
After TACO had suggested an optimal fibre orientation, the HTP connection 

beam was manufactured three times. Each test structure was tested according to one 
of the three load cases. The test results were compared to test results for a 
conventional HTP connection beam made of fabrics that had been tested earlier. For 
the load case bending the load carrying capacity was 8% worse, however, for the 
other load cases there was a significant improvement of about 60 % for tension and 
79 % for compression. 

 
Based on these results it can be concluded that the optimization criterion that was 

chosen is not suitable for structures which are subjected to too many different load 
cases. However, TFP promises reserve capacities and significant weight reduction 
for structures which are subjected to a smaller number of load cases. 
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2 iBuck – a Rapid Design Tool for Stiffened Panels 

 
2.1 Introduction 
 
In a conventional aluminium aircraft, the aircraft fuselage (cf. Figure 2.1) is 
typically comprised of a shell (skin) and stiffeners in both longitudinal (stringers) 
and circumferential direction (frames). In order to save weight, the skin is usually 
very thin. If such a fuselage is loaded in-plane, the skin can deflect laterally. This 
effect is called buckling and must be accounted for when designing the aircraft. 
While some buckling modes are not critical, others may result in collapse and must 
therefore be avoided in aircraft operation. 
 

 

Figure 2.1: An aircraft fuselage section. 

 
When buckling occurs, the applied load is partially re-distributed across the 

cross-section of the structure where the stiffeners will attract load from the buckled 
skin. In local buckling modes (pure skin buckling within a bay) the load may be 
increased further without loss of overall stability. In global buckling modes 
(buckling across several bays), the stability of the structure is severely reduced and 
collapse can occur. 

 
It is thus necessary to identify both local and global buckling modes. More 

specifically, it is necessary to investigate the effect of local buckling on the overall 
stability of the structure while the load is increased. Therefore the post-buckling 
behaviour of the structure, that is, the behaviour of the structure at loads beyond the 
buckling load of the skin must be described. 
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Efforts have been made ever since aluminium aircrafts are built and a wide range 
of analytical hand-book-type formulas are available. However, these formulas often 
are only estimates and merely predict the onset of buckling while post-buckling is 
not described. Also, these methods are limited to relatively simple geometries. 

 
On the other end, commercially non-linear FE-tools such as ABAQUS are 

available. However, modelling and computation may be very costly. A detailed 
discussion of the capabilities of non-linear FE analysis concerning aerospace 
structures may be found in [31] and [32]. 

 
With these two options in mind, it is desirable to provide a compromise between 

accuracy and computational cost. Such a fast tool, the semi-analytical tool “iBuck” 
was developed and is presented subsequently. 
 

In [22] and [23], unstiffened plates undergoing large deflection are considered. 
The concept of choosing shape functions for the skin deflection is introduced. 
Expressions for the bending and membrane energy are presented in [20]. [21] 
provides a comprehensive background on shell theory. 

 
In [25] a semi-analytical model for unstiffened plates is presented. The concept of 

choosing shape functions and determining the total energy is adopted. Load-
interaction curves are given. In [24], shape functions for the stiffener deflection are 
presented and discussed. 

 
Byklum’s publications [26]-[28] are the basis for the present paper. Byklum 

considers longitudinally (stringer-)stiffened heavy plates and chooses shape 
functions for the skin and the stringers. The equations are solved by minimizing the 
system’s energy using an arc-length method ([29],[30]). The frames are assumed to 
be rigid and are considered through boundary conditions. 

 
In this paper, this concept is extended to thin cylindrical shells that are stiffened 

in both longitudinal and circumferential direction. Hence, a curved structure is 
considered. For both the stringers and the frames appropriate shape functions are 
chosen in order to predict both stringer and frame failure. For frames with high 
blades, lateral instabilities may occur and must therefore be investigated.  
 
2.2 Representative Panel 
 
In this paper, a semi-analytical tool that is capable of predicting the local buckling 
response of a stiffened panel is presented.  
 

