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Abstract 

Concrete exposed to cyclic freezing and thawing may deteriorate by surface scaling, internally 

developed cracks or a combination of both.  The rate of deterioration tends to be accelerated in 

concretes containing higher levels of supplementary cementitious materials (SCMs) including slag and 

limestone.  Fundamental insight into the relationship between cement composition and freeze-thaw 

resistance is therefore imperative for developing durable composite cement concretes.  In this paper, 

we investigated concrete samples prepared from CEM I, binary slag cements and ternary limestone 

slag cement blends at 0.5 w/b ratio without air entrainment.  The freeze-thaw test was based on the 

CIF method according to PD CEN/TR 15177.  Additionally, phase assemblages in the concretes before 

and after freeze-thaw damage were evaluated.   

Prior to commencing the freeze-thaw test, compressive strengths were similar but the composite 

cements were slightly more susceptible to carbonation. The scaling and internal damage resistance 

decreased in the order of CEM I, binary and limestone ternary blended cements. The composition of 

the scaled material differed from the bulk, revealing an absence of portlandite and a marked reduction 

in AFm and ettringite contents. A probable explanation for the reduced freeze-thaw resistance include 

the porosity differences as well as the lower portlandite content compared to CEM I concrete.   
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Introduction 

Portland cement-slag-limestone composite cements offer a low carbon alternative to conventional 

Portland cement clinker (PCC). The partial replacement of PCC reduces the clinker factor and 

consequently lowers the carbon footprint.  Meanwhile, limestone is ĂďƵŶĚĂŶƚ ŝŶ ƚŚĞ ĞĂƌƚŚ͛Ɛ ĐƌƵƐƚ and 

when blended with alumina-rich SCMs, calcium carbonate partially reacts with dissolved alumina from 

the SCM.  This prevents the conversion of ettringite to monosulphoaluminate with carboaluminates 

formed instead (Arora et al., 2016, De Weerdt et al., 2011a, De Weerdt et al., 2011b).    Recently, the 

presence of limestone has also been noted to accelerate slag hydration in composite cements (Adu-

Amankwah et al., 2017).  These effects outlined above result in a reduced porosity and hence 

increased compressive strength (Bonavetti et al., 2003, Bonavetti et al., 2001, Lothenbach et al., 2008).  

Generally, composite slag cements tend to perform better than CEM I systems in aggressive chemical 

environments such as upon exposure to sulphates (Whittaker et al., 2016) and chlorides (Shi et al., 

2017). However, higher levels of limestone tend to increase porosity due to the limited reaction of 

calcite and could also increase the risk of thaumasite formation, particularly at low temperatures.  

Unsatisfactory carbonation and freeze-thaw resistance have been reported for both slag and 

limestone containing cements, be they in binary or ternary systems (Meddah et al., 2014, Deja, 2003, 

Bleszynski et al., 2002, Sulapha et al., 2003, Tsivilis et al., 2000). Giergiczny (Giergiczny et al., 2009), 

reported lower resistance to scaling in binary slag cements despite higher compressive strength and 

reduced suction capacity compared to the reference CEM I. Osborne (Osborne, 1999) however 

concluded that the scaling resistance was worsened by slag loading above 50 %  and particularly 

freeze-thawing in marine environment. Higher scaling in ternary PCC-slag-limestone cements have 
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also been reported elsewhere (Lang, 2005).  Some authors have ascribed the impaired freeze-thaw 

resistance to a modified a pore structure, and in air-entrained concretes, to interactions with the 

entraining admixtures (Deja, 2003, Giergiczny et al., 2009). The improved microstructure associated 

with blended cements (i.e. evident through higher compressive strength and less permeable 

concretes) but yet reduced freeze-thaw resistance cannot be explained entirely by the existing freeze-

thaw mechanisms (Fagerlund, 1997, Powers, 1945, Setzer et al., 2004).  

