

The Modelica Association Modelica 2006, September 4th – 5th

The Modelica Fluid and Media library for modeling of

incompressible and compressible thermo-fluid pipe networks

Francesco Casella1, Martin Otter2, Katrin Proelss3, Christoph Richter4, Hubertus Tummescheit5

1Politecnico di Milano, Dipartimento di Elettronica e Informazione, Italy
2German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Germany

3Technical University Hamburg-Harburg, Institute for Technical Thermodynamics, Germany
4Technical University Braunschweig, Institute for Thermodynamics, Germany

5Modelon AB, Ideon Science Park, Lund, Sweden

Abstract

The new library Modelica_Fluid is a free Modelica
package providing components describing zero- and
one-dimensional thermo-fluid components, which
can be connected in arbitrary networks. The purpose
of the library is to provide standard interfaces for
thermo-fluid components, demonstrate how to build
such models, and include a growing set of models of
common use. The component equations are
decoupled from the equations to compute the fluid
properties, which are provided by the
Modelica.Media library through standard interfaces;
incompressible and compressible fluids, single or
multiple substances, one- and multiple-phase fluids
can be used, where appropriate. Newly introduced
features of the Modelica.Media library are briefly
reviewed. After extensive testing by interested users,
the library will be included in the Modelica standard
library as Modelica.Fluid.

1 Introduction

The Modelica_Fluid library provides basic interfaces
and components to model thermo-hydraulic systems
with zero-dimensional and one-dimensional compo-
nents. It is not the intention that this library covers
all possible application cases, because the modelling
assumptions can vary widely. Instead, the goal of the
Modelica_Fluid library is to demonstrate how to
implement components of thermo-hydraulic proc-
esses in Modelica, provide standard connectors
which fit for a wide range of applications, and pro-
vide a reasonable set of components, which can be
used as they are, or can be modified to suit specific
user needs. For special applications it is possible to
implement libraries with simpler media and compo-
nents, e.g., the Modelica.Thermal.FluidHeatFlow

library [4]. Other domains, such as gas dynamics,
would require a more sophisticated setup.
The basic concepts of the Modelica_Fluid library, in
particular the fluid connectors and the use of re-
placeable medium models, were laid out in [2]. Since
then, the library design has been refined and tested
by several people belonging to the Modelica Asso-
ciation. The structure of the library is now stable –
contributions are welcome to increase the number of
provided components. The goal is that this library
becomes part of the Modelica standard library, after
it has been tested by end users on a significant num-
ber of different applications and is improved based
on the feedback.
A screen shot of the library is
shown on the right side. The
Examples package contains
models that demonstrate vari-
ous features of the library, as
well as some system models,
such as a drum boiler [6] and
an experimental batch plant [5]
model.
A typical (small) example is
shown in Figure 1 below: It
shows a system where water is
pumped from a source by 4
pumps in parallel (fitted with
check valves), through a pipe
whose outlet is 50 m higher
than the source, into a reservoir
placed on an 18-m high tower. The users are repre-
sented by an equivalent valve, connected to the res-
ervoir. The water controller is a simple on-off con-
troller, acting on the gauge pressure measured at the
base of the tower; the output of the controller is the
rotational speed of the pumps. A typical simulation
is over 2000 s. The pump turns on and off to keep
the reservoir level around 2.5 meters, which means

631

The Modelica Fluid and Media Library for Modeling of Incompressible and Compressible Thermo-Fluid Pipe Networks

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institute of Transport Research:Publications

https://core.ac.uk/display/11128466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Modelica Association Modelica 2006, September 4th – 5th

20.5 meters higher than the base of the tower, corre-
sponding to a gauge pressure of 2 bar.

source

pipe

pumps

n

reservoir

1.8

ambient...
level_st...

userValve

sink

valveOpening

startTime=0

PressureSetP...

k=2e5

controller
refer...

u

PumpRPMGen...

reservoirPre...

p...

PT1

P...

