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Abstract 

The new library Modelica_Fluid is a free Modelica 
package providing components describing zero- and 
one-dimensional thermo-fluid components, which 
can be connected in arbitrary networks. The purpose 
of the library is to provide standard interfaces for 
thermo-fluid components, demonstrate how to build 
such models, and include a growing set of models of 
common use. The component equations are 
decoupled from the equations to compute the fluid 
properties, which are provided by the 
Modelica.Media library through standard interfaces; 
incompressible and compressible fluids, single or 
multiple substances, one- and multiple-phase fluids 
can be used, where appropriate. Newly introduced 
features of the Modelica.Media library are briefly 
reviewed. After extensive testing by interested users, 
the library will be included in the Modelica standard 
library as Modelica.Fluid. 

1 Introduction 

The Modelica_Fluid library provides basic interfaces 
and components to model thermo-hydraulic systems 
with zero-dimensional and one-dimensional compo-
nents. It is not the intention that this library covers 
all possible application cases, because the modelling 
assumptions can vary widely. Instead, the goal of the 
Modelica_Fluid library is to demonstrate how to 
implement components of thermo-hydraulic proc-
esses in Modelica, provide standard connectors 
which fit for a wide range of applications, and pro-
vide a reasonable set of components, which can be 
used as they are, or can be modified to suit specific 
user needs. For special applications it is possible to 
implement libraries with simpler media and compo-
nents, e.g., the Modelica.Thermal.FluidHeatFlow 

library [4]. Other domains, such as gas dynamics, 
would require a more sophisticated setup. 
The basic concepts of the Modelica_Fluid library, in 
particular the fluid connectors and the use of re-
placeable medium models, were laid out in [2]. Since 
then, the library design has been refined and tested 
by several people belonging to the Modelica Asso-
ciation. The structure of the library is now stable – 
contributions are welcome to increase the number of 
provided components. The goal is that this library 
becomes part of the Modelica standard library, after 
it has been tested by end users on a significant num-
ber of different applications and is improved based 
on the feedback. 
A screen shot of the library is 
shown on the right side. The 
Examples package contains 
models that demonstrate vari-
ous features of the library, as 
well as some system models, 
such as a drum boiler [6] and 
an experimental batch plant [5] 
model. 
A typical (small) example is 
shown in Figure 1 below: It 
shows a system where water is 
pumped from a source by 4 
pumps in parallel (fitted with 
check valves), through a pipe 
whose outlet is 50 m higher 
than the source, into a reservoir 
placed on an 18-m high tower. The users are repre-
sented by an equivalent valve, connected to the res-
ervoir. The water controller is a simple on-off con-
troller, acting on the gauge pressure measured at the 
base of the tower; the output of the controller is the 
rotational speed of the pumps. A typical simulation 
is over 2000 s. The pump turns on and off to keep 
the reservoir level around 2.5 meters, which means 
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20.5 meters higher than the base of the tower, corre-
sponding to a gauge pressure of 2 bar. 
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Figure 1: Pumping system for drinking water 

2 General design principles 

Compared to other engineering modeling fields, such 
as electrical systems or multibody systems, the task 
of providing a “standard” library for thermo-fluid 
systems is much more difficult, due to the much 
greater variety of modeling assumptions that can be 
made, depending on the specific application needs. 
The Modelica_Fluid library tries to strike a balance, 
providing a sufficiently general framework, which 
covers a wide range of applications without adding 
too much overhead to the simplest cases. 
The scope of the library includes zero- and one-
dimensional models of thermo-hydraulic compo-
nents, i.e. objects where the flow of one or more flu-
ids must be described, and energy transfer and stor-
age phenomena play a significant role. 
The thermo-fluid connectors are designed in order to 
ensure that mass and energy balances are fulfilled at 
the connection point, even in presence of flow direc-
tion reversal. On the other hand, the momentum bal-
ance is fulfilled exactly only when two aligned ob-
jects with equal flange diameters are connected; in 
other cases, the momentum balance at the connecting 
points is approximated. The exact treatment of mo-
mentum balances at the interfaces in those cases 
would add a significant complexity and overhead to 
the library, which is unnecessary in most technical 
thermodynamics applications, where gas dynamics 
phenomena (wave propagation, high Mach numbers) 
do not play a significant role. Gas dynamics systems 
are then outside the scope of the Modelica_Fluid 
library. 
The library models can describe two-phase flows, as 
long as the flow is homogeneous, i.e., both phases 
have the same velocity.  

