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The present study compares results of direct numerical simulations of thermal convection within a rectangular 
geometry with Rayleigh-Bénard convection in infinitely extended fluid layers and cylindrical geometries. It is 
shown that boundary layer thicknesses show similar tendencies in the rectangular geometry and the infinitely ex-
tended fluid layer simulated by Hartlep et al. [6], but the quasi two-dimensional geometry of the rectangular cell 
delays the transition to a 3-D flow. Energy spectra are evaluated at different locations of the flow field. The spec-
tra recorded in the centre of the cell show the same exponential scaling within the equilibrium range as those ob-
tained by Verzicco and Camussi [11] in a slender cylindrical container. However, it is observed that within the 
thermal boundary layer significantly more turbulent energy is held by the small scales which is reflected by a 
fuller spectrum and a smaller exponent. Analysis of the thermal dissipation rates indicates that there are three dis-
tinct regimes, with the small scale contributions growing rapidly for increasing Rayleigh number, whereas the 
large scale contributions remain almost constant. 
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Introduction 

A well-studied, but yet not fully understood problem 
in fluid mechanics is the Rayleigh-Bénard convection, 
where fluid between horizontal walls is heated from be-
low and cooled from above. The Rayleigh number 

 3 TRa gHα
κν
∆

=  (1) 

is a non-dimensional characteristic measure of the forces 
driving thermal convection determined by the height H of 
the fluid layer, the temperature difference between hot 
and cold wall ∆T, the gravitational acceleration g and the 
fluid properties α, κ and ν which are the thermal expan-
sion coefficient, thermal diffusivity and kinematic vis-
cosity respectively. 

Typically, numerical experiments of the 

Rayleigh-Bénard problem assume periodic boundary 
conditions in horizontal direction or a cylindrical con-
tainer. However, Daya and Ecke [2] studied the impact of 
the container shape on the turbulent properties, and in-
terestingly found that temperature and velocity fluctua-
tions strongly depend upon the geometry while global 
properties, such as heat transfer, remain unchanged 
within measurement accuracy. 

In recent studies Verzicco and Camussi [10,11] have 
carried out direct numerical simulations of turbulent 
convection within cylindrical containers of low aspect 
ratio Γ = D / H, where D denotes the diameter of the 
container. They found that for a container of aspect ratio 
unity and Pr = 0.7 there is a transition from δθ > δu to δθ < 
δu around Ra = 2 × 107, where δθ and δu denote the ther-
mal and the kinetic boundary layer thickness respectively. 
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This phenomenon matches Grossmann and Lohse’s the-
ory [3]. However, they point out that according to theo-
retical analysis this transition should not occur until Ra ≈ 
108. 

Shishkina and Wagner [9] have conducted direct nu-
merical simulations of Rayleigh-Bénard convection in a 
wide cylindrical geometry. They analysed the contribu-
tion of thermal dissipation rates due to the turbulent 
background and the plumes, confirming Grossman and 
Lohse’s theory by showing that the influence of the 
thermal turbulent background on the flow field increases 

with increasing Ra. 
It is the aim of the present study to analyse turbulent 

thermal convection within a rectangular geometry. Ther-
mal dissipation rates in a rectangular cell of aspect ratio 
unity and periodic boundary conditions in longitudinal 
direction are compared with the above mentioned results 
extracted from cylindrical geometries. In addition, the 
influence of the lateral wall is analysed comparing the 
results with simulations employing cyclic boundary con-
ditions in two horizontal directions. 

 

Nomenclature  
E energy Greek letters  
g gravitational acceleration α thermal expansion coefficient 
h length scale β effective exponent 
H height of the fluid layer / container δ boundary layer thickness 
L length of the container ε dissipation rate 
Nu Nusselt number η Kolmogorov length scale 
Pr Prandtl number θ nondimensional temperature 
Ra Rayleigh number κ thermal diffusivity 

T̂∆  temperature difference [K] ν kinematic viscosity 
ui velocity components Γ aspect ratio of the container 
V fluid volume / volume of the container   
W width of the container Subscripts  
  t top 
  b bottom 
  u velocity field 
  θ temperature field 

 