Some authors have suggested similar controlling mechanisms for both scaling and internal damage 

(Dhir et al., 2007, Osborne, 1999, Giergiczny et al., 2009, Deja, 2003, Penttala, 2006).  These 

mechanisms including the hydraulic pressure theory (Powers, 1945) and the alternative closed 

container theory (Fagerlund, 1997), osmotic pressure (Powers and Helmuth, 1953), and crystallization 

pressure (Scherer, 1999, Valenza Ii and Scherer, 2007), explained freeze-thaw induced damage in 

terms of the pressure associated with ice growth in capillary pores.  The glue-spall mechanism has 

however been suggested as a possible phenomenon responsible for scaling (Valenza Ii and Scherer, 

2007).  The latter is based on the tensile stress field generated between the concrete and ice interface 

(ÇŽƉƵƌŽŒůƵ ĂŶĚ SĐŚůĂŶŐĞŶ͕ ϮϬϬϴ, Valenza Ii and Scherer, 2007, Valenza and Scherer, 2007).  

Meanwhile, the microscopic-ice lens theory (Fagerlund, 1997) which suggests shrinkage-induced 

collapse of pore walls due to the migration of water to the surface is also widely accepted for internal 

damage.  The gap in the existing theories is the role of dissolved ions which may be present in the 

migrating pore fluid.  The objective of this paper is to initiate a discussion on the fundamental 

mechanism of freeze-thaw by comparing the microstructure of concretes before and after freeze-

thaw damage.  The concretes were formulated from CEM I and composite cements. 

Materials and methods 

Materials 

Three types of cement: CEM I 42.5R, 50%CEM I 52.5R+50% slag and 50% CEM I 52.5R+40% slag +10% 

limestone herein referred to as C1, C2S and C2S-L respectively were studied.  CEM I 42.5 R was chosen 

as the reference cement for the study. This is consistent with the industrial practice for comparing 

concretes having similar compressive strength.  Anhydrite was used to adjust the sulphate content of 

the composite cements to match that of C1. The constituent compositions, as determined by XRF, are 

detailed in Table 1. The particle size distribution of the cement constituent materials and those of the 

aggregates are shown in Figures 1a and 1b respectively.  

Table 1 Oxide composition of raw materials (%wt.) 

Composition  SiO2 Al2O3 MgO CaO K2O Na2O SO3 Blain 

(m2/kg) 

CEM I 42.5 R[C1] 20.04 5.37 1.42 62.47 0.83 0.08 3.24 383 

CEM I 52.5 R[C2] 20.37 5.56 1.65 62.10 0.65 0.49 3.54 593 

Slag [S] 34.87 11.62 5.82 41.82 0.47 0.01 3.13 454 

Limestone [L] 2.00 0.08 0.64 53.13 0.10 - 0.07 328 

Anhydrite  2.94 0.60 1.45 38.32 0.16 - 52.24 472 

 

The yield method of concrete mix design was employed, taking into account the specific gravities of 

all constituent materials. The water/cement ratio for concrete was maintained at 0.5. Water 
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absorption of the aggregates, 0.9 and 2 % for the fine and coarse aggregates respectively, were 

accounted for in the mix design. The following predefined values were kept constant in the mix 

designs: 320.3kg/m3 cement, 2.5% total air and 0.54 fine to coarse aggregate ratio. 20% of the coarse 

quartzite aggregates were 10mm with the remainder being 20mm. No air entrainment admixtures 

were used. The resulting proportions per cubic metre are listed in Table 2. 

  
 

Figure 1 Particle size distribution of (a) constituent cementitious materials by laser granolumetry, 

GGBS, granulated blast furnace slag;  (b)  aggregates by sieve analysis.  

 

Table 2 Concrete mix design per kg/m3 

Mix ID CEMI Slag Limestone Anhydrite Water Aggregates 

    Fine 10mm 20mm 

C1 320.3 - - - 160.2 651.8 237.7 950.8 

C2S 162.3 150.8 - 7.2 160.2 648.8 236.6 946.4 

C2S-L 163.9 121.8 27.4 7.2 160.2 648.1 236.4 945.5 

NOTE:  The composite cements contained 3 % sulphate content.  

