

Tailored Fibre Placement Technology – Optimisation and computation of CFRP structures

L. Aschenbrenner*, H. Temmen**, R. Degenhardt*

*DLR, Institute of Composite Structures and Adaptive Systems

A

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

**Airbus Deutschland

Outline

- ✓ Projects on TFP
- Optimisation 7
- ✓ Application to a structural component
- ✓ Selected results of recent research
- Summary and Conclusions 7

Tailored Fibre Placement Motivation

- ➤ In common composite structures fibre orientations are layer wise constant
- ➤ Anisotropic material properties are not fully exploited
- example of nature (bionic approach)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Tailored Fibre Placement Technology

- → Tailored Fibre Placement (TFP) is a textile process for production of fibre reinforced structures
- Rovings are stitched on e.g. fabric using highly efficient textile machines 7
- Rovings may be placed in almost any orientation. Calculated optimum fibre quantities and orientations can be realised

[www.hightex-dresden.de]

A CONTRACTOR SECTION

Tailored Fibre Placement Technology

- Tailored Fibre Placement (TFP) is a textile process for production of fibre reinforced structures
- ✓ Rovings are stitched on e.g. fabric using highly efficient textile machines
- Rovings may be placed in almost any orientation. Calculated optimum fibre quantities and orientations can be realized

[www.hightex-dresden.de]

Overview projects on TFP

Overview projects on TFP

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

TFP Optimization Tool TACO

- ✓ Fibre orientations are changed within a user-defined layer of a FE model
- ✓ Fibres are aligned as closely as possible to the direction of the principal stresses
- TACO is embedded in MSC PATRAN / NASTRAN environment for industrial applicability
 TACO flow chart

R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

E. A CONTRACTOR SECTION

Optimisation of TFP-structure

Application of TACO

- 1. Initial stress computation
- 2. Optimisation of roving orientation Iteration
- 3. Failure analysis
- 4. Output of roving orientations

Decrease of inter fibre fracture

initial shear stress

fibre fracture inter fibre fracture

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

umfahrt e.V. emeinschaft

Application on the HTP connection beam

TACO optimisation of a horizontal tail plane (HTP) connection beam as part of the Airbus A340 fuselage structure

- For the optimisation, only the orientations of the rovings and their lay-up were considered
- ✓ For simplification, TACO was applied to optimize the 0°-layers only. The 90°-layers were omitted. The ±45°-layers were left unchanged.

Load cases

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Rovings of the Optimized HTP Connection Beam

Optimised for the combined load cases *bending* and *tension* (not recommended):

Optimised for the load case *tension* (manufactured for the test structure):

Results – Expected Maximum Loads

Load case			Load case 2		Load		
		Load case 1			case 3		
		Tension (Eye 1)	Tension (Eye 3)	Compression (Eye 1)	Bending (Eye 2)		
Simulation	Failure mode	FF	FF	IFF	FF		
	Layer	(±45°-layer)	(±45°-layer)	(0°-layer)	(0°-layer)		
	Optimized HTP connection beam	Maximum load at first ply failure					
	(best known TFP material strengths)	2.09P	1.88P	2.65P	1.03P		
Experi -ment	Conventional HTP connection beam	Maximum test load					
		0.94P	0.85P	Р	0.81P		
Expected improvement in %		122.3	121.2	165	27.1		

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Results – Test results

Load case			Load case 2		Load case 3		
		Load case 1					
		Tension (Eye 1)	Tension (Eye 3)	Compression (Eye 1)	Bending (Eye 2)		
Simu- lation	Optimized HTP connection beam (realized TFP material properties)	Maximum load at first ply failure					
		1.60P	1.41P	1.78P	0.75P		
Experi- ment		Optimized HTP connection	Maximum test load				
	beam	1.51P	1.36P	1.79P	0.75P		
	Conventional HTP connection beam	0.94P	0.85P	Р	0.81P		
Improvement in %		61	60	79	-8		

significant improvement!

Publication:

Rolfes R., Tessmer J., Degenhardt R., Temmen H., Bürmann P., Juhasz J., "New Design Tools for Lightweight Aerospace Structures", Proceedings of the Seventh International Conference on

Computational Structures Technology, Lisbon, Portugal, 7-9 September, 2004

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Overview projects on TFP

Objectives

- Improved estimation of the load carrying capacity of composite structures made in TFP
- → TFP design rules
- ✓ Investigation of different optimization strategies
- Improved load introduction (e.g. non-linear computation)
- Experimental investigations for the validation of the simulations

Investigated structures

Optimisation strategies

Optimisation according to the signum of principle stresses

Optimisation according to the absolute value of principle stresses

Load introduction

Results:

- Strategy for the modelling of the contact problem 7
- Improved understanding of the load introduction in the contact region 7
- Basis for follow-up investigations 7

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Investigation of structure B under tension

in der Helmholtz-Gemeinschaft

- The load carrying capacity could be improved by 25%
- Roving distance and therefore structure thickness not constant

Material efforts

Producible roving distributions

Two Concepts of roving distributions are realised for experimental investigation of structure B

Structure B variable fibre volume fraction (non constant thickness)

Structure B constant fibre volume fraction

Structure A

Producible roving distributions

Two Concepts of roving distributions are realised for experimental investigation of structure B

Structure B variable fibre volume fraction (non constant thickness)

Structure B constant fibre volume fraction

Structure A

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Analysis of manufactured roving distributions

Feedback of manufactured roving distributions to FE-models (secondary models)

- 'Feedback'-models show locally raised 7 material effort
- Quantification and evaluation of the effects of 7 local degradation is subject of future work

Maximum effort over all layers

Initial state

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Summary and Conclusions

- Introduction to TFP Technology 7
- Projects on TFP 7 EMIR, KRAFT
- ➤ Computation, optimisation TFP optimisation tool TACO
- Application of TACO on a structural Component HTP connection beam
- Selected results of recent research, basic investigations
 - ✓ Optimisation strategies
 - Load introduction, optimisation considering contact
 - Feedback of manufactured roving distributions
- TFP promises significant weight reduction for structures which are subjected to a 7 limited number of load cases