In this context, semi-analytical means that the problem formulation is entirely 
based on the foundations of analytical continuum mechanics. However, numerical 
methods are used to solve the equations at each load step. 
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By local buckling it is meant that the skin within a bay may deflect laterally and 
may induce rotation of the stiffeners. However, the stiffeners themselves are not 
allowed to deflect in out-of-plane direction, that is, points A and B in Figure 2.2 may 
not move in z-direction. 
 

z

 

 

Figure 2.2: Local buckling shapes.  

y
B A 

z

y
B A 

 
Figure 2.2 depicts how weak stiffeners deflect laterally (top), thus suggesting a 

sinus-type buckling shape. In other words, from the skin’s perspective, weak 
stiffeners act as simply-supported boundary conditions. At the bottom of Figure 2.2, 
strong stiffeners force the skin to assume zero slope at the stiffeners’ feet. Thus, 
strong stiffeners create clamped boundary conditions for the skin. In Figure 2.2, the 
stringer deflections are displayed. Deflection functions for the frames were chosen 
accordingly. 
 

 

Figure 2.3: A representative stiffened panel. 

 
With these mode shapes in mind it is then assumed that a large structure such as 

the fuselage in Figure 2.1 can be represented by a panel such as the one depicted in 
Figure 2.3. However, this assumption is only valid if local buckling modes are 
considered, that is, buckling is only permitted within a bay. 
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In the following section it will be explained how the structure is modelled. In 

Section 2.3 the Donnell differential equations for a pre-deformed (imperfect) 
cylindrical shell and a solution strategy is presented. In Section 2.4 it is outlined how 
a stiffened structure is modelled. 
 
2.3 Non-Linear Shell Theory 
 
The Donnell Equations 
 
The Donnell shell equations are valid for a thin, weakly curved shell undergoing 
large out-of-plane deflections. They can be given as 
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Here,  and  are the lateral shell deflection and the initial shell 
imperfection, respectively. 

( yxw , ) )( yxw ,0

K  is the bending stiffness while ( )yxF ,  is a potential 
function that is related to the in-plane stresses of the neutral plane. We have 
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Plane-stress state is assumed 
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while the strains can be expressed by 
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It should be noted that the Donnell shell equations describe the neutral plane of 

the shell ( ) while the strains in Equation (2.5) include a contribution from 
bending. 

0=z

 
The Solution of the Donnell Equations 
 
Since there is no analytical solution to the Donnell equations, some approximation 
must be found. First, Equation (2.1) is considered. A set of displacement or shape 
functions of the form 
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is chosen.  and  are defined on the bay between two stringers and 
two frames and must satisfy the boundary conditions at the shell edges, that is, either 
simply-supported or clamped boundary conditions. In general,  and  
may be any functions satisfying the boundary conditions. However, trigonometric 
functions are often preferred. 

( yxw , ( yxw ,0

( )xgm ( )ygn

 
It must be noted that the shape functions from Equation (2.6) are defined on the 

entire bay. Thus, from a numerical point of view, global shape functions (in the 
sense that they are valid on the entire structure) are chosen. It is therefore 
consequent to use the Rayleigh-Ritz method to solve the resulting equations. In 
contrast, in the finite element method, (numerically) local shape functions, which are 
only defined within an element, are used. 
 

