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ABSTRACT 

In this paper the EVA algorithm developed by Lohse is applied in order to generate Berlin’s average workday traffic 
based on a minimum of data input. Behavioral parameters are derived from the German travel survey “Mobilität in 
Deutschland (MiD)”. The EVA approach allows generating trip purpose and time dependent OD matrices from 
general input data used in transport modeling. This model output can be used for standard OD-matrix-based static or 
dynamic assignment, but provides us with primary activity location choice and scheduling information necessary to 
generate initial conditions for agent-based transport simulation packages like MATSIM.  

The paper describes the basic concept of the EVA model and specifications of the Berlin scenario. Since the range 
of possible input data for demand generation is limited, our aim was to use the established demand generation 
model VISEVA with a minimum of input data, which has to be commonly available and easy to purchase (making 
transfer of transport models to other study areas easier).  

The model output is displayed and compared with output resulting from Berlin’s official demand generation model. 
Besides that, the simulation results are compared to real-world data from traffic counts. It can be shown that even 
though we reduce data requirements to a minimum, the results have a structure adequate for Berlin and could serve 
as input for initial condition generation for MATSIM.  
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INTRODUCTION 

Most transport models used in practice apply the four-step process. The first three steps—trip generation, 
destination choice, mode choice—concern modeling the demand, finally described in terms of origin-destination 
(OD) matrices. In these three steps, various characteristics of the traveler, the land-use, and the network are brought 
together. In the fourth step, the demand is assigned to the network.  

There is widespread agreement that the four-step process, in its conventional form, is unable to capture 
important aspects of transport planning. This concerns, in particular, all temporal aspects, such as peak spreading, 
congestion toll modeling, or important environmental aspects (e.g. tailpipe emissions, depending on engine 
temperature). 

The first step to improve this situation is to run separate demand generation and network assignments for 
the morning and the afternoon peak. This is, however, increasingly problematic with the increase of non-home-
based trips. A reaction to this situation is activity-based demand generation (ABDG; see, e.g., (1, 2)), where travel is 
seen as demand that is derived from the demand to perform different activities at different locations. However, 
despite much progress, ABDG is at this point not very much standardized: there are many different models and 
implementations around (3, 4, 5, 6, 7, 8). This is due to a wide variety of different approaches, for example 
concerning the methods (e.g. Random Utility Modeling vs. rule-based systems) or the level of detail/resolution (e.g. 
based on half tours, full tours, or complete day plans). Experience and diligent investigation will hopefully 
demonstrate the respective advantages and disadvantages of each method. 

In the meantime, it makes sense to consider alternative methods, which remove some of the disadvantages 
of the four-step process, while not going the full distance towards ABDG. One such model is the EVA modeling 
approach of Lohse et al. (9). It extends the methodology of the traditional four-step process, which is essentially a 
method to generate OD matrices for home-based trips, to a methodology to generate OD matrices that connect 
arbitrary trip purposes. For example, there will be the typical OD matrices for home–work and work–home, but 
there will also be matrices for, say, work–shop or work–leisure. OD matrices may, in addition, be segmented by 
demographic groups. More details are provided later in the paper. EVA has been developed over many decades, 
including a sound mathematical foundation based on probability theory. A further advantage is that it is now 
publicly available as VISEVA as part of the PTV transportation planning package (10), thus providing a 
standardized access to the package allowing scientifically sound comparisons of results. 

In this situation, it would be convenient if it ran from standardized and easily available data. In Germany, 
such a data set is the “Mobilität in Deutschland (MiD)” data set (11, 12). It is essentially a micro-data sample of the 
German population, with special emphasis on transport-related questions. Unfortunately, most geo-coding was 
removed from the data set before it was made available to us. Nevertheless, it is a good starting point, in particular 
since it is available in standardized form for all of Germany. The main question to be answered in the present paper 
is, in consequence, in how far this data set, possibly augmented by other publicly available sources, is able to 
provide useful input for the VISEVA demand generation package.  