Computational Setup 

The incompressible Navier-Stokes equations are 
solved in dimensionless form, where density variations 
are accounted for through the Boussinesq approximation. 
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The variables are non-dimensionalised with respect to 
the width W of the cell as well as buoyancy and the tem-
perature difference between top and bottom walls. 
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The solution is evolved in time by means of the 
Euler-Leapfrog scheme, and spatial derivatives are ap-
proximated by fourth order accurate central differences 
where the velocity components are stored on staggered 
grids [8]. In order to sufficiently resolve the boundary 
layers the grid points are clustered in the vicinity of the 
walls using a hyperbolic tangential. The grid spacing hDNS 
= (∆x ∆y ∆z)1/3 in the core region satisfies Grötzbach’s [5] 
estimate for the Kolmogorov scales ηK. 
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Fig. 1  Schematic of front and side view of the convection 

cell; H = W = 1 and L = 5 
 
The horizontal walls are assumed to be isothermal 

with non-dimensional temperatures θb = +0.5 and θt = 
-0.5 at the top and bottom wall respectively. The adia-
batic lateral walls are implemented by means of a zero 
temperature gradient perpendicular to the wall, i.e. 
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0/ zθ∂ ∂ = . No-slip conditions are used for the solid 
walls, so that velocities in i-direction ui│wall = 0, i = 1,2,3 
and periodic boundary conditions are employed in longi-
tudinal direction. 

The computational domain is initialised with a quies-
cent velocity field and the conduction profile for the 
temperature field. Additionally, small disturbances are 
superimposed onto the temperature field at a single point 
and along a horizontal line in periodic direction. These 
disturbances are introduced in order to excite instabilities, 
and hence to trigger convection. 

The solution is evolved in time until the flow field is 
in equilibrium, i.e. heat transfer between hot and cold 
walls and turbulence intensity have reached a quasi 
steady state. During the subsequent processing all char-
acteristic flow parameters are averaged in time and space 
(periodic direction) to allow for a statistical analysis. 

Results 

 
Fig. 2  Snapshots of the turbulent temperature fields show-

ing the number and size of the thermal plumes for Rayleigh 
numbers Ra = 4.4 × 105 (top), Ra = 4.4 × 106 and Ra = 7.5 × 
107 (bottom); hot fluid is white and cold black. 

 
Four direct numerical simulations of turbulent thermal 

convection within a rectangular cell have been carried 

out for Rayleigh numbers up to 7.5 × 107. Figure 2 shows 
snapshots of the turbulent temperature fields for three 
Rayleigh numbers, indicating that the number of thermal 
plumes is increasing and their size decreasing with 
Rayleigh number. 

Energy Spectra 
Figure 3 illustrates thermal and kinetic energy spectra 

taken from probes within the conductive sublayer and the 
core of the domain (x/H = 0.5) midway between the lat-
eral walls (z/W = 0.5), averaged in time and periodic di-
rection. It can be seen that the temperature spectra in the 
center of the cell match the Bolgiano exponent [1] of 7/5 
very well, but lack the inertial subrange which is sup-
posed to follow the buoyancy subrange. According to the 
Bolgiano dynamics the velocity spectra should show a 
11/5 decrease within the buoyancy subrange, but only the 
Kolmogorov law is observed. This is in agreement with 
results by Verzicco and Camussi [11] who argued that 
this might be the case, when most of the thermal energy 
is injected into the large scales through the wind. 

However, one also has to take into account that the 
Bolgiano dynamics assume a stably stratified fluid layer. 
In the case of Rayleigh-Bénard convection energy is in-
jected into the fluid by means of thermal plumes which 
are the driving force for convection as shown by Xi et al. 
[12]. It is therefore reasonable that the velocity spectra 
follow the Kolmogorov law, since there is no energy ex-
tracted from the velocity field and stored as potential 
energy as suggested by Bolgiano’s theory. 

It can be assumed that all relevant turbulent scales are 
resolved by the grid, since both the inertial subrange and 
the dissipation range can be clearly identified from the 
kinetic energy spectra and the Batchelor scales of 
temperature are larger than the Kolmogorov scales; ηB / 
ηK = Pr-3/4. 

In the vicinity of the horizontal walls a different scal-
ing is observed, since the wall tends to damp the wall 
normal velocity component, which is also reflected by 
the temperature spectra which have significantly smaller 
exponents within the equilibrium range: e.g. 0.7 for Ra = 
4.4 × 106 and 0.5 for Ra = 7.5 × 107. Following the above 
reasoning and taking into account that the entire heat 
transfer takes place within the thermal boundary layer, it 
can be concluded that more energy is injected into the 
small scale structures, since large scales structures are 
suppressed in the increasingly thinner boundary layers. 
This is also substantiated by a fuller temperature spec-
trum towards the high wave number cut-off. The analysis 
of spectra at different distances from the horizontal walls 
shows that the exponent of the buoyancy range is as-
ymptotically approaching the Bolgiano exponent, 
whereas the level of energy held by the respective scales 
is slowly decreasing. 
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Fig. 3  Energy spectra for Ra = 4.4 × 106 (left) and Ra = 7.5 × 107 (right) extracted from the conductive sublayer (top) and the 

centre of the cell, x/H = 0.5, (bottom) at z/W = 0.5. Euu (―), Evv (- - -), Eww (- • • -) and Eθθ (―). The insets show the respective 
compensated spectra. 

