
Motion Parameter Estimation of
Doppler-Ambiguous Moving Targets in SAR-GMTI

Martina Gabele
German Aerospace Center (DLR) – Wessling

Satellite SAR Systems Section
Muenchner Str. 20, 82234 Wessling, Germany

E-mail: Martina.Gabele@dlr.de

Ishuwa Sikaneta
Defence R&D Canada – Ottawa

Radar Systems Section
3701 Carling Ave., Ottawa, ON, Canada, K1A 0Z4

E-mail: ishuwa.sikaneta@drdc-rddc.gc.ca

Abstract— Classical SAR algorithms for focusing the signal
energy of stationary targets are wavenumber domain algorithm
and chirp scaling algorithm. In the paper these algorithms are
adapted to focusing of moving targets. Focusing of moving targets
appearing in various PRF bands is addressed as well as focusing
of moving targets distributed over two neighboring PRF bands.
Finally, it is shown that focusing moving targets in range and
azimuth not only improves SCR, but can also help in resolving
Doppler ambiguities in target motion parameter estimation.

I. I NTRODUCTION

For moving target motion parameter estimation with SAR
processing it is desirable to maximize the compressed mov-
ing target peak power. In the most basic SAR compression
algorithm, only the signal measurements in each single range
gate are summed. This algorithm suffers from the fact that as
the range to the target changes, either due to the geometry or
due to target motion, the target energy manifests in different
range gates. More sophisticated techniques such as the chirp
scaling, [1], [2], and the wavenumber domain processor, [3]–
[5], track and sum the target energy as it wanders through the
range cells, but these algorithms are designed to compensate
for the range cell migration of stationary targets.

Two algorithms developed specifically to SAR compress
moving targets include the keystone mapping technique of
[6] and the post processing technique of [7]. The keystone
mapping procedure corrects improper compression of the
target energy by estimating and correcting inaccurate Doppler
rates and higher order Doppler rate non-linearities. This is ac-
complished without prior knowledge about the moving target
in the range-frequency slow-time domain, and can be applied
even when the target has not been adequately sampled by the
PRF. The main drawback of this model-free approach is that
no estimates of the target state vector are provided. In the
post-processing technique of [7], the processed SAR image
is further processed to better compress the moving targets.
This approach is model based and can provide an estimate of
the relative velocityv2

rel = (1 − vx/vp)2 + (vy/vp)2, where
vp denotes the platform velocity,vx the target along-track
velocity, and vy the target across-track velocity. However,
it does not estimatevx, vy separately, and it has not been
extended to the case where the target has not been adequately
sampled by the PRF.

We aim to extend the wavenumber domain algorithm and
the extended chirp scaling algrithm so that the energy from
moving targets occupying arbitrary Doppler frequency inter-
vals is tracked through range bins and summed to form the
maximum possible peak response. Finally, it is shown how the
Doppler ambiguities that result from an inadequate PRF can
be resolved by use of the range walk information.

II. A DAPTION OF SAR ALGORITHMS TO GMTI

In this section the wavenumber domain algorithm and the
chirp scaling algorithm are adapted to focusing of moving
targets with velocitiesvx, vy, where it is assumed that the
whole moving target signal is Nyquist sampled.

A. Wavenumber domain algorithm for GMTI

The subsection modifies the wavecone, [3], [8] to accommo-
date constant velocity target motion in the along and across-
track directions. The approach starts with the exploding source
method of [3], [9]. Consider the range equationR(t) modified
to include a constant velocity target

R(t) =
√

(vpt− vxt)2 + (y + vyt)2, (1)

Thex coordinate of the receiver is given byx = vpt−x0, the
range position at slant range isy, and we can assume without
loss of generality thatx0 = 0 so thatt = x/vp. The range
equation can be presented as
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Now, in similar fashion to the development in [10], suppose
that there exists a space defined by
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The change of coordinates yields the following equation for
an exploding source

u2 + v2 =
c2

4
t2, (6)