An additional use of such a VISEVA run would be to use it as input to our multi-agent traffic simulation 
package, MATSIM (13, 14, 15). This is particularly appropriate since Germany does not provide data-driven 
“commuting matrices” that are resolved beyond the city level, and in consequence the coupling between residences 
and work locations has to be model generated. In this situation, having a standard package such as VISEVA based 
on standard input data such as MiD appears like a good first step to make progress. 

VISEVA—BASIC CONCEPT 

The applied EVA algorithm developed by Lohse (9) handles trip generation, trip distribution and mode choice 
simultaneously. This algorithm—implemented in the commercial software package VISEVA (16) distributed by 
PTV AG—is a disaggregate description of the demand. The demand is disaggregated into activity-purpose pairs at 
origin and destination zones. Trip generation, distribution and mode choice are based on the activity-purpose pair 
classification. Each activity-purpose pair associates with a certain trip purpose, e.g. the home-work pair contains 
trips from home to work, and can be associated with all or a subgroup (behaviorally homogenous groups) of 
travelers. Only employed persons leave home to work, this means that the activity-purpose pair home-work is 
associated with employees. Other pairs like home-education contain trips of, for instance, high school and university 
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students. The concept of activity-purpose pairs allows obtaining matrices by trip purpose. Summing up these 
matrices gives total demand in a defined period.  

Basically, one can define any classification of activity-purpose pairs that serves the specific problem best. 
Some standard classifications have already proven their usefulness. We chose one with 6 activity-purposes resulting 
in 13 activity-purpose pairs (table 1). The pairs can be grouped into types according to the location of the home 
activity at origin or destination (type 1 and 2). Work can also be the home activity, when the pair lacks the original 
home activity. Activity purpose pairs containing neither home nor work at origin or destination are of type 3.  

Trip production is calculated with trip rates per activity-purpose pair at origin according to its type. At 
destinations, trip attractions are calculated as a proportional to the capacity of activity opportunities. These 
capacities can be used as hard or soft constraints. Generally, for primary activities capacities are modeled as hard 
constraints. Soft constraints allow exceeding the given capacity to a certain degree. Thus, only an upper limit can be 
set at first; the final number of attractions (number of trips of a certain activity-purpose pair attracted by a zone) 
cannot be defined without joint trip distribution and mode choice. That is, spatial competition can be modeled (e.g. 
different shopping locations). To distinguish hard and soft constraints is an advantage of the EVA approach 
compared to simple destination choice models, which only enforce the constraint at the origin.  

As just mentioned, the calculation starts with calculating trip production for each activity-purpose pair at 
the home location (according to the activity-purpose pair’s type) in each zone.  

∑ ⋅⋅=
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peppe uBPTPH  ∑=
e

eHV  (1) 

with: with:  
TPp production rate of person group p 
BPep number of persons of group p in zone e 
up share of intrazonal trips for group p in 
 zone e 

He trips at home location (according to the 
 activity-purpose pair’s type) 
V total number of trips of the activity 
 purpose pair in the study area 

 

Trip attractions can be derived (normalized according to the sum of trip productions over all zones) when 
hard constraints are given. 
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with:  
Zj traffic attracted to zone j 
ERr attraction rate of attractor r 
SZrj volume of attractor r in zone j 

 

For soft constraints only an upper limit value is calculated as already mentioned.  
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with:  
Frj additional load factor of zone j considering attractor r  

The EVA model applies its activity-purpose pair approach per subgroup of travelers to the joint destination 
and mode choice as well. The marginals of the generated matrices are known (in case of soft constraints as 
maximum number of trips) and the share of trips with mode k between zones i and j are calculated as a function of 
the generalized costs of travel using different model forms. This conditional probability is: 
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( )( )kjiijk MEAWPBW ∩∩=  (4) 

with randomly chosen probabilities that  
Ai zone i is origin 
Ei zone j is destination 
Mk mode k is used 
W trip from i to j using k is accepted with regard to the generalized costs 

 

Although an arbitrary function can be used transform transport costs w into probabilities, we used the EVA 
function (16), which obtains with its three parameters E, F, G a flexible shape of the elasticity ε over the range of 
the generalized costs. 
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The parameters of the EVA function can further be differentiated according to the subgroups of travelers. 
Traffic flows (vijk) are calculated considering simultaneously the generalized costs, the probabilities of the events 
P(Ai), P(Ej) and P(Mk) and the constraints with respect to (maximum) traffic volumes at origin and destination 
zones. The formulation is structurally a Bayesian model: 
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(6) 

Further explanations and solution algorithms are described more in detail in (9), (17) or (18).  