The medium models, i.e., the equations to compute 
all the fluid properties from the independent thermo-
dynamic state variables, are included in the compo-
nent models as replaceable instances of objects from 
the Modelica.Media standard library. This allows to 
use the same component model with different fluids 
(or with different models of the same fluid) by just 
replacing the medium model. 

3 Fluid Connectors 

In this section the design of the fluid connectors is 
explained. A major design goal was that components 
can be arbitrarily connected and that the important 
balance equations are automatically fulfilled when 
two or more components are connected together at 
one point as shown in the next figure:  

pipe1 pipe2

pipe3

 
Figure 2: Connected pipes fulfilling the ideal mixing 

condition at the connection point. 
As will be explained below, in such a case the bal-
ance equations define ideal mixing, i.e., the connec-
tion point has the mixing temperature if the fluids 
from the three components would be ideally mixed 
in an infinitely small time period. If more realistic 
modeling is desired that takes into account dissipa-
tion and other mixing losses, an explicit model has to 
be used in the connection point, e.g., from the Mode-
lica_Fluid.Junctions library. An example is given in 
the next figure: 

pipe1

splitter

pipe2

pipe3

 
Figure 3: Connected pipes with a splitter junction 

where the losses are described in the junction model. 
For a single substance medium, the connector defini-
tion in Modelica_Fluid.Interfaces.FluidPort reduces 
to  
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connector FluidPort  
  replaceable package Medium =  
   Modelica.Media.Interfaces.PartialMedium; 

  Medium.AbsolutePressure      p; 
  flow Medium.MasFlowRate      m_flow; 

  Medium.SpecificEnthalpy      h; 
  flow Medium.EnthalpyFlowRate H_flow 
end FluidPort; 

The first statement defines the medium flowing 
through the connector. In package Medium, medium 
specific types such as "Medium.AbsolutePressure" 
are defined that contain medium specific values for 
the min, max and nominal attributes. Furthermore, 
Medium.MassFlowRate is defined as:  
   type MassFlowRate =  
      Modelica.SIunits.MassFlowRate( 
         quantity="MassFlowRate." +  
                   mediumName, ...); 

A Modelica translator will check that the quantity 
and unit attributes of connected interfaces are identi-
cal. Therefore, an error occurs, if connected Fluid-
Ports do not have a medium with the same medium 
name. 
The variables in the connector have the following 
meaning: p is the absolute pressure at the connection 
point, m_flow is the mass flow rate from the connec-
tion point in to the component, h is the specific mix-
ing enthalpy in the connection point and H_flow is 
the enthalpy flow rate from the connection point into 
the component. 

3.1 Balance Equations at Connection Points 

Assume that 3 FluidPorts port1, port2, port3, are 
connected together: Since, m_flow and H_flow are 
flow variables, a Modelica translator will generate 
the following connection equations: 
   port1.p = port2.p = port3.p 
   port1.h = port2.h = port3.h 
   0 = port1.m_flow + port2.m_flow + 
       port3.m_flow 
   0 = port1.H_flow + port2.H_flow + 
       port3.H_flow 

These are exactly the equations that state ideal mix-
ing for an infinitesimal small control volume in the 
connection point: The intensive quantities at the 
ports are identical and the mass balance as well as 
the energy balance is fulfilled (note that no mass or 
energy is stored in the infinitesimal volume). The 
momentum balance is not taken into account, and 
therefore a connection without an explicit junction 
model is only valid, if the momentum balance has 
not much influence or is fulfilled since two ports 
with the same diameter are connected together. 