Methods 

Concrete samples were prepared according to EN 12390:2. The mixing procedure for concrete 

involved dry mixing of aggregates and cement in a 60-litre drum mixer for homogeneity. After adding 

the designed water, mixing continued for 30 seconds and materials adhering to the sides and bottom 

of the mixing pan were scraped. The concrete was mixed for further 60 seconds and testing for fresh 

properties commenced 10 minutes after mixing. Cubes for compressive strength and carbonation 

testing were 100 mm, while 150 mm cubes were used for freeze-thaw testing. Specimens were kept 

in the mould for 24 hours before de-moulding.  The samples were immediately stored in a water bath 

Ăƚ ϮϬ ȗC for 7 days.  

Slump and the flow table tests were performed on the fresh concretes according to BS EN 12350-

2:2009 and BS EN 12350-5:2009 respectively. The fresh density of concrete was also assessed in 

accordance with EN 12350-6:2009 using a 5-litre test container. Meanwhile, the fresh air content was 

determined by the pressure method based on BS EN 12350-7:2009. For both density and air content 

measurement, compaction of concrete was achieved on a vibrating table. Care was taken to avoid 

over-vibration. For calculating the fresh air content, the aggregate correction factor was not 

determined and hence assumed to be nil.  
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Compressive strength was performed on 100 mm cubes. These were moist cured for 7 days then 

stored at 20 °C and 65 % relative humidity for 21 days. Testing was performed on a Tonipact cube 

crusher at a loading rate of 3kN/s in triplicates. The extent of carbonation among the samples was 

assessed by spraying phenolphthalein indicator solution on a freshly split 100 mm cubes.  

Water absorption was measured on three samples per concrete mix. These were randomly selected 

from the freeze-thaw samples prior to the capillary suction.  This means that the samples were 

conditioned at 20 °C and 65 % relative humidity for 21 days instead of being oven dried to constant 

weight (Basheer et al., 2001, Hall, 1989). All sides apart from the test surface and the top were sealed 

with epoxy resin. The test surfaces were placed on 5 mm diameter stainless spacers in a container. 

The container was filled with deionized water such that, test surfaces were 5 mm below the surface 

of the water (Setzer et al., 2004). The mass change due to water suction was recorded regularly for 

the first 64 minutes using an electronic balance with 0.1 g reading accuracy. The water absorbed, Wt 

at a given time t, was calculated from equation 1.  

௧ܹ ൌ ሾெ೟ିெబሿఘ஺  ͙͙͙͙ Equation 1 

Where M0 is the initial mass of concrete before immersion, g; Mt ŝƐ ƚŚĞ ŵĂƐƐ ĂĨƚĞƌ ƚŝŵĞ ƚ͕ ʌ ŝƐ the 

density of water in g/mm3 and the A, cross-sectional area of the test surface, mm2. The sorptivity 

coefficient was then determined by finding the slope of the line of best fit when plotting Wt against 

the square root of time. 

Freeze-thaw testing 

Freeze-thaw testing was performed by the CIF method according to PD CEN/TR 15177: 2006, i.e. in 

deionized water. Both internal structural damage and the mass of scaled matter were measured at 

regular intervals. The temperature versus time profile used in the present study, however, differed 

from the prescribed profile for the CIF method in terms of the freezing and thawing rate. A complete 

freeze-thaw cycle took 24 hours (see Figure 2) as opposed to 12 hours in PD CEN/TR 15177: 2006. This 

modification was imposed by the freeze-thaw chamber.  It, however, agreed closely with the 

temperature profile for the freezing medium prescribed for the slab test according to PD CEN/TR 

15177: 2006. 

 

Figure 2 Implemented freeze-thaw cycle as measured in the test solution (deionized water). Also 

shown is the prescribed profile for the slab test according to PD CEN/TR 15177: 2006. 

The scaled mass was collected at regular intervals after 3-minutes cleaning in a sonic bath.  These were 

then dried at 40 °C to constant mass in a glovebox. The deviation from the prescribed 110 ± 10 °C 

drying temperature was to preserve all phase assemblages in the specimen, particularly ettringite and 
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carboaluminate. Internal structural damage was determined based on regular measurement of the 

transit time using a Proceq Pundit Lab+ ultrasonic pulse.  