It has to be mentioned that there is a need to iterate between the travel demand calculations, following the 
EVA approach, and the assignment, generating the travel cost values, to obtain a mutually consistent solution. The 
software tool VISEVA (16) provides tools to implement an iteration scheme in conjunction with the assignment 
software VISUM (10). 

ESTIMATION OF DEMAND FOR AVERAGE WORKDAY TRAFFIC—BERLIN SCENARIO 

Following the above described steps in VISEVA, average workday traffic is derived from general input data on 
land-use and population. Two different models were built. In the first model (model I), demand was derived from 
land-use data and the population without any further differentiation. The second model (model II) distinguishes 
subgroups of the population (homogeneous behavioral groups). The second model is more flexible, but we were 
also interested how well demand derived from an undifferentiated population will perform.  

Both models have the same definition of activity-purpose pairs. Based on 6 activities, 13 activity-purpose 
pairs can be distinguished.  

  
Home 

(H) 
Work 
(W) 

Kindergarten
(K) 

Education
(E) 

Shopping 
(S) 

Others 
(O) 

Home 
(H) - HW HK HE HS HO 

Work 
(W) WH - WO 

Kindergarten 
(K) KH 

Education 
(E) EH 

Shopping 
(S) SH 

Other 
(O) OH 

OW OO 
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TABLE 1: Activity-purpose pairs definition 

In total for all four modeled modes (motorized private travel, transit, walking, biking) 52 matrices of 889 x 
889 zones are calculated for the first model with no population differentiation. The second model calculates for each 
subgroup 52 matrices of 889 x 889 zones. The following subgroups were used: 

• Employees with car 
• Employees without car 
• Non-employed people with car 
• Non-employed people without car 
• University student 
• Pupils/ high school students 
• Children < 6 years old 
• Apprentice 

Even though it would have been possible to use different parameters of the EVA function and of the modal 
split values according to the specific subgroup of travelers and activity-purpose pair, this functionality was not used 
for the present study. In both models, EVA parameters are chosen based on experiences provided by Lohse (16, 17), 
modal split values were used according to the activity-purpose pair only. 

Assigning departure time intervals to demand is possible by using estimations of hourly demand according 
to the trip purposes. This kind of information can be found in surveys as well. Lohse (17) gives an example from 
previous projects. In order to compare the demand generated in the project described here to the data from the 
model used by Berlin’s planning department, 24-h matrices containing all purposes are calculated (planning 
department uses only 24-h OD matrices).  

Travel costs in terms of travel times are mainly derived from a VISUM model of the road infrastructure of 
1998. Further information on available input data and necessary data processing is described in the next section.  

INPUT DATA 

As already mentioned, a minimum range of input data should be used. Input data is gathered for a period of time 
around the year 2000. Data for demand generation has to contain information on land-use, composition of 
population and travel behavior, and the network to obtain travel costs between zones. Data requirements depend 
among other things on the defined activity-purpose pair classification. Since only a road network was available, 
travel costs of the other modes (transit, walking, biking) were estimated based on linear distance measured and 
average mode speed estimated and schedules of the transit, available on the internet (19). 

Input data were available on different spatially aggregated levels. The largest entities are districts. Up to 
the year 2000, the study area of Berlin consisted of 23 districts, 195 statistical areas, 881 traffic analysis zones 
(TAZ), and 15.101 blocks. The 881 TAZ were already included in our road network of 1998, which the planning 
department provided us with. Outside Berlin 8 zones were defined in order to model commuting travel.  