3.2 Property Propagation over Ports 

A connector should have only the minimal number 
of variables to describe the interface, otherwise there 
will be connection restrictions in certain cases. 
Therefore, in the connector no redundant variables 
are present, e.g., the temperature T is not present be-
cause it can be computed from the connector vari-
ables pressure p and specific enthalpy h. 
This approach has one drawback: If two components 
are connected together, then the medium variables on 
both sides of the connector are identical. However, 
due to the connector, only the two equations  
   port1.p = port2.p;  port1.h = port2.h; 

are present. Assume, that p, T are the independent 
medium variables and that the medium properties are 
computed at one side of the connections. This means, 
the following equations are basically present:  
   port1.h = h(port1.p,port1.T); 
   port2.h = h(port2.p,port2.T); 
   port1.p = port2.p; 
   port1.h = port2.h; 

These equations can be solved in the following way:  
   port1.h := h(port1.p,port1.T); 
   port2.p := port1.p; 
   port2.h := port1.h; 
   0 = port2.h - h(port2.p,port2.T);  

The last equation states that port2.T is computed by 
solving a non-linear system of equations. If port1.h 
and port2.h are provided as Modelica functions, a 
Modelica translator, such as Dymola [1], can replace 
this non-linear system of equations by the equation:  
   port2.T = port1.T; 

because after alias substitution there are two function 
calls  
   port1.h := h(port1.p,port1.T); 
   port1.h := h(port1.p,port2.T); 

Since the left hand sides of the function calls and the 
first arguments are the same, the second arguments 
must also be identical, i.e., port2.T = port1.T. This 
type of analysis seems to be only possible, if the spe-
cific enthalpy is defined as a function of the inde-
pendent medium variables. Due to this requirement, 
all media in the Modelica.Media library define the 
specific enthalpy always as a function and therefore 
by appropriate tool support no unnecessary non-
linear system of equation appears and in the gener-
ated code, propagation of medium properties over a 
connector does not lead to an overhead. 

3.3 Upstream Discretization 

When implementing a fluid component, the diffi-
culty arises that the value of intensive quantities 
(such as p, T, ρ) shall be accessed from the upstream 
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volume. For example, if the fluid flows from volume 
A to volume B, then the intensive quantities of vol-
ume B have negligible influence on the fluid be-
tween the two volumes. On the other hand, if the 
flow direction is reversed, the intensive quantities of 
volume A have negligible influence on the fluid be-
tween the two volumes. Such a situation is handled 
with the following code fragment:  
  import IF = Modelica_Fluid.Interfaces; 
  replaceable package Medium =   
   Modelica.Media.Interfaces.PartialMedium; 
  IF.FluidPort_a port1(redeclare package  
                          Medium = Medium); 
  IF.FluidPort_b port2(redeclare package 
                          Medium = Medium); 
equation  
  // Handle reverse and zero flow 
  port1.H_flow = semiLinear(port1.m_flow, 
                         port1.h, port2.h); 
 
  // Energy and mass balance; here: 
  port1.H_flow + port2.H_flow = 0; 
  port1.m_flow + port2.m_flow = 0; 
    ... 

The enthalpy flow rate in port1 is in principle com-
puted with an if clause:  
port1.H_flow = port1.m_flow * 
                 (if port1.m_flow > 0 then  
                     port1.h  
                  else  
                     port2.h); 

However, instead of using this if-clause, the corre-
sponding built-in Modelica operator semiLinear() is 
actually used: 
port1.H_flow = semiLinear(port1.m_flow, 
                         port1.h, port2.h); 

The main reason is that this operator will allow a 
Modelica translator certain symbolic transformations 
that lead to a more robust numerical computation 
(see explanation in the Modelica Specification 2.2). 
If the above component is connected between two 
port volumes (Modelica_Fluid.Pipes.BaseClass-
es.PortVolume), i.e., the independent medium vari-
ables in port1 and port2 are states, then port1.h and 
port2.h are either states (i.e., known quantities in the 
model) or are computed from states at each integra-
tion time step. In such a situation, the above if-clause 
represented by the "semiLinear" operator is uncriti-
cal, because it depends only on known variables and 
can be directly computed.  
If instead, say, pressure loss components are con-
nected, then all port variables are unknown and sys-
tems of equations occur. For example, three ports, 
A.port, B.port, C.port, are connected together. This 
results in the following equations: 

Equations due to   
connect(A.port,B.port), connect(A.port,C.port): 
   A.port.p = B.port.p = C.port.p 
   A.port.h = B.port.h = C.port.h 
   0 = A.port.m_flow + B.port.m_flow + 
       C.port.m_flow 
   0 = A.port.H_flow + B.port.H_flow + 
       C.port.H_flow 