By substituting Equation (2.6) in Equation (2.1), the potential function  
can be found. It is of the form 

( )yxF ,
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where  and  are shape functions and ( )xhm ( )yhn ( )mnmnmn BAf ,  is some operator 

that depends on the unknown coefficients  and . ,  and  are the mnA mnB xT yT xyT

19 



external loads. The second Donnell Equation (2.2) is not solved directly. Instead, the 
total energy of the system is found and the principle of minimum potential energy is 
used to find a solution. This is equivalent to solving Equation (2.2) directly but 
much more convenient and numerically efficient. We have 
 
 ( ) 0=−=Π TUδδ  (2.8)
 
where  and U T  are the internal energy of the structure and the potential of the 
external loads, respectively. Since we have already chosen appropriate lateral 
deflection functions, we can re-formulate the variational problem by using the 
Rayleigh-Ritz method and obtain 
 
 ( ) 0=

∂
−∂

mnA
TU  (2.9)

 
Equation (2.9) is of third order in unknown coefficients  and thus an 

appropriate numerical method must be used in order to solve it. The imperfection 
coefficients 

mnA

mnB  may generally be chosen arbitrarily and are therefore not unknown. 
 
In the following paragraphs, the internal Energy U  and the potential of external 

loads  will be derived for an unstiffened, cylindrically curved shell. A similar 
derivation for an unstiffened plate and more details can be found in [26] and [28]. 

T

 
The Internal Energy 
 
For a 3-dimensional continuum of volume V , we have 
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ji V

ijij∑∫=
,2
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Assuming pure in-plane stress state, and using technical notation, Equation (2.10) 
can be given as 
 
 ( ) dVU

V
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2
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where both the stresses and the strains may be divided into a bending part and 
contribution from membrane stretching. Substituting the stresses from Equation 
(2.3) and the strains from Equation (2.5), and using Hooke’s law (2.4), we obtain 
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The Potential of External Loads 
 
For a 3-dimensional solid of surface , we have S
 
 ∑∫=

i S
ii dSutT        for       zyxi ,,=  (2.13)

 
where jiji nt σ=  and ijσ  are prescribed external loads. Re-writing Equation (2.13) 
using Gauss integration rule, we obtain 
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where , ,  and  are the prescribed normal loads in x- and y-direction, the 
prescribed in-plane shear load and the prescribed lateral pressure, respectively. 
Using Equation (2.5) with Equation (2.14) and considering only non-constant terms, 
we obtain 
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The Riks Method 
 
A load parameter λ  is introduced. It is increased from 0 to 1 during the calculation. 
When starting with an unloaded structure, we have 
 
 ( ) )(s

ii TT ⋅= λλ  (2.16)
 
where  is the load at the end of the step. Since the Riks method is a curve-
tracing algorithm the load parameter enters the equations as an unknown. 

)(s
iT
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It is assumed that both the unknown coefficients  and the load parameter mnA λ  
depend on a pseudo-time η  and must be calculated for each load step. We define 
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Also, it is assumed that  and mnA λ  may be expanded in a Taylor series 
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that is aborted after the linear term. Geometrically, this means that the cubic 
equations (2.9) are approximated linearly. Differentiating Equation (2.9) with 
respect to η  we have 
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Defining 
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and solving Equation (2.19) at load step  for , we have )(i )(i

fgA
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has been introduced. Thus we have ( )NM ×  equations for ( )1+× NM  unknowns. It 
can be shown that the additional equation can be given as 
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from which  can be found to be )(iλ
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The sign of  depends on the state of the structure at the previous load step , 
that is, on a parameter 

)(iλ )1( −i
κ  that can be given as 
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Once  and  are known,  and  can be calculated using Equation 

(2.18). An alternative derivation and more details can be found in [29] and [30]. 
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fgA )(iλ )(i
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2.4 Local Buckling of Stiffened Panels 
 
Theoretical Background 
 
Consider the panel in Figure 2.3. As mentioned earlier, it is assumed that the panel is 
representative for a fuselage structure like the one depicted in Figure 2.1. Note the 
skin doublers beneath both the stringers and the frames. Please also note that the 
frames are much stronger than the stringers. It is assumed that there is a perfect 
connection between the stiffeners (stringers, frames, doublers) and the underlying 
skin. 
 

The skin is modelled as a Donnell type thin, weakly curved shell. For both the 
stringer and the frame webs additional degrees of freedom in terms of deflection 
functions are introduced. The skin doublers and both the stringer and the frame 
flanges are modelled as bending beams that additionally may carry out torsion. 