The population is available on block level, but as the only attribute age is given. The land-use of Berlin is 
based on traffic analysis zone level and consists of capacities for “home”, “work”, and “education”. “Shopping” 
capacities had to be defined manually (see below). Unfortunately, there is no commuting matrix available for 
Berlin. Information on commuting is gathered by the authorities between municipalities only and Berlin as a whole 
is only one municipality. For this scenario there is no commuter matrix available, which would be desirable for a 
calibration procedure of the VISEVA models. 

According to the population subgroups used in production and attraction calculations, behavioral data has 
to be derived from surveys. The city’s planning department based its model on an extensive data record, but we did 
not have access to it. There is however the German travel survey “Mobilität in Deutschland (MiD)” (11, 12), which 
is easy to access for scientific purposes. Former surveys of 1976, 1982 and 1989 were conducted in western 
Germany only; MiD 2002 is the first travel survey embracing unified Germany. 

The following sections describe how behavioral parameters are derived based on MiD and aspects of land-
use data acquisition and processing. Besides giving an overview of relevant land-use data and their sources, the 
description focuses on processing information about shop floor areas in Berlin in order to model activity-purpose 
pairs other than work or education related.  
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Behavioral data 

The main source for the generation of behavioral parameters was the nation-wide survey MiD conducted in 2002 by 
the Federal Ministry of Transport, Building and Urban Affairs (BMVBS). Objective of this survey is the generation 
of reliable and representative information about socio-demographic aspects of persons and households in 
combination with their daily travel behavior. This data record distinguishes between the German Federal States. As 
Berlin is not only a municipality but also a Federal State, data evaluation could be done for Berlin directly, which 
should assure that specific behavioral aspects of Berlin are recognized. Additionally, MiD provides aggregated data 
based on certain spatial categories. Spatial categories are classifications by habitants’ density, delivered by the 
Federal Office for Building and Regional Planning.  

The overall national sample captured 25,000 households, 62,000 persons and 190,000 reported trips. The 
Berlin sample of the survey holds 7,616 trips reported by 2,163 Persons (taken only the trip data set as reference—
the persons’ data set is based on 2,849 interviewed persons). The following parameters were extracted from MiD to 
be used in our two VISEVA models: 

• specific trip production rate of the population of Berlin differentiated by trip purposes (model I) 
• specific trip production rates of the population of Berlin differentiated by homogeneous behavioral groups and 

trip purposes (model II) 
• modal split values differentiated according to the needs of model I and II 

As modal split values could be extracted rapidly by using standard data processing software, further 
comments do exclusively concentrate on the generation of the specific trip production rates. Extensive coding of the 
original MiD trip data set was necessary in order to calculate these essential parameters calculating demand 
according to the VISEVA approach. 

Trip production rate 

The specific trip production rate is defined as the average number of trips made by person per day and purpose and 
is primarily determined by socio-demographic characteristics and availability of a private car. In order to calculate 
trip production rates to be used in model II, size of subgroups had to be extracted from MiD as well. Average 
specific trip production rate used for first evaluations of the Berlin trip data set is calculated as follows: 

pgroupinpersonsofNumber
pairspurposeactivityalloverp)subgroup(ofpersonpertripsofNumberTPp =  

(7) 

Specific trip production rates by activity-purpose pair to be used in our VISEVA models are calculated as: 

pgroupinpersonsofNumber
xpairpurposeactivityspecifictheinpgroupofpersonpertripsofNumberTPpx

)(
=  

(8) 

Person groups 

In model II, trip production rates had to be calculated for each subgroup defined. Thus, subgroup size had to be 
determined (in each activity-purpose pair) as well. In MiD, subgroups are already defined, and two different 
classifications are available. MiD distinguishes 9 or 12 behaviorally homogeneous groups. For this study, the 
original classification consisting of 12 subgroups was reduced to 9 subgroups, which is not identical with the 
original MiD classification into 9 groups. On top of that, the survey itself provides the necessary variables to 
generate more sophisticated groups. But in context of this study, a classification into 9 subgroups seems sufficient. 
Table 2 summarizes the size of subgroups and their proportion in total of the trip data set. The group of “others” was 
not evaluated any further. 
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Behavioral homogeneous groups Number of 
people  Share in % 