Consider the 2D Fourier transform

Fx(~k) =
∫

f(~x)e−j~k†~xd~x, (7)

where the functionf(~x) describes the terrain in the~x coor-
dinate system. Let it be that in the~u coordinate system, the
same terrain is described by the functiong(~u). One then has
that

Fu(~k) =
∫

g(~u)e−j~k†~ud~u. (8)

With ~u = A~x, we have that d~u = |A|d~x = detAd~x; thus
Fu(~k) = |A|Fx(A†~k). We know from [3], [8] how to migrate
S(u, v = 0, t) to S(u, v, t = 0) using a Stolt interpolation
given by

Su(ku, kv, t = 0) =
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2
kv
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(9)
therefore,Sx(~k, t = 0) = |A|−1Su((A†)−1~k, t = 0). A short
computation shows that
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With Su(ku, v = 0, ω) = αSx(αku, y = 0, ω),
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where the frequenciesω at which to interpolate are:
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The wavenumberskx andky are vectors with length equal to
the number of azimuth samples forkx respectively the number
of range samples forky:

kx =
2πf

vp
, f =
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2
,
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2

]
, (14)
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2
,
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2

]
, (15)

wheref is Doppler frequency,fy is range frequency,PRF
is the pulse repetition frequency,vp is the platform velocity,c
the speed of light,fs the fast time (range) sampling frequency,
andfc the radar carrier frequency.

B. Extended chirp scaling algorithm for GMTI

A second order Taylor expansion of (1) evidences that the
range history of a moving target is equivalent to the quadratic
range history of a stationary target at shifted azimuth time
∆t = −yvy/v2

rel and minimum slant range shifted by∆y =
−v2

yy/(2v2
rel) with vrel =
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The moving target raw data signal is a non-centered cutout of
the quadratic range history with slightly modified parameters.
In the following, this knowledge is incorporated into the
extended chirp scaling algorithm [2].

First, the chirp scaling algorithm performs range scaling
in y-f domain in order to equalize the range cell migration
at each range to the range cell migration of a target with
velocitiesvx, vy at reference rangeyr:

H1(f, y) = exp
{
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The Doppler frequency vectorf is defined in (14), the moving
target Doppler frequency isft = −2vy/λ, and
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Furthermore,kr is the range chirp modulation rate, andλ
the carrier wavelength. Range compression and range cell
migration are performed infy-f domain. In order to focus
the target at the range position of broadside time the following
processing is required:

H2(f, fy) = exp
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The correction of the residual phase term due to the chirp and
range scaling operation becomes:
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In order to focus the target at its correct azimuth position a
convolution with the following azimuth compression function
is required:

h4(x, y) = exp
[
j
2πx2

λy

]
· exp

[
−j

4πxvy

λvrel

]
, (24)

wherex is again the azimuth position of the platform.

III. D OPPLER SUBSAMPLED TARGET SIGNALS

For extending the target velocity interval of interest to
signals that are azimuth subsampled we analyze fast moving
target signals with respect to range cell migration, azimuth
position, and along-track interferometric phase. In the follow-
ing, moving target signals with velocities that are not Nyquist
sampled, are called fast moving targets. Slow moving targets
we call target signals that are Nyquist sampled.

A. Range cell migration

If the target energy is in PRF bands other than the Nyquist
band, the signal is backfolded in Doppler frequency domain.
Consequently, the signal of a fast moving target is the same as
the signal of its corresponding slow moving target with respect
to the azimuth component. However, the signals differ in their
range component. The range cell migration of slow and fast
moving targets versus Doppler frequency as it appears in the
Nyquist band is sketched in figure 1. It is obvious, that the
range cell migration is Doppler unambiguous.
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Fig. 1. Range migrationR versus Doppler frequencyf for slow and fast
moving targets.