T=50

ambient

g
defaults

Figure 1: Pumping system for drinking water

2 General design principles

Compared to other engineering modeling fields, such
as electrical systems or multibody systems, the task
of providing a “standard” library for thermo-fluid
systems is much more difficult, due to the much
greater variety of modeling assumptions that can be
made, depending on the specific application needs.
The Modelica_Fluid library tries to strike a balance,
providing a sufficiently general framework, which
covers a wide range of applications without adding
too much overhead to the simplest cases.
The scope of the library includes zero- and one-
dimensional models of thermo-hydraulic compo-
nents, i.e. objects where the flow of one or more flu-
ids must be described, and energy transfer and stor-
age phenomena play a significant role.
The thermo-fluid connectors are designed in order to
ensure that mass and energy balances are fulfilled at
the connection point, even in presence of flow direc-
tion reversal. On the other hand, the momentum bal-
ance is fulfilled exactly only when two aligned ob-
jects with equal flange diameters are connected; in
other cases, the momentum balance at the connecting
points is approximated. The exact treatment of mo-
mentum balances at the interfaces in those cases
would add a significant complexity and overhead to
the library, which is unnecessary in most technical
thermodynamics applications, where gas dynamics
phenomena (wave propagation, high Mach numbers)
do not play a significant role. Gas dynamics systems
are then outside the scope of the Modelica_Fluid
library.
The library models can describe two-phase flows, as
long as the flow is homogeneous, i.e., both phases
have the same velocity.

The medium models, i.e., the equations to compute
all the fluid properties from the independent thermo-
dynamic state variables, are included in the compo-
nent models as replaceable instances of objects from
the Modelica.Media standard library. This allows to
use the same component model with different fluids
(or with different models of the same fluid) by just
replacing the medium model.

3 Fluid Connectors

In this section the design of the fluid connectors is
explained. A major design goal was that components
can be arbitrarily connected and that the important
balance equations are automatically fulfilled when
two or more components are connected together at
one point as shown in the next figure:

pipe1 pipe2

pipe3

Figure 2: Connected pipes fulfilling the ideal mixing

condition at the connection point.
As will be explained below, in such a case the bal-
ance equations define ideal mixing, i.e., the connec-
tion point has the mixing temperature if the fluids
from the three components would be ideally mixed
in an infinitely small time period. If more realistic
modeling is desired that takes into account dissipa-
tion and other mixing losses, an explicit model has to
be used in the connection point, e.g., from the Mode-
lica_Fluid.Junctions library. An example is given in
the next figure:

pipe1

splitter

pipe2

pipe3

Figure 3: Connected pipes with a splitter junction

where the losses are described in the junction model.
For a single substance medium, the connector defini-
tion in Modelica_Fluid.Interfaces.FluidPort reduces
to

632

F. Casella, M. Otter, K. Proelss, C. Richter, H. Tummescheit

The Modelica Association Modelica 2006, September 4th – 5th

connector FluidPort
 replaceable package Medium =
 Modelica.Media.Interfaces.PartialMedium;

 Medium.AbsolutePressure p;
 flow Medium.MasFlowRate m_flow;

 Medium.SpecificEnthalpy h;
 flow Medium.EnthalpyFlowRate H_flow
end FluidPort;

The first statement defines the medium flowing
through the connector. In package Medium, medium
specific types such as "Medium.AbsolutePressure"
are defined that contain medium specific values for
the min, max and nominal attributes. Furthermore,
Medium.MassFlowRate is defined as:
 type MassFlowRate =
 Modelica.SIunits.MassFlowRate(
 quantity="MassFlowRate." +
 mediumName, ...);

A Modelica translator will check that the quantity
and unit attributes of connected interfaces are identi-
cal. Therefore, an error occurs, if connected Fluid-
Ports do not have a medium with the same medium
name.
The variables in the connector have the following
meaning: p is the absolute pressure at the connection
point, m_flow is the mass flow rate from the connec-
tion point in to the component, h is the specific mix-
ing enthalpy in the connection point and H_flow is
the enthalpy flow rate from the connection point into
the component.

3.1 Balance Equations at Connection Points

Assume that 3 FluidPorts port1, port2, port3, are
connected together: Since, m_flow and H_flow are
flow variables, a Modelica translator will generate
the following connection equations:
 port1.p = port2.p = port3.p
 port1.h = port2.h = port3.h
 0 = port1.m_flow + port2.m_flow +
 port3.m_flow
 0 = port1.H_flow + port2.H_flow +
 port3.H_flow

These are exactly the equations that state ideal mix-
ing for an infinitesimal small control volume in the
connection point: The intensive quantities at the
ports are identical and the mass balance as well as
the energy balance is fulfilled (note that no mass or
energy is stored in the infinitesimal volume). The
momentum balance is not taken into account, and
therefore a connection without an explicit junction
model is only valid, if the momentum balance has
not much influence or is fulfilled since two ports
with the same diameter are connected together.