Microstructural characterisation 

The microstructure was characterized by thermal analysis, XRD and SEM on the bulk and scaled 

concrete.  

Two sets of samples for XRD and TGA were taken from the test samples after the 56th freeze-thaw 

cycle; from the bulk approximately halfway through the sample and from the scaled matter. These 

were similarly dried to constant mass at 40 °C before characterisation.  

Thermogravimetric analysis (TGA) was carried out under nitrogen on 16-18mg of additionally ground 

concrete samples, using a Stanton 780 Series Analyser. The heating range was 20-1000ͼC at a rate of 

20ͼC/minute.  XRD data were acquired on a Bruker D2 Phaser using a Cu anode operating at 30kV and 

10mA, over a range of 5-70 ͼϮɽ͘ The step size was 0.0344 ͼϮɽ͕ ƵƐŝŶŐ ƚŚĞ Lynxeye detector.  

For SEM observations, 5 mm thick concrete slices were cut through the test surface after the curing 

period.  These were conditioned and freeze-thawed in deionized water as per the CIF method. Samples 

were continuously monitored until sufficient scaling was noticed. The samples were hydration 

stopped by double solvent exchange using isopropanol and ether plus drying at 40 °C on a preheated 

glass plate in the glove-box.  The dehydrated samples were then resin impregnated and polished down 

to 0.25 µm.   SEM images were acquired in backscattered electron mode using a JEOL 5910 scanning 

electron microscope. The instrument was operated at 15KeV accelerating voltage and images were 

collected at either 900x or 2000x magnification and a working distance of ~ 10mm.  

Results and discussion 

Fresh properties of concretes investigated 

The fresh properties of concretes are influenced by the constituent cement composition, fineness, 

w/b ratio and the aggregate content, among other factors. A summary of the fresh properties of the 

investigated concrete samples is presented in Table 3. A lower slump was observed in the concretes 

prepared from the composite cements as compared to the reference CEM I 42.5 R concrete. 

Substituting 10% of slag with limestone resulted in a further increase in the slump. A similar trend was 

noticed in the flow table test and is consistent with results reported elsewhere (Domone, 1998, 

Meddah et al., 2014, Huang et al., 2017). The results aligned closely with the fineness of the 

constituent materials. Both CEM I 52.5 R and slag used to formulate the composite cements were finer 

than the CEM I 42.5 R (see Figure 1) hence had greater particle surface areas leading to a higher 

demand for water. The limestone, on the other hand, is coarser and therefore improved workability.   

It is to be remarked that in the investigated composite cements, the effective w/clinker ratio is 

doubled.  Given that slag and limestone react at a much slower rate compared to clinker, and that the 

hydrates from slag rather refine the gel pores (Berodier and Scrivener, 2015), capillary porosity is 

increased in the composite cements.  This increases their susceptibility to freeze-thaw damage due to 

the increased volume of freezable sites (capillary pores) upon saturation.   

The fresh state air contents were similar among the investigated concretes (see Table 3).  It must be 

noted that no air entraining admixtures were used. Additionally, the mixing of the concrete, vibration 

and test procedures were consistent across the mixes. Consequently, the influence of fresh properties 

on the freeze-thaw resistance could be discounted.  

Table 3 Fresh properties of investigated concretes  
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Mix Slump (mm) Spread (cm) Density(kg/m3) Air content 

(%) 

C1 170 43 2370 1.1 

C2S 80 36 2350 1.4 

C2S-L 110 40 2360 1.3 

  

Hardened properties (strength, carbonation, water absorption) 

Carbonation 

The CIF test method (PD CEN/TR 15177) prescribes conditioning of test specimens at 20 °C and 65 % 

RH for 21 days before commencing the freeze-thaw test. Within this period, the pores were partially 

emptied and consequently promoted carbonation. All three concretes carbonated during this drying 

period as can be seen from Figure 3 (colourless region).  However, higher carbonation depths were 

noticed among the composite cements, consistent with the literature (Ngala and Page, 1997, 

Utgenannt, 2002, Sulapha et al., 2003, Osborne, 1999). The carbonation depth further increased in 

the mix containing 10% limestone addition.    