Employed person with car  674 35.66 
Employed person without car  161 8.52 
Non-employed person with car  419 22.17 
Non-employed person without car 230 12.17 
Students with & without car  72 3.81 
Apprentice with & without car  38 2.01 
Children under the age of 6 99 5.24 
Pupils 197 10.42 
N (excluding „Others“) 1,890   
Others 273   
Total 2,163 100 

TABLE 2: Group sizes  

Number of trips per person and activity-purpose pair 

Joining the information of group sizes and trips realized per day (by person and purpose) the specific production 
rate can be calculated. Substantial coding modifications of the original data set of reported trips were necessary, 
because the activity-purpose pair definition was not part of MiD. Activity pairs had to be computed based on the 
reported trip chains of household members. Additionally, we had to aggregate certain trip purposes to match our 
activity-purpose pair classification. Table 3 summarizes trip production rates by activity-purpose pairs for two 
different data sets.  

 

 

MiD 2002: trips 
in agglomerations Share in % 

trip 
production

 rate 

trip 
production

 rate 

Share in 
% 

MiD 2002: 
trips  

in Berlin   
HW 2,873 7.52 0.260 0.231 6.78 486 HW 
WH 2,376 6.22 0.215 0.177 5.21 373 WH 
HE 523 1.37 0.047 0.059 1.74 125 HE 
EH 453 1.19 0.041 0.050 1.47 105 EH 
HK 906 2.37 0.082 0.070 2.07 148 HK 
KH 786 2.06 0.071 0.059 1.74 125 KH 
HS 3,539 9.26 0.320 0.326 9.56 685 HS 
SH 4,003 10.47 0.362 0.373 10.96 785 SH 
HO 8,922 23.34 0.807 0.776 22.77 1,631 HO 
OH 7,769 20.32 0.702 0.681 19.97 1,431 OH 
WO 815 2.13 0.074 0.088 2.57 184 WO 
OW 443 1.16 0.040 0.041 1.21 87 OW 
OO 4,818 12.60 0.436 0.475 13.94 999 OO 

         
Sum 38,226 100 3.46 3.41 100 7,164 Sum

N 11,060     2,102 N 
TABLE 3: Comparison of trip production rates derived from two different MiD samples (before correction 
regarding immobile persons)  

On the right, production rates derived from the Berlin sample can be seen. Both the average trip production 
rate with 3.41 daily trips per person and the specific trip rate calculated according to the definition of activity-
purpose pairs have plausible values. But the small sample size (N denotes number of persons in the data) is 
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problematic. Therefore, we also derived the trip production rates from the larger sample of all regions classified as 
spatial category “agglomerations with an outstanding centre“ (left half of the table). Berlin is classified as one such 
outstanding center.  

When comparing Berlin’s trip production rates to the larger sample size on the left, one sees that even 
though the Berlin sample is small, plausible trip production rates were calculated for our models. Finally, the 
resulting trip production rates had to be modified according to the information on how many interviewees 
performed no out of home activity. This modification was necessary, because the production rates were derived 
from the trip data of mobile persons only. The resulting rates were used in both VISEVA models. 

Further model relevant parameters 

The MiD data base offers more possibilities for the generation of model relevant parameters. In particular, 
relevant information for model calibration can be obtained. For example, distributions of travel distances and times 
can be calculated from the MiD data set. This kind of data can be used both for VISUM runs and for multi-agent 
simulations. When using MiD for calibration/validation purposes, one has to take care whether very short distance 
trips can be found in the model.  

Synthetic population and land-use data 

As basic spatial unit in our models, the traffic analysis zones have to be described by their land-use and population 
data. Therefore, information from both areas has to be aggregated or disaggregated to this level depending on their 
original spatial resolution. It was important to us to use only publicly accessible data as input, in order to 
demonstrate possibilities and restrictions in data acquisition and to guarantee a self-determined process with data in 
modified applications of the transport model. The extensive processing of shop floor area as an important land-use 
data used by the model is exemplified in the following section. This data will be also important in multi-agent 
applications, since shopping opportunities can differ considerably but detailed and disaggregated data on it is hard 
to get. 