3.2 Property Propagation over Ports

A connector should have only the minimal number
of variables to describe the interface, otherwise there
will be connection restrictions in certain cases.
Therefore, in the connector no redundant variables
are present, e.g., the temperature T is not present be-
cause it can be computed from the connector vari-
ables pressure p and specific enthalpy h.
This approach has one drawback: If two components
are connected together, then the medium variables on
both sides of the connector are identical. However,
due to the connector, only the two equations
 port1.p = port2.p; port1.h = port2.h;

are present. Assume, that p, T are the independent
medium variables and that the medium properties are
computed at one side of the connections. This means,
the following equations are basically present:
 port1.h = h(port1.p,port1.T);
 port2.h = h(port2.p,port2.T);
 port1.p = port2.p;
 port1.h = port2.h;

These equations can be solved in the following way:
 port1.h := h(port1.p,port1.T);
 port2.p := port1.p;
 port2.h := port1.h;
 0 = port2.h - h(port2.p,port2.T);

The last equation states that port2.T is computed by
solving a non-linear system of equations. If port1.h
and port2.h are provided as Modelica functions, a
Modelica translator, such as Dymola [1], can replace
this non-linear system of equations by the equation:
 port2.T = port1.T;

because after alias substitution there are two function
calls
 port1.h := h(port1.p,port1.T);
 port1.h := h(port1.p,port2.T);

Since the left hand sides of the function calls and the
first arguments are the same, the second arguments
must also be identical, i.e., port2.T = port1.T. This
type of analysis seems to be only possible, if the spe-
cific enthalpy is defined as a function of the inde-
pendent medium variables. Due to this requirement,
all media in the Modelica.Media library define the
specific enthalpy always as a function and therefore
by appropriate tool support no unnecessary non-
linear system of equation appears and in the gener-
ated code, propagation of medium properties over a
connector does not lead to an overhead.

3.3 Upstream Discretization

When implementing a fluid component, the diffi-
culty arises that the value of intensive quantities
(such as p, T, ρ) shall be accessed from the upstream

633

The Modelica Fluid and Media Library for Modeling of Incompressible and Compressible Thermo-Fluid Pipe Networks

The Modelica Association Modelica 2006, September 4th – 5th

volume. For example, if the fluid flows from volume
A to volume B, then the intensive quantities of vol-
ume B have negligible influence on the fluid be-
tween the two volumes. On the other hand, if the
flow direction is reversed, the intensive quantities of
volume A have negligible influence on the fluid be-
tween the two volumes. Such a situation is handled
with the following code fragment:
 import IF = Modelica_Fluid.Interfaces;
 replaceable package Medium =
 Modelica.Media.Interfaces.PartialMedium;
 IF.FluidPort_a port1(redeclare package
 Medium = Medium);
 IF.FluidPort_b port2(redeclare package
 Medium = Medium);
equation
 // Handle reverse and zero flow
 port1.H_flow = semiLinear(port1.m_flow,
 port1.h, port2.h);

 // Energy and mass balance; here:
 port1.H_flow + port2.H_flow = 0;
 port1.m_flow + port2.m_flow = 0;
 ...

The enthalpy flow rate in port1 is in principle com-
puted with an if clause:
port1.H_flow = port1.m_flow *
 (if port1.m_flow > 0 then
 port1.h
 else
 port2.h);

However, instead of using this if-clause, the corre-
sponding built-in Modelica operator semiLinear() is
actually used:
port1.H_flow = semiLinear(port1.m_flow,
 port1.h, port2.h);

The main reason is that this operator will allow a
Modelica translator certain symbolic transformations
that lead to a more robust numerical computation
(see explanation in the Modelica Specification 2.2).
If the above component is connected between two
port volumes (Modelica_Fluid.Pipes.BaseClass-
es.PortVolume), i.e., the independent medium vari-
ables in port1 and port2 are states, then port1.h and
port2.h are either states (i.e., known quantities in the
model) or are computed from states at each integra-
tion time step. In such a situation, the above if-clause
represented by the "semiLinear" operator is uncriti-
cal, because it depends only on known variables and
can be directly computed.
If instead, say, pressure loss components are con-
nected, then all port variables are unknown and sys-
tems of equations occur. For example, three ports,
A.port, B.port, C.port, are connected together. This
results in the following equations:

Equations due to
connect(A.port,B.port), connect(A.port,C.port):
 A.port.p = B.port.p = C.port.p
 A.port.h = B.port.h = C.port.h
 0 = A.port.m_flow + B.port.m_flow +
 C.port.m_flow
 0 = A.port.H_flow + B.port.H_flow +
 C.port.H_flow