  

 
 

Figure 3 Extent of carbonation among the investigated concretes following conditioning at 20 °C and 

65 % RH for 21 days as a function of cements: Mix C1, Mix C2S and Mix C2S-L 

Interpretation of the extent of carbonation among the investigated cements must take into account 

the different phase assemblages and their effects on the pore structure (Wowra, 2002).  The 

composite cements already have lower portlandite (CH) contents, hence lower buffering for the C-S-

H.  While carbonation of CH densifies the pore structure, that of the C-S-H coarsens the microstructure 

due to the prevalence of a silica gel.  At 50 % clinker replacement, the C-S-H/CH ratio is significantly 

higher and explains the increased carbonation in the composite cements.  Differences in the 

carbonation resistance of the investigated mixes have important implications on the suction 
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characteristics of the affected regions and the overall performance including strength and freeze-thaw 

resistance.    

Water absorption 

Water absorption and the derived sorptivity give an indication about the available pore volume and 

their connectivity in the concrete test surfaces (Basheer et al., 2001, Hall, 1989). The specimen 

reported here were conditioned at 20 °C and 65 % RH for 21 days instead of oven drying at 40 °C to 

constant weight (Basheer et al., 2001, Basheer, 1991, Hall, 1989). By this modification, the presented 

sorption data are representative of the suction characteristics of the samples used for the freeze-thaw 

test and are thus referred to as apparent sorptivity. The data reported is the mean of three test 

samples.  The absorbed water profiles were generally similar among the investigated concretes (Figure 

4a).  The similar water absorption profiles may have arisen from a comparable degree of drying among 

the samples.  However, this does not necessarily imply comparable microstructures as revealed by the 

rate of water uptake (i.e. apparent sorptivity).   The apparent sorptivity was lower in the composite 

cement mixes, thus capillary suction progressed at a slower rate in the composite cements compared 

to the control mix, consistent with (Chen et al., 2014).   

The total moisture absorbed at the end of the 7-day capillary suction is a reasonable approximation 

of the water accessible porosity of the concrete (Basheer et al., 2001).  After this suction period, the 

total water absorbed was 1.591, 1.271, 1.227 g/mm2 in the CEM I 42.5 R, binary and the limestone 

ternary cement mixes respectively.  It is probable that porosity was refined by slag hydration following 

the 7 days capillary suction leading to more saturated pore systems compared to the CEM I which is 

coarser.  The effect of limestone is consistent with Chen et al. (Chen et al., 2014) and agrees well with 

the apparent sorptivity data (Figure 4a).  The lower apparent sorptivity and total suction after 7 days 

in the composite cements could be attributed to multiple reasons including the prevalence of 

unconnected or finer pores, as well as a lower total pore volume.  A lower effective porosity (i.e 

emptied upon drying) in the composite cements also has implications on the volume of pores which 

may become saturated as well as the space available to act as pressure-reliving centres during 

freezing.    

Compressive strength 

Compressive strengths before commencing the freeze-thaw test were similar for all three concretes, 

as shown in Figure 4 b. This is consistent with the degree of slag hydration in the composite cements 

and the resulting microstructure (Adu-Amankwah et al., 2017) such that, partial replacement of CEM 

I 52.5 R with slag and also the slag with 10% limestone did not impact negatively on strength. The 

slight differences in the extent of carbonation (Figure 3) did not influence the compressive strength 

significantly.   
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Figure 4 Effect of cement composition on the (a) water absorption and sorptivity, (b) compressive 

strength after 7 d curing in water and 21 d conditioning at 65 % RH, 20 °C. 

Freeze-thaw resistance 

The concrete samples were subjected to cyclic freezing and thawing in de-ionized water after the 7-

day pre-saturation. The test surfaces after the 56th freeze-thaw cycle are shown in Figures 5. All three 

mixes showed varying extents of surface scaling at the end of the freeze-thaw test. The CEM I 42.5 R 

concrete showed better resistance compared to the composite cement mixes.  