Land-use data processing: shop floor areas  

Original information about distribution of shop floor areas was available on the spatial level of the 12 new districts 
(aggregation of the former 23 districts) (20). Additional figures existed for selected shopping areas with a high 
proportion of shop floor area in m² (21). Combining both data sets made it possible to distribute data spatially on 
block level by a sequential approach, as follows. Figure 1 illustrates the procedure for the inner-city district Mitte. 

In a first step, the shop floor area (SFA) of specific, individually known stores ("high concentration" in 
figure 1) was manually assigned to the specific blocks. In a second step, the remaining SFA for each selected 
shopping area was manually assigned to surrounding blocks ("medium concentration" in figure 1). In a third step, 
remaining amounts of SFA on the district level were distributed proportional to population density per block. 
Finally, the SFA was re-aggregated from the block level to the TAZ level.  

These steps result in a hierarchically organized assignment of information about shop floor areas. Thus, 
effects of commercial concentration can be integrated into a transportation model. The hierarchical assignment of 
shop floor area provides a more realistic mapping of transportation attractions throughout the city. In the future, also 
different shopping activities with different frequencies can be modeled based on the data set created. 
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FIGURE 1: Shop floor areas in Berlin’s district Mitte  

RESULTS 

Since the mid 1980s, Berlin’s planning department has employed an activity based demand generation model, 
originally developed by Kutter (22, 23), and based on 72 different person groups with common transport behaviors. 
The detailed information on population composition and behavioral parameters has their source in geo-coded survey 
data of extensive amount (unfortunately not available to us). This model is used to generate 24-h OD matrices using 
the same zonal system as we did, at least for Berlin; its surroundings are represented with a higher spatial resolution 
by the planning department. Since no further detailed output of this official planning model was available, we 
calculated a 24-h OD matrix of private motorized traffic by summing up the purpose specific matrices in order to 
compare our model results to the ones of the official model. 

First, we compared the values of selected matrix cells of the official planning model and the model I (no 
subgroup differentiation). Both matrices contain individual motorized traffic of the study area. A comparison of the 
trip productions is shown in figure 2. As both matrices represent calculation results for Berlin associated traffic, but 
model the surroundings with the different level of detail, we compare selected 370 TAZ of an inner-city part of 
Berlin. As it can be seen, the values of the VISEVA model tend to be higher than the comparable trip productions 
generated with the official planning model. Nonetheless, the structure of Berlin’s demand could be reproduced with 
the simple model I, although the input data was less disaggregated and MiD contained only a small sample size for 
Berlin. 
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FIGURE 2: Comparison of trip productions generated by VISEVA model I and by the official planning 
model of Berlin’s planning department for 1998 (370 inner-city TAZ included) 

Although the reference model was carefully chosen, comparing model output of one model to output of 
another is not enough. Therefore, for both matrices of individual motorized traffic (generated by the VISEVA 
model I and the official 24-h matrix of the planning department), we employed the official assignment model and 
procedure in order to compare the resulting link volumes to real-world counts. The planning department provided us 
with count data, but only four counting stations had counts for 24 hours. Three of these four 24-h counts could be 
assigned to the simulation network. Therefore, only these three stations can be used for this comparison. At every 
station volumes of different vehicle classes of both directions were measured.  

Both VISEVA models generate individual motorized traffic only. The official assignment model and 
procedure include matrices of commercial and long-distance traffic passing through Berlin (through traffic) as well. 
These additional road user segments affect the route choice of individual motorized traffic. By applying an 
assignment procedure assigning all three road user segments simultaneously, as in the official assignment model, we 
make sure to capture this effect.  

In order to use the matrices for commercial and long-distance traffic used in the official model, we had to 
adapt the spatial resolution of the official and the VISEVA model. This concerns the traffic analysis zones of 
Berlin’s surroundings. In the official model, this region is described by 139 TAZ in our VISEVA model we made 
use of only 8 TAZ in the immediate vicinity of Berlin. Since our study focuses on the city of Berlin, this modeling 
approach seems suitable. Also the comparison of link volumes is conducted for the Berlin area only. In a pre-test we 
made sure that the results of the spatially adapted official model are similar to the results of the official model with 
its original spatial resolution.  