Equations inside components A,B,C: 
A.port.H_flow = A.port.m_flow*( 
         if A.port.m_flow > 0 then A.port.h 
                              else A.h; 
B.port.H_flow = B.port.m_flow*( 
         if B.port.m_flow > 0 then B.port.h 
                              else B.h; 
C.port.H_flow = C.port.m_flow*( 
         if C.port.m_flow > 0 then C.port.h 
                              else C.h; 

where A.h, B.h, C.h, is the specific enthalpy inside 
the respective component. All equations together 
form a linear system of equations to compute the 
mixing enthalpy A.port.h = B.port.h = C.port.h 
in the connection point. It has the solution [2]: 
A.port.h = -( (if A.port.m_flow > 0 then 0 
               else A.port.m_flow*A.h)+ 
              (if B.port.m_flow > 0 then 0  
               else B.port.m_flow*B.h)+ 
              (if C.port.m_flow > 0 then 0 
               else C.port.m_flow*C.h) ) 
          / ( (if A.port.m_flow > 0 then 
                     A.port.m_flow else 0)+ 
              (if B.port.m_flow > 0 then  
                     B.port.m_flow else 0)+  
             (if C.port.m_flow > 0 then  
                    C.port.m_flow else 0) ) 

Therefore, independently of the flow directions in 
the 3 ports, the mixing enthalpy is always uniquely 
computed, provided at least one mass flow rate does 
not vanish (see [2] for details how to handle the case 
if all mass flow rates vanish). From the mixing en-
thalpy and the port pressure, all other mixing quanti-
ties can be computed, such as mixing temperature. 
If two ports A and B are connected together, the re-
sulting system of equations has a solution that is 
unique also for zero mass flow rates:  
  A.port.h = if A.port.m_flow > 0 then B.h 
                                  else A.h 
  B.port.h = A.port.h 

In some situations, the user can guarantee that the 
fluid flows only in one direction. In the Mode-
lica_Fluid library this can be defined in the Ad-
vanced menu of components by parameter flowDi-
rection. Based on this parameter setting, correspond-
ing “min” and “max” attributes are defined for the 
mass flow rate in a connector, such as: 
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   FluidPort_a port_a(m_flow(min = if  
                allowFlowReversal then  
           –Modelica.Constants.inf else 0) 

When port_a.m_flow is referenced in a semiLinear() 
operator, the tool can deduce that only one branch of 
the if-clause can appear and can utilize only this 
branch for the further symbolic processing. As a re-
sult, if-clauses that define the reversing flow are re-
moved. 

4 Medium models 

Modelica_Fluid uses the free li-
brary Modelica.Media that was 
developed to provide a standard-
ized interface to media models 
and a large number of ready-to-
use media models based on that 
interface. The basic concept of 
Modelica.Media is described in 
[2]. It was included in the Mode-

lica Standard Library in version 2.2. The library has 
been continuously improved to fit the requirements 
of Modelica_Fluid. The picture on the left shows the 
structure of Modelica.Media. Modelica.Media allows 
for a decoupling of the formulation of the balance 
equations within a Modelica_Fluid component 
model and the definition of the medium. Different 
interfaces are provided in Media.Interfaces that are 
used as base classes for the implementation of differ-
ent medium models of different nature, e.g., ideal 
gases, real gases, two-phase mediums. For every 
medium a record called ThermodynamicState is im-
plemented that contains the minimum set of vari-
ables required to describe the state of the medium. 
The thermodynamic state record for a pure compo-
nent ideal gas is 

record ThermodynamicState 
SI.AbsolutePressure p; 
SI.Temperature      T; 

end ThermodynamicState; 

The thermodynamic state record can be used to com-
pute all other fluid properties except for the satura-
tion properties which will be explained later. The 
functions to compute additional fluid properties are 
all contained within package Media.Interfaces. A 
function without an underscore in its name assumes 
the thermodynamic state record as an input. The 
function specificEnthalpy() for example will 
compute the specific enthalpy from the thermody-
namic state. 
The following code fragment demonstrates how the 
thermodynamic state record could be used in a sim-

ple component model to compute all required fluid 
properties: 
replaceable package Medium =  
  Modelica.Medium.Interfaces.PartialMedium; 
Medium.ThermodynamicState state; 
Medium.SpecificEnthalpy h; 
   ... 
state = Medium.setState_pT(1e5, 273.15); 
h = Medium.specificEnthalpy(state); 