B. Along-track interferometric phase

In order to determine the along-track interferometric (ATI)
phase coregistration of the data is required. In the coreg-
istration procedure the data from two channels which were
recorded at the same sampling time, but from different along-
track positions, are interpolated such that the sampling posi-
tions of both channels are at the same positions, but at different
sampling times. The time shift corresponds to a multiplication
with a phase ramp in Doppler frequency domain. For a spatial
separationd of the two receivers the interferometric phase
rampφ(f, vy) is

φ(f, vy) =
πd

vrel
f +

2πd

λ

vy

va
. (25)

For coregistration the inverse clutter phase ramp−φ(f, 0)
has to be applied. If the moving target signal is backfolded
in Doppler frequency domain (kn 6= 0), the inverse clutter
interferometric phase ramp applies a phase correction to the
target signal that stems from a Doppler frequency which is
knPRF , kn = ±1,±2, ... higher respectively lower than the
actual frequency. The ATI phaseφ(vy) is:

φ(vy) =
2πd

λ

vy

va
+

πd

va
knPRF, (26)

wherekn ≤ 0 if vy > 0 and vice versa (e.g.k1 characterizes
the next higher PRF band, andk−1 the next lower PRF band).
The quantity of the phase jump∆φ = φ(kn) − φ(kn−1)
depends only on the system parameters, but not onvy. For
completely backfolded target signals (kn is the same for the
whole signal) the phase jump has to be taken into account
in order to determine which target velocitiesvy have to be
considered for a certain ATI phase. For partially backfolded
target signals (kn is different for different frequency intervals
of the signal) the phase jump has to be compensated in the
SAR compression filter, otherwise the signals do not sum
up coherently, the magnitude of the SAR impulse response
degrades and the ATI phase information is destroyed.

C. Azimuth position

The Doppler frequency historyf(t) of a moving target is

f(t) = −2v2
rel

λy
t− 2vy

λ
− knPRF. (27)

Since the azimuth position in a stationary world SAR filter
is given by the zero crossingf(t) = 0, the azimuth position
after SAR compressioñx0 is

x̃0 = − λy

2va

(
2vy

λ
+ knPRF

)
. (28)

This means not only the ATI phase, but also the azimuth
position is backfolded in case of Doppler backfolding. In
figure 2 on the left the azimuth position, on the right the ATI
phase versus across-track velocity is shown. In each case the
higher signal energy part is used in case of partial backfolding.

a a

Fig. 2. Left: Azimuth position versus across-track velocity for stationary
world matched filter, right: ATI phase as a function of across-track velocity.



D. Extension of SAR algorithms

If Doppler ambiguous target signals shall be focused,
the SAR processing has to be extended to properly range-
compress Doppler backfolded target signals, because range
cell migration is Doppler unambiguous. The adaption is
accomplished by choosing the Doppler frequency interval
correspondingly:

f =
[
−PRF

2
+ ft,

PRF

2
+ ft

]
, (29)

If the target energy is spread over two neighboring PRF bands
the Doppler frequency vector has to be shifted circularly such
that it fits the order of the moving target Doppler frequency
samples after backfolding.

IV. M OTION PARAMETER ESTIMATION OFDOPPLER

AMBIGUOUS MOVING TARGET SIGNALS

A. Along-track velocity estimation

The moving target along-track velocityvx impacts on the
azimuth focusing of the target signal. Hence, assuming con-
stantvx, vy the along-track velocity can be concluded from
the azimuth focusing of the target signal.

B. Across-track velocity estimation

Across-track velocity estimation by use of the ATI phase
is Doppler ambiguous in intervals of∆vy = PRFλ/2. Since
range cell migration is Doppler unambiguous, the magnitude
of the target impulse response focusing in azimuth and range
to the potential target velocities with the same ATI phase can
help in resolving these ambiguities.

C. Azimuth position estimation

Comparing the azimuth displacement jump concluded from
the ATI phase (26) and the actual azimuth position jump (28)
of Doppler backfolded signals yields the same result. This
means that the position estimation is not Doppler ambiguous
and is estimated correctly as long as there are only Doppler
ambiguities, but no angle ambiguities. However, a moving
target distributed over two neighboring PRF bands may look
like two moving targets with different across-track velocities
shifted away from the same azimuth position. The two signals
can be identified as potentially two parts of the same target
due to a characteristic separation in azimuth position and ATI
phase.