Table 4 shows results of this comparison of the official model (spatially adapted) and the VISEVA 
model I. Presented are simulated 24-h volumes of individual motorized traffic and counts of vehicles classified as 
cars (which could also be used by commercial and through traffic). At each counting station the measured volumes 
for both directions are compared to the simulated volumes in the VISEVA model I and the official model. 
Additionally, relative errors are calculated for each pair of volumes (cars measured and simulated). 

Since the available traffic count data does not provide us with the explicit counts for individual motorized 
traffic, we expected that both, the official planning model and our VISEVA model, will give lower traffic volumes 
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of passenger cars as counted in the real-world. Table 4 proves this assumption right; no simulated volume exceeds 
the measurements, which can be directly related to the fact that vehicles detected as passenger cars are also used by 
commercial and through traffic.  

 
TABLE 4: Comparison with real-world traffic counts 

The relative errors are relatively high and it can be questioned whether these errors can be completely 
explained by the missing road users using passenger cars as well. To answer this question, additional information on 
location was included in this comparison (last column). All of the measurements were taken from road segments not 
part of the inner-city area (370 selected TAZ), and two of the three stations are feeder roads. Those are 
circumstances, which explain the high error values of both models rather well. On average, relative errors of the 
volumes generated by the VISEVA demand are lower.  

CONCLUSIONS AND FUTURE WORK 

The results presented in the previous section look promising. With a minimum amount of publicly available input 
data we derived Berlin’s demand, which allows comparison to results derived from the official planning model. The 
demand was derived by applying the EVA modeling approach. As it was stated in the introduction, this modeling 
approach can help to overcome some of the shortcomings the traditional four-step modeling approach has. With 
input data easily to get in almost any study region one can get fairly good results. At the same time it offers 
possibilities differentiating the demand model. Additionally one can assign departure time intervals to the purpose 
differentiated matrices. VISEVA produces hourly demand based on hourly shares on daily traffic, specific to 
activity-purpose pairs. Thus, time and purpose dependent OD matrices produced with VISEVA shall also be 
sufficient as input for generation of initial agents’ plans. Such initial plans could be used as input to MATSIM 
iterative optimization process. In such a multi-agent simulation framework individualized information is processed 
and maintained at every level. Such an approach captures the temporal effects of traffic and would allow to model 
reactions to toll differentiated by demographics. When relaxation is reached in such a simulation, MiD can provide 
further information for validation. Simulated trip length and time distribution can be compared to the corresponding 
data reported in MiD. 

Of course there are several possibilities to improve the two VISEVA models presented. Obviously, 
differentiated behavioral parameters the parameters of the EVA function and the modal split, which could not only 
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be differentiated by activity-purpose pairs but also by subgroups model, have to be included in VISEVA model II. 
Another aspect concerning both VISEVA models is to differentiate traffic related to shopping and other not further 
specified purposes, but a refining like this could be also introduced while transforming the time and purpose 
dependent OD matrices into agents’ plans. A strong argument supporting the latter is that shop floor areas were 
made available on block level that is the basis of all spatial entities in Berlin. 

Generally, when transforming VISEVA output into agents’ plans the demand to date should be 
represented. Especially the network changed considerably from 1998 up to today. But also land-use data change a 
lot (also this data should be rather easy to obtain). Both environment changes can be partly explained by Berlin’s 
special situation after the reunification of Germany. New VISEVA runs with updated data could solve this.  

Finally we want to point out that Berlin’s surroundings—namely the federal state of Brandenburg—were 
only modeled very roughly (only commuting traffic was modeled). As long as we are interested in the inner-city 
area this is not problematic. If the focus changes, the surroundings have to be modeled more precisely. 

Concluding, it can be stated that it was possible to model the structure of Berlin’s demand for individual 
motorized traffic. When the purpose differentiated matrices are also time dependent, which can be done with 
VISEVA, we can produce initial plans for our multi-agent simulation of individual motorized traffic in Berlin. 
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