The function setState_pT() will return the state for 
the given input variables pressure (p) and tempera-
ture (T) independently from the actual entries in the 
thermodynamic state record. For example, if the me-
dium state is p and h and setState_pT(..) is called, 
for most media a non-linear equation in one un-
known will be solved to compute h (this computation 
is performed reliably and efficiently). The second 
part of the function name following the underscore 
indicates the required input variables which is the 
standard for all function names within Mode-
lica.Media. The more general function to compute 
the state would be setState_pTX() which also re-
quires the nX mass fractions X[nX] for a multiple 
substance medium as input. Using the thermody-
namic state record in models is a more function-
based approach to medium modeling and is used in 
static components, e.g., pressure loss models or the 
heat transfer to the wall of a pipe. 
Modelica.Media also offers an object-oriented ap-
proach that uses the model BaseProperties defined 
for each medium interface. This approach is more 
suitable for dynamic component models, e.g., a vol-
ume or a tank, than the function-based approach. The 
provided base property model can be extended by the 
user to best meet the specific requirements. The pur-
pose of using the thermodynamic state model in the 
function based and in the object oriented approach is 
to be able to write models that are independent of the 
input variables to the fluid property model. The state 
selection mechanism described in [2] makes it possi-
ble to obtain numerically efficient models for differ-
ent fluids with the same component models. The ba-
sic idea is sketched at hand of the following imple-
mentation of a port volume: 
  replaceable package Medium =   
   Modelica.Media.Interfaces.PartialMedium; 
  Modelica_Fluid.Interfaces.FluidPort_a 
   port(redeclare package Medium = Medium); 
  Medium.BaseProperties medium ( 
            preferredMediumStates = true); 
equation  
  medium.p = port.p; 
  medium.h = port.h; 
         M = V*medium.d; 
         U = M*medium.u; 
    der(M) = port.m_flow; // mass balance 
    der(U) = port.H_flow; // energy bal. 
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In a port volume it is desired that the independent 
medium variables are used as states (e.g., p,T or p,h 
depending on the medium). The BaseProperties in-
stance medium contains the basic medium equations. 
If parameter preferredMediumStates is set to true, 
then attribute StateSelect.prefer is set to the inde-
pendent medium variables and therefore the tool will 
use these variables as states for the mass and energy 
balance, if this is possible. This means, that the port 
volume equations can be implemented without 
knowledge about the independent medium variables. 
Modelica.Media requires the implementation of 
medium models in Modelica. This approach allows 
the solver to use as much analytical information 
about the medium models as possible when manipu-
lating the system of equations. However, it is often 
also very desirable to use existing fluid property li-
braries written in C or in FORTRAN. A new inter-
face to an external medium library has been devel-
oped for Modelica.Media that supports external 
medium libraries. This new interface is currently 
included in the developer version of Mode-

lica.Media and will be tested thoroughly before 
including it in the Modelica Standard Library. 

5 Initialization 

Every fluid component with states has a menu “Ini-
tialization”. A screen shot of this menu of model 
Modelica_Fluid.Volumes.MixingVolume is shown 
in the next figure: 

 
Parameter initType defines the type of the initializa-
tion and has the following options: 
• initType == InitialValues:  

Initial values of p,X and of T or h are defined. 
• initType == SteadyState:  

The derivatives of the states are set to zero dur-
ing initialization. Since usually non-linear sys-
tems of equations occur, guess values for the 
states are defined for p, X and for T or h. 

• initType == SteadyStateHydraulic:  
The pressure derivatives are set to zero during 
initialization, but the thermal states (T or h) are 
initialized with a start value. Therefore, a guess 

value for p and initial values for X and for T or h 
are defined.  