Equations inside components A,B,C:
A.port.H_flow = A.port.m_flow*(
 if A.port.m_flow > 0 then A.port.h
 else A.h;
B.port.H_flow = B.port.m_flow*(
 if B.port.m_flow > 0 then B.port.h
 else B.h;
C.port.H_flow = C.port.m_flow*(
 if C.port.m_flow > 0 then C.port.h
 else C.h;

where A.h, B.h, C.h, is the specific enthalpy inside
the respective component. All equations together
form a linear system of equations to compute the
mixing enthalpy A.port.h = B.port.h = C.port.h
in the connection point. It has the solution [2]:
A.port.h = -((if A.port.m_flow > 0 then 0
 else A.port.m_flow*A.h)+
 (if B.port.m_flow > 0 then 0
 else B.port.m_flow*B.h)+
 (if C.port.m_flow > 0 then 0
 else C.port.m_flow*C.h))
 / ((if A.port.m_flow > 0 then
 A.port.m_flow else 0)+
 (if B.port.m_flow > 0 then
 B.port.m_flow else 0)+
 (if C.port.m_flow > 0 then
 C.port.m_flow else 0))

Therefore, independently of the flow directions in
the 3 ports, the mixing enthalpy is always uniquely
computed, provided at least one mass flow rate does
not vanish (see [2] for details how to handle the case
if all mass flow rates vanish). From the mixing en-
thalpy and the port pressure, all other mixing quanti-
ties can be computed, such as mixing temperature.
If two ports A and B are connected together, the re-
sulting system of equations has a solution that is
unique also for zero mass flow rates:
 A.port.h = if A.port.m_flow > 0 then B.h
 else A.h
 B.port.h = A.port.h

In some situations, the user can guarantee that the
fluid flows only in one direction. In the Mode-
lica_Fluid library this can be defined in the Ad-
vanced menu of components by parameter flowDi-
rection. Based on this parameter setting, correspond-
ing “min” and “max” attributes are defined for the
mass flow rate in a connector, such as:

634

F. Casella, M. Otter, K. Proelss, C. Richter, H. Tummescheit

The Modelica Association Modelica 2006, September 4th – 5th

 FluidPort_a port_a(m_flow(min = if
 allowFlowReversal then
 –Modelica.Constants.inf else 0)

When port_a.m_flow is referenced in a semiLinear()
operator, the tool can deduce that only one branch of
the if-clause can appear and can utilize only this
branch for the further symbolic processing. As a re-
sult, if-clauses that define the reversing flow are re-
moved.

4 Medium models

Modelica_Fluid uses the free li-
brary Modelica.Media that was
developed to provide a standard-
ized interface to media models
and a large number of ready-to-
use media models based on that
interface. The basic concept of
Modelica.Media is described in
[2]. It was included in the Mode-

lica Standard Library in version 2.2. The library has
been continuously improved to fit the requirements
of Modelica_Fluid. The picture on the left shows the
structure of Modelica.Media. Modelica.Media allows
for a decoupling of the formulation of the balance
equations within a Modelica_Fluid component
model and the definition of the medium. Different
interfaces are provided in Media.Interfaces that are
used as base classes for the implementation of differ-
ent medium models of different nature, e.g., ideal
gases, real gases, two-phase mediums. For every
medium a record called ThermodynamicState is im-
plemented that contains the minimum set of vari-
ables required to describe the state of the medium.
The thermodynamic state record for a pure compo-
nent ideal gas is

record ThermodynamicState
SI.AbsolutePressure p;
SI.Temperature T;

end ThermodynamicState;

The thermodynamic state record can be used to com-
pute all other fluid properties except for the satura-
tion properties which will be explained later. The
functions to compute additional fluid properties are
all contained within package Media.Interfaces. A
function without an underscore in its name assumes
the thermodynamic state record as an input. The
function specificEnthalpy() for example will
compute the specific enthalpy from the thermody-
namic state.
The following code fragment demonstrates how the
thermodynamic state record could be used in a sim-

ple component model to compute all required fluid
properties:
replaceable package Medium =
 Modelica.Medium.Interfaces.PartialMedium;
Medium.ThermodynamicState state;
Medium.SpecificEnthalpy h;
 ...
state = Medium.setState_pT(1e5, 273.15);
h = Medium.specificEnthalpy(state);