 
It must be noted that modelling parts of the structure as beams typically leads to 

overestimated stiffness. However, depending on the position of the neutral axis (and 
consequently, the value of the bending stiffness), both too stiff and too soft results 
have been computed. Improved parameterization still remains subject to future 
work. 

23 



h

dstd

dstt

x

wd

x

wt

x

fd

x

ft

h dspt

y

wt

y

ft

y

wd

y

fd

dspd

a5.0

a5.0

a

b5.0

b5.0

b

x

y

z

xT

xT

yT

yT

 

 

Figure 2.3: A typical stiffened structure. 

 
The structure may be loaded axially (in x-direction), laterally (in y-direction), by 

in-plane shear stresses or by internal pressure (in z-direction). Any combination of 
loading may be chosen where the loads are assumed to be constant along the 
structure’s edges. The loads are increased incrementally at each load step as 
described earlier. 

 
As it is assumed that both the stringers and the frames are rigidly connected to the 

skin, continuity in terms of a right angle between stiffeners and skin must be 
satisfied at all times. 

 
Also, longitudinal and transverse continuity must be ensured at all times, that is, 

the axial and transverse stretching of skin, stiffeners and doublers must be equal. 
 
Finally, the force equilibrium must be satisfied in both axial and transverse 

direction. The force equilibrium is ensured by requiring the integrated reaction force 
of skin and stiffeners to be equal to the applied external loads acting on the skin 
only. This way the load is distributed over the whole cross-section of the stiffened 
panel. 

 
Implementation 
 
iBuck was implemented in the C programming language using Visual C++. Standard 
clapack routines from the lapack (linear algebra package) package were used to 
carry out the eigenvalue analysis and for solving the equations at each load step. 
 

First, an eigenvalue analysis is carried out and some combination of the 
eigenshapes is chosen as imperfection. Then the equations are solved by minimizing 
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the elastic potential at each load step according to Equation (2.9). The equations are 
numerically solved using an arc-length method, the curve-tracing Riks-algorithm. 

 
A powerful visualization routine was also written. At each load step, ASCII files 

are generated. These files may be opened with the FE pre- and post-processor GID 
and the results can be visualized. 
 
Results 
 
In this section, results for three different geometries are presented. The geometric 
quantities can be taken from Table 2.1. For all computations, aluminium panels with 
a Young’s Modulus , a Poisson’s Ratio MPaY 64935= 34.0=ν  and a yield stress 

 were used. They were loaded axially by a compressive stress 
. Linear elastic material behaviour was assumed. All load-shortening 

curves are scaled by the yield stress. 

MPaS f 435=

MPaTx 1000=

 
 Panel 1 

 
Panel 2 Panel 3 

a  400 mm 600 mm 800 mm 
b  200 mm 
h  2.7 mm 
R  2000 mm 

x
wd  60 mm 
x
fd  20 mm 

x
wt =  x

ft 3.5 mm 

y
wd  160 mm 
y
fd  35 mm 

y
wt =  y

ft 2.5 mm 

dstd =  dspd 40 mm 

dstt =  dspt 2.3 mm 

 
Table 2.1: Geometric quantities. 

 
The FE analysis was carried out with ABAQUS 6.3.1. The structure was 

modelled using S4 shell elements with 20mm edge length. For all computations 
(ABAQUS and iBuck), the lowest eigenshape was chosen as imperfection. In 
ABAQUS, the equations were solved using the damped Newton method 
(*static,stabilize) with a damping parameter of 1.e-5. 
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Results for Panel 1 
 

 

Figure 2.4: Load-deflection curve for Panel 1. 

    ABAQUS 
   iBuck

stringer buckling 

skin buckling 

 
In Figure 2.4 it can be seen that the ABAQUS results (dotted) and the semi-

analytical iBuck results (solid line) correspond very well. However, iBuck only 
needed around 30 seconds to compute the complete load-displacement curve while it 
took ABAQUS (6080 elements) around 40 minutes, that is, iBuck finished 80 times 
faster. 