Depending on the selected option, a value such as 
“p_start” is interpreted from the component as either 
being an initial value (i.e. introducing an initial 
equation p = p_start) or a guess value (i.e. setting the 
start value of p to p_start with fixed = false).  
For every medium either T or h can be defined as 
start value. Assume that T_start is selected as value 
to be provided (either initial or guess value). De-
pending on the situation, a tool might use h as itera-
tion variable for a non-linear system of equations, 
e.g., because h is the independent medium variable. 
Then, the setting of T_start would have no effect. 
For this reason, modifiers are defined in the initiali-
zation menu, e.g. for h_start: 
parameter Medium.SpecificEnthalpy h_start= 
   if use_T_start then  
      Medium.specificEnthalpy_pTX( 
                p_start, T_start, X_start) 
   else Medium.h_default; 

If use_T_start is true, the menu for h_start is dis-
abled, i.e., the user cannot input a value and there-
fore function specificEnthalpy_pTX(..) is called to 
compute the start value of the specific enthalpy 
based on p_start and T_start. If use_T_start = false, 
the user can provide a modifier with a new value that 
overwrites the if-clause in the modifier. Otherwise 
the default value of h for this medium is used as ini-
tial value. 
To summarize, the medium is always initialized with 
a consistent set of variables p, T, h, X where either T 
or h is computed from the other 3 variables with the 
corresponding medium function. 

6 Regularizing characteristics 

Pressure drop equations and other fluid characteris-
tics are usually computed by semi-empirical equa-
tions. Unfortunately, the developers of semi-
empirical equations nearly never take into account 
that the equation might be used in a simulation pro-
gram. As a consequence, these semi-empirical equa-
tions can nearly never be used blindly but must be 
slightly modified or adapted in order that obvious 
simulation problems are avoided. For example, tur-
bulent flow in a pipe might be described by the fol-
lowing type of equation:  
    y = if x >= 0 then  sqrt(k1*x) 
                  else -sqrt(k2*abs(x)); 

A plot of this characteristic is shown in the next fig-
ure:  
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The difficulty with this function is that the derivative 
at x=0 is infinity. The actual physical characteris-
tic doesn't show this singularity. E.g., for pipe 
flow, the flow becomes laminar for small velocities 
and therefore around zero the sqrt() function is re-
placed by a linear function. Since the laminar region 
is usually of not much practical interest, the above 
approximation is used.  
The direct implementation above does not work in 
Modelica, because an event is generated when x < 0 
changes sign. In order to detect this event, event it-
eration takes place. During the event iteration, the 
active if-branch is not changed. For example, assume 
that x is positive (= "else" branch) and shall become 
negative. During the event iteration x is slightly 
negative and the else branch, i.e., sqrt(x), is evalu-
ated. Since this result in an imaginary number, an 
error occurs. It would be possible to fix this, by using 
the noEvent() operator to explicitly switch off an 
event:  
y = noEvent( if x<0 then  sqrt(k1*x) 
                    else -sqrt(k2*abs(x))); 
Still, it is highly likely that good integrators will not 
work well around x=0, because they will recognize 
that the derivative changes very sharply and will re-
duce the step size drastically.  
In Modelica_Fluid.Utilities several 
utility functions are provided to 
regularize such types of equations 
(see screen shot on right side). For 
example, regRoot2(..) replaces the 
function above by two polynomials 
of third order around zero, so that 
the overall function is continuous, 
is strict monotonically increasing and has a continu-
ous first derivative everywhere. Additionally, either 
the second derivatives of the two polynomials at zero 
are identical (= default) or a user defined first deriva-
tive at zero can be provided, to, e.g., correctly de-
scribe the laminar region around zero. In the first 
case, the equation above is replaced by: 

y = regRoot2(x, x_small, k1, k2); 

where x_small defines the region of the newly intro-
duced two polynomials around x = 0. The result of 
applying this function is shown in the next figure.  

 
The “blue” curve is the exact characteristic accord-
ing to the equation above, where as the “red” curve 
is the regularized approximation of regRoot2(..) that 
has much better numerical properties. 

7 Selected Components 

In the previous sections, the features have been de-
scribed that are needed in order that component 
models can be implemented. In this section some of 
the provided component models will be shortly 
sketched. 