The function setState_pT() will return the state for
the given input variables pressure (p) and tempera-
ture (T) independently from the actual entries in the
thermodynamic state record. For example, if the me-
dium state is p and h and setState_pT(..) is called,
for most media a non-linear equation in one un-
known will be solved to compute h (this computation
is performed reliably and efficiently). The second
part of the function name following the underscore
indicates the required input variables which is the
standard for all function names within Mode-
lica.Media. The more general function to compute
the state would be setState_pTX() which also re-
quires the nX mass fractions X[nX] for a multiple
substance medium as input. Using the thermody-
namic state record in models is a more function-
based approach to medium modeling and is used in
static components, e.g., pressure loss models or the
heat transfer to the wall of a pipe.
Modelica.Media also offers an object-oriented ap-
proach that uses the model BaseProperties defined
for each medium interface. This approach is more
suitable for dynamic component models, e.g., a vol-
ume or a tank, than the function-based approach. The
provided base property model can be extended by the
user to best meet the specific requirements. The pur-
pose of using the thermodynamic state model in the
function based and in the object oriented approach is
to be able to write models that are independent of the
input variables to the fluid property model. The state
selection mechanism described in [2] makes it possi-
ble to obtain numerically efficient models for differ-
ent fluids with the same component models. The ba-
sic idea is sketched at hand of the following imple-
mentation of a port volume:
 replaceable package Medium =
 Modelica.Media.Interfaces.PartialMedium;
 Modelica_Fluid.Interfaces.FluidPort_a
 port(redeclare package Medium = Medium);
 Medium.BaseProperties medium (
 preferredMediumStates = true);
equation
 medium.p = port.p;
 medium.h = port.h;
 M = V*medium.d;
 U = M*medium.u;
 der(M) = port.m_flow; // mass balance
 der(U) = port.H_flow; // energy bal.

635

The Modelica Fluid and Media Library for Modeling of Incompressible and Compressible Thermo-Fluid Pipe Networks

The Modelica Association Modelica 2006, September 4th – 5th

In a port volume it is desired that the independent
medium variables are used as states (e.g., p,T or p,h
depending on the medium). The BaseProperties in-
stance medium contains the basic medium equations.
If parameter preferredMediumStates is set to true,
then attribute StateSelect.prefer is set to the inde-
pendent medium variables and therefore the tool will
use these variables as states for the mass and energy
balance, if this is possible. This means, that the port
volume equations can be implemented without
knowledge about the independent medium variables.
Modelica.Media requires the implementation of
medium models in Modelica. This approach allows
the solver to use as much analytical information
about the medium models as possible when manipu-
lating the system of equations. However, it is often
also very desirable to use existing fluid property li-
braries written in C or in FORTRAN. A new inter-
face to an external medium library has been devel-
oped for Modelica.Media that supports external
medium libraries. This new interface is currently
included in the developer version of Mode-

lica.Media and will be tested thoroughly before
including it in the Modelica Standard Library.

5 Initialization

Every fluid component with states has a menu “Ini-
tialization”. A screen shot of this menu of model
Modelica_Fluid.Volumes.MixingVolume is shown
in the next figure:

Parameter initType defines the type of the initializa-
tion and has the following options:
• initType == InitialValues:

Initial values of p,X and of T or h are defined.
• initType == SteadyState:

The derivatives of the states are set to zero dur-
ing initialization. Since usually non-linear sys-
tems of equations occur, guess values for the
states are defined for p, X and for T or h.

• initType == SteadyStateHydraulic:
The pressure derivatives are set to zero during
initialization, but the thermal states (T or h) are
initialized with a start value. Therefore, a guess

value for p and initial values for X and for T or h
are defined.

Depending on the selected option, a value such as
“p_start” is interpreted from the component as either
being an initial value (i.e. introducing an initial
equation p = p_start) or a guess value (i.e. setting the
start value of p to p_start with fixed = false).
For every medium either T or h can be defined as
start value. Assume that T_start is selected as value
to be provided (either initial or guess value). De-
pending on the situation, a tool might use h as itera-
tion variable for a non-linear system of equations,
e.g., because h is the independent medium variable.
Then, the setting of T_start would have no effect.
For this reason, modifiers are defined in the initiali-
zation menu, e.g. for h_start:
parameter Medium.SpecificEnthalpy h_start=
 if use_T_start then
 Medium.specificEnthalpy_pTX(
 p_start, T_start, X_start)
 else Medium.h_default;

If use_T_start is true, the menu for h_start is dis-
abled, i.e., the user cannot input a value and there-
fore function specificEnthalpy_pTX(..) is called to
compute the start value of the specific enthalpy
based on p_start and T_start. If use_T_start = false,
the user can provide a modifier with a new value that
overwrites the if-clause in the modifier. Otherwise
the default value of h for this medium is used as ini-
tial value.
To summarize, the medium is always initialized with
a consistent set of variables p, T, h, X where either T
or h is computed from the other 3 variables with the
corresponding medium function.