 
The corresponding deformed shape depicted in Figure 2.5 was generated by 

iBuck at maximum load. As mentioned earlier, the FE pre- and post-processor GID 
is used to visualize the results. This is why the continuous iBuck result is plotted like 
a discrete FE-solution. 

 

 

Figure 2.5: Deformed shape for Panel 1. 
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It can be seen that the stringers deflect laterally in a different mode than the skin. 

While the stringers show a 1-wave-pattern the skin exhibits a 3-wave pattern. 
Stringer buckling occurs at an axial load well above the yield stress. 

 
When stringer buckling occurs, the stiffness of the structure is reduced which 

results in a change in slope in the load-displacement curve (Figure 2.5). Thus 
stringer buckling must be avoided in airplane operation. However, since the 
stiffeners are relatively heavy, it can be seen that the stiffness reduction is not very 
dramatic. For softer stiffeners, a sharper drop in stiffness may be expected. 

 
Results for Panel 2 
 

 

Figure 2.6: Load-deflection curve for Panel 2. 

    ABAQUS 
   iBuck

stringer buckling 

skin buckling 

 
In Figure 2.6, the correspondence between ABAQUS and iBuck is very good. For 

Panel 2, the computational advantage is even higher when iBuck is used: iBuck 
finished 100 times faster than ABAQUS (8320 elements). This is due to the fact that 
the same iBuck-model as for Panel 1 could be used while the FE model for Panel 2 
required more elements than the FE model for panel 1. 
 

It can be also seen from Figure 2.6 that stringer buckling occurs at a higher load 
level than for Panel 1. In Figure 2.7, stringer buckling occurs in a 2-wave pattern 
while skin buckling occurs in a 4-wave pattern. 
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Figure 2.7: Deformed shape for Panel 2. 

 
Results for Panel 3 

 

  

Figure 2.8: Load-deflection curve for Panel 3. 

    ABAQUS 
   iBuck

skin buckling 

 
In Figure 2.8 it can be seen that also for Panel 3 the correspondence between 

ABAQUS (10560 elements) and iBuck is very good. Computational efficiency is 
120 times higher when iBuck is used. 

 
The onset of stringer buckling cannot be identified from the load-shortening 

curve. However, it can be seen that stringer buckling exhibits a 3-wave-pattern while 
skin buckling is at 5 waves. 
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Figure 2.9: Deformed shape for Panel 3. 

 
Comparing the results for Panel 1 – 3 it can be seen that Panel 2 is a good 

compromise between Panel 1 and Panel 3. Panel 1 is of high overall stiffness but is 
sensitive to stringer buckling. On the other end, Panel 3 is comparatively soft but 
exhibits only very weak stringer buckling. The dimensions for Panel 2 are very close 
to actual airplane dimensions with a typical bay length-to-width-ratio of 3. 
 
2.5 Concluding Remarks 
 
The semi-analytical tool iBuck which is able to describe the local post-buckling 
behaviour of a stiffened cylindrical panel is presented. 
 

The model is based on the Donnell type shell equations for thin, weakly curved 
shells that undergo large deflections. The stiffeners are perfectly bonded to the shell. 
For both the stringer and the frame webs additional degrees of freedom are included 
in the model. Thus the stiffeners are not “smeared” onto the skin.  
 

Strongly local effects such as crippling cannot be described by iBuck. Since such 
effects do affect the global stiffness of the panel, they must be accounted for, for 
example, by reducing the flange bending stiffness. 

  
For the load cases considered, good correspondence with non-linear FE-analyses 

was achieved. At the present time, iBuck is limited to local buckling and linear 
elastic material behaviour. In the future, both global buckling modes and elastic-
plastic material behaviour will be included in iBuck. 
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