7.1 Pressure Losses 

Package PressureLosses contains models and func-
tions providing pressure loss correlations. All models 
in this library have the property that no mass and no 
energy is stored in the component. Therefore, none 
of the models has a state. The basic correlations are 
models that are imple-
mented with functions 
of sublibrary Pressure-

Losses.BaseClasses. 
These functions might 
also be directly called 
(e.g. in an implementa-
tion of another compo-
nent, such as the dis-
tributed pipe).  
All functions are con-
tinuous and have a fi-
nite, non-zero, smooth, 
first derivative. The 
functions are all guaranteed to be strict monotoni-
cally increasing. The mentioned properties guarantee 
that a unique inverse of every function exists. In fact, 
for all correlations a function is provided in the form 
m_flow = f(p) and also its inverse, p = g(m_flow) is 
given. A similar naming convention as in the Media 
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library is used, e.g. massFlowRate_dp(..) means that 
the functions compute the mass flow rate and that the 
input argument is dp (the pressure difference be-
tween two ports). Most functions consist of one 
statement, so that, e.g., Dymola inlines the function 
and therefore no call overhead is present. 
The pressure loss correlation “Sim-
pleGenericOrifice” defines a stan-
dard quadratic correlation of the 
form:  

1
2

p v vζ ρΔ = ⋅ ⋅ ⋅  

where Δp is the pressure difference between two 
ports, v is the fluid velocity (that can be computed 
from the mass flow rate, density and pipe area) and ζ 
is the constant pressure loss coefficient, for the fluid 
flow from port_a to port_b that can be, e.g., deduced 
from some of the standard books like Idelchick [3]. 
Screen shots of the parameter menu are shown in the 
next two figures: 

 
Basically, the medium, the correlation factor and the 
diameter has to be defined at which ζ is defined. The 
“Advanced” menu is the same for all components of 
the PressureLosses package and defines how the 
computation of the correlation is performed: 

 
If from_dp is true, the mass flow rate is computed 
from the pressure drop, otherwise the computation is 
reversed. The “flowDirection” defines whether re-
versal flow shall be taken into account. “use_Re” 
defines the laminar region by the Reynolds number 
(e.g. Re < 2000 for smooth wall friction), otherwise 
it is defined approximately by a small pressure drop 
or a small mass flow rate depending on the selected 
computation direction. Finally, if show_Re = true, 
the Reynolds-Number is computed in order to utilize 
it, e.g., in a plot. By default the computations with 
the Reynolds number are not performed, since a me-

dium model may not provided a function to compute 
the viscosity. 
Model “suddenExpansion” defines 
a sudden expansion of a pipe and 
computes the correlation factors for 
the two flow directions from the 
two pipe diameters according to 
Idelchick [2].  
In the same way “orifice” defines a 
sharp edged orifice where the cor-
relation factors for the two flow 
directions depends, e.g., on the 
opening angle of the orifice [2]. 
Model “StaticHead” models only the pressure drop 
due to gravity. 
Finally, model “WallFrictionAndGravity” models 
wall friction and also takes into account gravity. The 
implementation is based on [2,3]. The user can select 
either the different regions (only laminar, only quad-
ratic turbulent, laminar + quadratic turbulent) or the 
detailed characteristic. The latter one is shown in the 
next figure [2,3]. 

 
Figure 1. Moody Chart: lg(λ) = f (lg(Re), Δ), ζ= λL/D 

 

7.2 Pipes 

Different pipe models 
are defined in package 
Pipes, as shown in the 
screen shot at the right. 
LumpedPipe is a simple 
pipe model consisting of one volume and two pres-
sure loss correlations for the wall friction, as well as 
a heat transfer port to describe the heat transfer 
through the wall. The model is especially useful for 
demonstration purposes because it is just built from 
basic components: 

orifice

zeta=0.5

suddenExpansion

orifice
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f rictionAndGr...

volume

frictionAndGr...
port_a port_b

thermalPort

 
The other two pipe models are discretized pipes con-
sisting of n volumes. More details are given in the 
next subsection. 