Scaling Law 
Figure 4 shows the Nusselt number Nu as a function 

of Rayleigh number from Ra = 4.4 × 104 up to Ra = 7.5 × 
107. When comparing the regimes with data gathered by 
Krishnamurti [7] and numerical simulations of convec-
tion within an infinitely extended fluid layer (Hartlep et 
al. [6]), it follows that the transition to turbulence occurs 
at Ra ≈ 105 rather than Ra ≈ 104. 

Given a scaling law of the form Nu ~ Raβ an effective 
exponent β ≈ 0.284 is obtained which is in good agree-
ment with the theoretical prediction [4] β ≈ 2/7 (≈ 0.286) 
for Ra ≤ 1011 and Pr = 0.7. Finally, it can be concluded 
that even though the onset of convection does not seem 
to be significantly delayed the quasi two-dimensional 
shape of the container seems to stabilize the 
three-dimensional modes, and hence delays the transition 
to a three-dimensional flow field. 

Boundary Layer Thicknesses 
The viscous and thermal boundary layer thicknesses 

have been measured at z/W = 0.5 for Rayleigh numbers 
up to Ra = 7.5 × 107. It follows from figure 5 that the 
boundary layers are decreasing at different rates, sug-
gesting that there might be a cross-over of the boundary 
layer thicknesses for Ra < 8.8 × 104. However, for lower 
Ra the flow field is steady and laminar, and hence the 
definition of the edge of the boundary layer through the 
maximum-rms-value criterion does not hold anymore. 

However, it can be observed that the results by Hartlep 
et al. [6] show similar tendencies and, despite that fact 
that the transition to 3-D flow occurs at significantly dif-
ferent Ra, the boundary layer thicknesses are almost the 
same. 

A comparison with Verzicco and Camussi’s data [11] 
reveals a similar behaviour of the boundary layers. 
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However, it has to be pointed out that the cross-over from 
one regime (δθ > δu) to the other (δθ < δu) is significantly 
delayed in their low aspect ratio cylindrical cell, i.e. Ra ≈ 
107 rather than Ra ≈ 104 in the rectangular cell or Ra ≈ 
105 in the infinitely extended fluid layer by Hartlep et al. 
[6]. 

 

 
Fig. 4  Nusselt number as a function of Rayleigh number 

for 4.4 × 103 < Ra < 7.5 × 107; laminar (♦), 3-D periodic time 
dependent (*) and turbulent flow (●); Nu ~ Ra0.284 (---). 

 

 
Fig. 5  Viscous (○) and thermal (●) boundary layer thick-

ness as a function of Rayleigh number for 8.8 × 104 ≤ Ra ≤ 7.5 
× 107 at z/W = 0.5; δθ ~ Ra-0.284 (---). Diamonds indicate data by 
Hartlep et al. [6] for an infinitely extended thin fluid layer. 

 
Shape of the Thermal Boundary Layer 
The shape of the thermal boundary layers is analysed 

for the simulations with Rayleigh numbers Ra = 4.4 × 
105, Ra = 4.4 × 106 and Ra = 7.5 × 107. Figure 6 shows 
that in the vicinity of the horizontal walls an exponent of 

α = 1 matches all three temperature profiles very well. 
This is reasonable, since conduction rather than convec-
tion is supposed to dominate the flow field in this region. 

It can also be seen from the below plot that about 6 
and 4 and 3 grid points are within the conductive 
sublayer for Ra = 4.4 × 105, Ra = 4.4 × 106 and Ra = 7.5 
× 107 respectively. Due to Grötzbach [5] a minimum of 3 
points is required in this region in order to sufficiently 
resolve the thermal boundary layer. 

 
Fig. 6  Shape of the spatially and temporally averaged con-

ductive sublayer at z/W = 0.5. Ra = 4.4 × 105 (▼), Ra = 4.4 × 
106 (○) and Ra = 7.5 × 107 (□); T = 0.5 - │θ│ ~ (x/H)α (―). 