6 Regularizing characteristics

Pressure drop equations and other fluid characteris-
tics are usually computed by semi-empirical equa-
tions. Unfortunately, the developers of semi-
empirical equations nearly never take into account
that the equation might be used in a simulation pro-
gram. As a consequence, these semi-empirical equa-
tions can nearly never be used blindly but must be
slightly modified or adapted in order that obvious
simulation problems are avoided. For example, tur-
bulent flow in a pipe might be described by the fol-
lowing type of equation:
 y = if x >= 0 then sqrt(k1*x)
 else -sqrt(k2*abs(x));

A plot of this characteristic is shown in the next fig-
ure:

636

F. Casella, M. Otter, K. Proelss, C. Richter, H. Tummescheit

The Modelica Association Modelica 2006, September 4th – 5th

The difficulty with this function is that the derivative
at x=0 is infinity. The actual physical characteris-
tic doesn't show this singularity. E.g., for pipe
flow, the flow becomes laminar for small velocities
and therefore around zero the sqrt() function is re-
placed by a linear function. Since the laminar region
is usually of not much practical interest, the above
approximation is used.
The direct implementation above does not work in
Modelica, because an event is generated when x < 0
changes sign. In order to detect this event, event it-
eration takes place. During the event iteration, the
active if-branch is not changed. For example, assume
that x is positive (= "else" branch) and shall become
negative. During the event iteration x is slightly
negative and the else branch, i.e., sqrt(x), is evalu-
ated. Since this result in an imaginary number, an
error occurs. It would be possible to fix this, by using
the noEvent() operator to explicitly switch off an
event:
y = noEvent(if x<0 then sqrt(k1*x)
 else -sqrt(k2*abs(x)));
Still, it is highly likely that good integrators will not
work well around x=0, because they will recognize
that the derivative changes very sharply and will re-
duce the step size drastically.
In Modelica_Fluid.Utilities several
utility functions are provided to
regularize such types of equations
(see screen shot on right side). For
example, regRoot2(..) replaces the
function above by two polynomials
of third order around zero, so that
the overall function is continuous,
is strict monotonically increasing and has a continu-
ous first derivative everywhere. Additionally, either
the second derivatives of the two polynomials at zero
are identical (= default) or a user defined first deriva-
tive at zero can be provided, to, e.g., correctly de-
scribe the laminar region around zero. In the first
case, the equation above is replaced by:

y = regRoot2(x, x_small, k1, k2);

where x_small defines the region of the newly intro-
duced two polynomials around x = 0. The result of
applying this function is shown in the next figure.

The “blue” curve is the exact characteristic accord-
ing to the equation above, where as the “red” curve
is the regularized approximation of regRoot2(..) that
has much better numerical properties.

7 Selected Components

In the previous sections, the features have been de-
scribed that are needed in order that component
models can be implemented. In this section some of
the provided component models will be shortly
sketched.

7.1 Pressure Losses

Package PressureLosses contains models and func-
tions providing pressure loss correlations. All models
in this library have the property that no mass and no
energy is stored in the component. Therefore, none
of the models has a state. The basic correlations are
models that are imple-
mented with functions
of sublibrary Pressure-

Losses.BaseClasses.
These functions might
also be directly called
(e.g. in an implementa-
tion of another compo-
nent, such as the dis-
tributed pipe).
All functions are con-
tinuous and have a fi-
nite, non-zero, smooth,
first derivative. The
functions are all guaranteed to be strict monotoni-
cally increasing. The mentioned properties guarantee
that a unique inverse of every function exists. In fact,
for all correlations a function is provided in the form
m_flow = f(p) and also its inverse, p = g(m_flow) is
given. A similar naming convention as in the Media

637

The Modelica Fluid and Media Library for Modeling of Incompressible and Compressible Thermo-Fluid Pipe Networks

The Modelica Association Modelica 2006, September 4th – 5th

library is used, e.g. massFlowRate_dp(..) means that
the functions compute the mass flow rate and that the
input argument is dp (the pressure difference be-
tween two ports). Most functions consist of one
statement, so that, e.g., Dymola inlines the function
and therefore no call overhead is present.
The pressure loss correlation “Sim-
pleGenericOrifice” defines a stan-
dard quadratic correlation of the
form:

1
2

p v vζ ρΔ = ⋅ ⋅ ⋅

where Δp is the pressure difference between two
ports, v is the fluid velocity (that can be computed
from the mass flow rate, density and pipe area) and ζ
is the constant pressure loss coefficient, for the fluid
flow from port_a to port_b that can be, e.g., deduced
from some of the standard books like Idelchick [3].
Screen shots of the parameter menu are shown in the
next two figures:

Basically, the medium, the correlation factor and the
diameter has to be defined at which ζ is defined. The
“Advanced” menu is the same for all components of
the PressureLosses package and defines how the
computation of the correlation is performed:

If from_dp is true, the mass flow rate is computed
from the pressure drop, otherwise the computation is
reversed. The “flowDirection” defines whether re-
versal flow shall be taken into account. “use_Re”
defines the laminar region by the Reynolds number
(e.g. Re < 2000 for smooth wall friction), otherwise
it is defined approximately by a small pressure drop
or a small mass flow rate depending on the selected
computation direction. Finally, if show_Re = true,
the Reynolds-Number is computed in order to utilize
it, e.g., in a plot. By default the computations with
the Reynolds number are not performed, since a me-

dium model may not provided a function to compute
the viscosity.
Model “suddenExpansion” defines
a sudden expansion of a pipe and
computes the correlation factors for
the two flow directions from the
two pipe diameters according to
Idelchick [2].
In the same way “orifice” defines a
sharp edged orifice where the cor-
relation factors for the two flow
directions depends, e.g., on the
opening angle of the orifice [2].
Model “StaticHead” models only the pressure drop
due to gravity.
Finally, model “WallFrictionAndGravity” models
wall friction and also takes into account gravity. The
implementation is based on [2,3]. The user can select
either the different regions (only laminar, only quad-
ratic turbulent, laminar + quadratic turbulent) or the
detailed characteristic. The latter one is shown in the
next figure [2,3].

Figure 1. Moody Chart: lg(λ) = f (lg(Re), Δ), ζ= λL/D

7.2 Pipes

Different pipe models
are defined in package
Pipes, as shown in the
screen shot at the right.
LumpedPipe is a simple
pipe model consisting of one volume and two pres-
sure loss correlations for the wall friction, as well as
a heat transfer port to describe the heat transfer
through the wall. The model is especially useful for
demonstration purposes because it is just built from
basic components:

orifice

zeta=0.5

suddenExpansion

orifice

638

F. Casella, M. Otter, K. Proelss, C. Richter, H. Tummescheit

The Modelica Association Modelica 2006, September 4th – 5th

f rictionAndGr...

volume

frictionAndGr...
port_a port_b

thermalPort

The other two pipe models are discretized pipes con-
sisting of n volumes. More details are given in the
next subsection.

7.3 Heat Exchanger

A basic heat exchanger model can be found under
Components.HeatExchangers.BasicHX. It demon-
strates the usage of several models from the Fluid
library and the interfaces provided to adapt them to
fit personal needs. The heat exchanger is composed
of two pipe flow models and one wall element as
shown in figure 4. The wall determines a co- or
counterflow orientation of the two medium flows. It
also adds the major thermal capacity to the set. Heat
conduction is assumed to be one-dimensional, per-
pendicular to both fluid flows.

pipe_1

pipe_2

wall port_b1port_a1

port_a2

port_b2

Figure 4: Heat exchanger component

On both fluid sides medium packages from the Mod-
elica.Media library can be chosen. An instance of the
respective BaseProperties model as described in
section 4 is automatically included in each of the two
distributed flow models from the component package
Pipes. They follow an upwind discretization
scheme, the number of segments being the same for
both pipes and the wall. Dynamic energy and mass
balances interlace on a staggered grid with static
momentum balances for each control volume. Two
half momentum balances on each end make the
component fully symmetric. The port interface cor-
responds to the general design principle outlined in
section 3 and allows for flow reversal. A uniform
cross sectional area is assumed along the entire flow
path.
Empirical heat transfer and pressure drop correla-
tions allow us to reduce 3D fluid flow problems to

one dimension. They largely depend on the specific
application, thus have to be replaceable in a model in
order to provide the required flexibility, but at the
same time need to be known in the lowest hierarchi-
cal level of a system, the governing balance equa-
tions.
The distributed pipe model contains a replaceable
heat object that determines the relationship between
the thermal port properties, heat flow and tempera-
ture, and the bulk flow, namely the medium tempera-
ture and the sensible heat term in the energy balance.
The library currently only provides the simplest
model possible to describe a sensible heat transfer,
by means of a constant heat transfer coefficient. But
an implemention of e.g. Nusselt correlations from
the literature is easily done by inheriting from the
base model Pipes.BaseClasses.HeatTrans-

fer.PartialPipeHeatTransfer. Besides geomet-
rical parameters, such as the hydraulic diameter and
cross sectional flow area the heat object also
“knows” mass flow rate and the medium.state
record (see section 4) of the fluid flow, which makes
it possible to compute required transport properties
by function call if and only if needed in the respec-
tive correlation. For further information concerning
the models mentioned here the reader may be re-
ferred to the online documentation of the library.
Figure ? shows the results of an example model in
the library. One of the two fluid flows in the heat
exchanger changes its direction midway, and be-
cause it is fed from a colder source changes the di-
rection of heat flow.