7.3 Heat Exchanger 

A basic heat exchanger model can be found under 
Components.HeatExchangers.BasicHX. It demon-
strates the usage of several models from the Fluid 
library and the interfaces provided to adapt them to 
fit personal needs. The heat exchanger is composed 
of two pipe flow models and one wall element as 
shown in figure 4. The wall determines a co- or 
counterflow orientation of the two medium flows. It 
also adds the major thermal capacity to the set. Heat 
conduction is assumed to be one-dimensional, per-
pendicular to both fluid flows. 
 

pipe_1

pipe_2

wall port_b1port_a1

port_a2

port_b2

 
Figure 4: Heat exchanger component 

 
On both fluid sides medium packages from the Mod-
elica.Media library can be chosen. An instance of the 
respective BaseProperties model as described in 
section 4 is automatically included in each of the two 
distributed flow models from the component package 
Pipes. They follow an upwind discretization 
scheme, the number of segments being the same for 
both pipes and the wall. Dynamic energy and mass 
balances interlace on a staggered grid with static 
momentum balances for each control volume. Two 
half momentum balances on each end make the 
component fully symmetric. The port interface cor-
responds to the general design principle outlined in 
section 3 and allows for flow reversal. A uniform 
cross sectional area is assumed along the entire flow 
path. 
Empirical heat transfer and pressure drop correla-
tions allow us to reduce 3D fluid flow problems to 

one dimension. They largely depend on the specific 
application, thus have to be replaceable in a model in 
order to provide the required flexibility, but at the 
same time need to be known in the lowest hierarchi-
cal level of a system, the governing balance equa-
tions. 
The distributed pipe model contains a replaceable 
heat object that determines the relationship between 
the thermal port properties, heat flow and tempera-
ture, and the bulk flow, namely the medium tempera-
ture and the sensible heat term in the energy balance. 
The library currently only provides the simplest 
model possible to describe a sensible heat transfer, 
by means of a constant heat transfer coefficient. But 
an implemention of e.g. Nusselt correlations from 
the literature is easily done by inheriting from the 
base model Pipes.BaseClasses.HeatTrans-

fer.PartialPipeHeatTransfer. Besides geomet-
rical parameters, such as the hydraulic diameter and 
cross sectional flow area the heat object also 
“knows” mass flow rate and the medium.state 
record (see section 4) of the fluid flow, which makes 
it possible to compute required transport properties 
by function call if and only if needed in the respec-
tive correlation. For further information concerning 
the models mentioned here the reader may be re-
ferred to the online documentation of the library.  
Figure ? shows the results of an example model in 
the library. One of the two fluid flows in the heat 
exchanger changes its direction midway, and be-
cause it is fed from a colder source changes the di-
rection of heat flow. 
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Figure 5: Heat flow rates in both heat ex-
changer fluids (water) while one of them 
changes direction. 
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8 Conclusions 

The 1.0 Beta 1 version of the Modelica_Fluid library 
described in this article is in a rather stable stage and 
the most important basic problems have been re-
solved. Especially, it was possible to reach the fol-
lowing quite ambitious goals: 
(a) The component equations are independent from 
the medium equations (especially, a component can 
be used for media that have different sets of inde-
pendent variables, such as T, pT, or p,h, or p,T,X or 
T,X etc.). This has the big advantage that pump, 
pipe, valve models etc., can be implemented just 
once and utilized for quite different media. Of 
course, there are limits, e.g., one and two phase flow 
is always differently described in a component. On 
the other hand, all components of the Fluid library 
support incompressible and compressible as well as 
one and multiple substance media. 
(b) Components can be arbitrarily connected to-
gether. Also models such as a pipe can be flipped. 
The Modelica connection semantics generates ideal 
mixing equations so that the mass and energy bal-
ance is fulfilled. If this is not desired, junction mod-
els have to be used. This is especially the case when 
the momentum balance in a junction cannot be ne-
glected. There are still some unresolved issues, e.g., 
the Pipes.DistributedPipe model is discretized in 
such a form that at the two ends of a pipe momentum 
balances are present (and not mass and energy bal-
ances of a volume). When connecting pipes of this 
form directly together (without using a port volume 
in the connection point), non-linear systems of equa-
tions appear.  
The goal is to continuously improve the Mode-
lica_Fluid library, especially to include more com-
ponent models. Contributions from users of the li-
brary are welcome. The actual version of the library 
can be downloaded from  
http://www.modelica.org/library/ 
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