 
Thermal Dissipation Rates 
Statistical analysis of the thermal dissipation rates is 

carried out following the approach by Shishkina and 
Wagner [9] who introduced two functions 

 ,max( ) ( )
Vθ θτ ξ ϑ ξε ε= −  (5) 

and 
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where 

  (7) 
1; 0
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0; otherwise

x
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which determine the percentage of the fuid volume 
with dissipation rates less than ξ times the volume aver-
aged thermal dissipation rate εθ,max│V and its contribution 
to the volume averaged thermal dissipation rate respec-
tively. 

Thus, the role of plumes and thermal background can 
be determined, when taking into account that large ther-
mal dissipation rates can be associated with a thermal 
plume and small dissipation rates are characteristic for 
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the turbulent background. 
Figure 7 illustrates that with increasing Rayleigh 

number the percentage of the fluid volume τ(ξ) for a 
given ξ increases as well as its contribution to the volume 
averaged thermal dissipation rate. Hence, it follows that 
smaller scales begin to dominate the thermal dissipation. 

 

 

 
Fig. 7  Fraction of the fluid volume containing thermal dis-

sipation rates εθ ≤ ξ εθ,max│V (top) and their contribution to the 
volume averaged thermal dissipation rate (bottom); Ra = 8.8 × 
104 (– · · –), Ra = 4.4 × 105 (– · –), Ra = 4.4 × 106 (- - -) and Ra 
= 2.3 × 107 (– – –). 

 
Investigation of the dissipation rate distribution as a 

function of ξ displays their respective contribution to the 
mean dissipation rate and reveals that there is a pre-
dominant range of dissipation rates. It can be seen from 
figure 8 that the location of the maximum of this function 
is decreasing with Rayleigh number, indicating that small 
dissipation rates, and hence the turbulent background 
becomes increasingly important at higher Rayleigh 

numbers. 
Once the flow field has become turbulent three distinct 

regimes can be identified from the scatter plot of the dis-
sipation rate distribution. The regime ξ → 1 that is asso-
ciated with thermal plumes and boundary layers appears 
to maintain its shape, but rises slightly as Rayleigh num-
ber increases. The lower tail (ξ → 0) of the function is, 
however, strongly dependent on the Rayleigh number as 
the contribution of these scales increases significantly as 
Ra increases. For Ra = 8.8× 104, where the flow field is 
laminar, but three dimensional, these tails form a bell 
shape-like distribution, whereas the tails are joined by a 
linear regime when turbulence sets in. 

 
Fig. 8  Contribution of the thermal dissipation rates with εθ 

= ξ εθ,max│V to the volume averaged thermal dissipation rate. Ra 
= 8.8× 104 (∆), Ra = 4.4 × 105 (▼), Ra = 4.4 × 106 (○) and Ra 
= 2.3 × 107 (◊). 

 

Conclusions 

Direct numerical simulations of Rayleigh-Bénard 
convection have been conducted in a rectangular cell 
with periodic boundaries in longitudinal direction. It is 
found that compared to experimental and numerical in-
vestigations in wide geometries the transition to a 3-D 
flow is delayed in the periodic rectangular cell. However, 
the tendencies and thicknesses of the boundary layers are 
very similar to those observed boundary by Hartlep et al 
[6]. 

The kinetic energy spectra recorded in the centre of 
the cell match the Kolmogorov law very well, whereas 
the thermal spectra achieve an exponent of 7/5 within the 
equilibrium range. Towards the isothermal walls the wall 
normal velocity component is damped, and hence the 
exponent of the equilibrium range is decreasing rapidly 
in the vicinity of the wall. It is also observed that in this 
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region significantly more energy is held within the high 
wave number range of the temperature spectrum as 
Rayleigh number is increasing. This is thought to be a 
result of the decreasing boundary layer thickness, which 
can only contain large scale structures of the order of its 
own thickness. Hence, more thermal energy has to be 
injected into the small scales, i.e. the background turbu-
lence. 

From the analysis of the thermal dissipation rates it is 
found that there are three distinct regimes of large, small 
and intermediate scales that are associated with the near 
wall region, plumes and background turbulence. From 
the distribution of the thermal dissipation rates it follows 
that the small scales, and hence the thermal background 
turbulence is increasing, whereas the large dissipation 
rates hardly change with Rayleigh number. However, 
further analysis is required to identify the respective parts 
that contribute to each regime. 
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