0 20 40 60 80 100
−30

−20

−10

0

10

20

30

Time in s

Q
 f

lo
w

 in
 k

W

Heat flow fluid 1

Heat flow fluid 2

Figure 5: Heat flow rates in both heat ex-
changer fluids (water) while one of them
changes direction.

639

The Modelica Fluid and Media Library for Modeling of Incompressible and Compressible Thermo-Fluid Pipe Networks

The Modelica Association Modelica 2006, September 4th – 5th

8 Conclusions

The 1.0 Beta 1 version of the Modelica_Fluid library
described in this article is in a rather stable stage and
the most important basic problems have been re-
solved. Especially, it was possible to reach the fol-
lowing quite ambitious goals:
(a) The component equations are independent from
the medium equations (especially, a component can
be used for media that have different sets of inde-
pendent variables, such as T, pT, or p,h, or p,T,X or
T,X etc.). This has the big advantage that pump,
pipe, valve models etc., can be implemented just
once and utilized for quite different media. Of
course, there are limits, e.g., one and two phase flow
is always differently described in a component. On
the other hand, all components of the Fluid library
support incompressible and compressible as well as
one and multiple substance media.
(b) Components can be arbitrarily connected to-
gether. Also models such as a pipe can be flipped.
The Modelica connection semantics generates ideal
mixing equations so that the mass and energy bal-
ance is fulfilled. If this is not desired, junction mod-
els have to be used. This is especially the case when
the momentum balance in a junction cannot be ne-
glected. There are still some unresolved issues, e.g.,
the Pipes.DistributedPipe model is discretized in
such a form that at the two ends of a pipe momentum
balances are present (and not mass and energy bal-
ances of a volume). When connecting pipes of this
form directly together (without using a port volume
in the connection point), non-linear systems of equa-
tions appear.
The goal is to continuously improve the Mode-
lica_Fluid library, especially to include more com-
ponent models. Contributions from users of the li-
brary are welcome. The actual version of the library
can be downloaded from
http://www.modelica.org/library/

9 Acknowledgments

The development of the Modelica_Fluid library
started in year 2002 and many have contributed:
The Fluid library development was organized in
2002-2004 by Martin Otter and since 2004 it is or-
ganized by Francesco Casella. The essential basic
design of the Fluid library, especially component
interfaces, handling of reversing flow with the se-
miLinear() operator, property propagation is from
Hilding Elmqvist. Besides the authors, the following
people contributed to the fluid component models,

examples, symbolic algorithms and the further de-
sign of the library (alphabetical list): John Batteh,
Jonas Eborn, Rüdiger Franke, Anton Haumer, Hen-
ning Knigge, Chuck Newman, Hans Olsson, Katja
Poschlad, Manuel Remelhe, Sven Erik Mattsson,
Mike Tiller, Allan Watson.
The Modelica.Media library development is organ-
ized by Hubertus Tummescheit. For the long list of
contributors, see
Modelica.Media.UsersGuide.Contact.

10 References

[1] Dynasim (2006). Dymola Version 6.0. Dynasim AB,
Lund, Sweden. Homepage: http://www.dynasim.se/.

[2] Elmqvist, H., Tummescheit H., and Otter M.(2003).
Object-Oriented Modeling of Thermo-Fluid Systems.
Proceedings of 3rd Int. Modelica Conference,
Linköping, Sweden, ed. P. Fritzson, pp. 269-286.
http://www.modelica.org/Conference2003/papers/h4
0_Elmqvist_fluid.pdf

[3] Idelchik I.E. (1994): Handbook of Hydraulic Resis-
tance. 3rd edition, Begell House, ISBN 0-8493-9908-
4.

[4] Kral A., Haumer A. Plainer M. (2005): Simulation of
a thermal model of a surface cooled squirrel cage in-
duction machine by means of the SimpleFlow-library.
4th int. Modelica Conference, Hamburg-Harburg.
http://www.modelica.org/events/Conference2005/onl
ine_proceedings/Session3/Session3b1.pdf

[5] Poschlad K., Remelhe M.A.P., and Otter M. (2006):
Modeling of an Experimental Batch Plant with
Modelica. 5th int. Modelica Conference, Vienna.

[6] Rüdiger Franke (2003): On-line Optimization of
Drum Boiler Startup. Proceedings of the 3rd Int.
Modelica Conference, Linköping, 2003.
http://www.modelica.org/events/Conference2003/pap
ers/h29_Franke.pdf

640

F. Casella, M. Otter, K. Proelss, C. Richter, H. Tummescheit