A strategy for target motion parameter estimation is the fol-
lowing: First, the azimuth compression is optimized by varying
vrel without performing range cell migration correction. From
the in azimuth direction well-focused signal the possible target
across-track velocitiesvy can be concluded e.g. from the ATI
phase, andvx can be concluded fromvrel. Feedingvx andvy

into a SAR processor that adapts to moving target velocities,
focuses the target at the correct azimuth position. Next, the
ambiguities invy which may result from Doppler backfolding
of the target signal, can be resolved by feedingvx andvy into a
processor, which performs SAR compression with range cell
migration correction adapted tovx, vy (II-A, II-B). The vy

which yields the highest SAR impulse response due to proper
range cell migration correction, is chosen to be the rightvy.

V. SIMULATIONS

In figure 3 the focusing of two fast moving, partially
backfolded target signals by adaption of the wavenumber
domain respectively extended chirp scaling algorithm to the
target motion parameters are shown. The system parameters
chosen are from the Canadian experimental airborne two-
channel radar Convair580. With both algorithms the target
impulse response appears at the correct azimuth and range
position. The lessened focusing of the wavenumber domain
algorithm in case of the very fast moving target is probably
due to the interpolation step required in this processor.
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Fig. 3. Top: focusing partially backfolded fast moving target signal (vy =
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(vy = 27m/s), left: wavenumber domain algorithm, right: extended chirp
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In figure 4 the difference in magnitude of the impulse
response for using the chirp scaling processor adapted to
various target velocities which yield the same ATI phase is
shown. The difference in magnitude is a factor of3 to 4 for a
separation of one PRF band from the true target velocity, and
a factor of about8 for a separation of two PRF bands.

VI. EXPERIMENTAL DATA RESULTS

In this section the strategy for Doppler ambiguous tar-
get motion parameter estimation described in section IV is
demonstrated with a real data example from the Canadian
experimental airborne radar system Convair580. The ATI
phase of the target raw data signal is shown in figure 5 on the
left. It can be seen, that the ATI phase is different for the part
of the signal in the upper right corner of the image. This means
that this is a partially backfolded target signal. Varyingvrel

in order to optimize azimuth focusing yieldsvrel = 100m/s.
(This is a realistic value because for real data the assumption
of constant target velocities is often not valid.) The ATI phase
indicatesvy = 24.9m/s, vy = 6.9m/s, vy = −11.1m/s or
vy = −29.1m/s.

Next, the data are fed to a SAR processor which performs
range cell migration correction adapted to moving target
velocities. In figure 6 the DPCA images after SAR focusing
the target signal with the chirp scaling algorithm using two
possible target across-track velocities are shown. As could
be seen already in the simulation results in figure 4 there is
about a factor of3 to 4 between the magnitude of impulse
responses on a target velocity one PRF band apart, and in
this case a factor of about6 for target velocities two PRF
bands apart from the true target velocityvy. This indicates
that vy = −11.1m/s is the true target across-track velocity.
The ATI polar plot of the target signal focused with the chirp
scaling algorithm adapted to the target velocities and phase
jump corrected is shown in figure 5 on the right. The ATI
phase information is well preserved.
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ATI polar plot of the processed image (chirp scaling algorithm adapted to the
target signal(vrel = 100m/s, vy = −11.1m/s and phase jump correction)

VII. SUMMARY

In this paper we derived the wavenumber domain and the
extended chirp scaling algorithm for SAR focusing moving
target signals with constant velocitiesvx, vy. The processing
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Fig. 6. Target impulse response on focusing with the chirp scaling algorithm
and various matched filter velocitiesv′y .

is then extended to Doppler subsampled target signals. Finally,
it is shown, that the range cell migration information, which
is Doppler unambiguous, can be used for resolving Doppler
ambiguities in target motion parameter estimation.
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