Internal damage and scaled mass were measured following the procedures outlined in PD CEN 15577 

and the results are shown in Figures 6 a and b.  Resistance to the internal damage expressed as a 

percentage of the relative dynamic modulus was lower in the composite cement concretes; with both 

systems falling below the 80 % failure criteria assumed before 56 freeze-thaw cycles. The binary slag 

blend failed after 35 freeze-thaw cycles as opposed to the ternary cement concrete where the 80 % 

failure limit was reached after 25 freeze-thaw cycles.  

The cumulative scaled mass is shown in Figure 6 b. The greatest scaling was noticed in the composite 

cement concrete containing 10 % limestone. Reduced scaling resistance in the slag containing cements 

agrees with the findings reported elsewhere (Giergiczny et al., 2009, Osborne, 1999) and further 

reductions upon limestone addition is consistent with the literature (Dhir et al., 2007, Meddah et al., 

2014, Tsivilis et al., 2000).  

The preceding section indicated that freeze-thaw resistance evident through surface scaling and 

internal structural damage was lower in the slag blends, reducing further in the presence of limestone. 

As discussed previously, the three mixes had similar air contents in the fresh concretes, compressive 

strength and sorptivity.  However, a slightly higher carbonation depth and lower total absorbed water 

after the pre-saturation period characterized the limestone ternary blend. Both of these could 

potentially reduce resistance to surface scaling (Deja, 2003, Stark et al., 1997, Utgenannt, 2002) and 

internal damage (Fagerlund, 1997, Penttala, 2006). Lower water sorption indicates a denser 

microstructure with the degree of saturation near the surface potentially exceeding the 91% limit 

(Fagerlund, 1977). Carbonation, on the other hand, reduces the available portlandite at the surface 

and coarsens the microstructure of the composite cements (Chen et al., 2006, Johannesson and 

Utgenannt, 2001) thus increasing porosity and hence the admissible water into concrete as well as a 

weakened microstructure. The fact that the CEM I concrete absorbed more water after the 7-day 

capillary suction but was resistant to scaling and internal damage highlights the importance of factors 

other than porosity.     
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Figure 5 Evidence of freeze-thaw damage in concrete as a function of cement composition after 56 

freeze-thaw cycles as a function of cements: Mix C1, Mix C2S and Mix C2S-L 

  
Figure 6  Effect of cement composition on the: (a) internal damage measured as the relative dynamic 

modulus (internal damage) and (b) scaled mass as a function of freeze-thaw cycles 

 

Microstructural changes associated with freeze-thaw 

The composition of the bulk concrete differed for the three binders, as evidenced by DTG (Figure 7) 

and XRD (Figure 8). The main differences were in the AFt/AFm, portlandite and calcite contents.  In 

the bulk samples, DTG (Figure 7 a) and XRD (Figure 8 a) indicated more ettringite in the composite 

cements, increasing further in the limestone containing blend, consistent with the literature (De 

Weerdt et al., 2011a, De Weerdt et al., 2011b, Lothenbach et al., 2008). Carboaluminates were noticed 

in all mixes, with the balance shifting towards monocarboaluminate at the 10 % limestone mix, in 

agreement with Matschei et al. (Matschei et al., 2007a, Matschei et al., 2007b). The lower portlandite 

contents in the composite cement concretes can be attributed to the replacement of clinker.  
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Figure 7 Effect of freeze-thaw on the composition of the paste phase in concrete (a) bulk and (b) scaled 

matter as analysed by thermogravimetry [Note:  No corrections for the  volume of paste] 

 

Figure 8 Effect of freeze-thaw on the composition of the paste phase in concrete (a) bulk and (b) scaled 

matter as analysed by x-ray diffraction [Note:  No corrections for the  volume of paste] 

Significant compositional differences were noticed between the bulk and the scaled matter for all 

three samples. The DTG (Figure 7 b) showed a reduction in the peak attributed to ettringite and C-S-
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H, while XRD (Figure 8 b) confirmed a reduction in the ettringite content. The carboaluminate peaks 

present in the bulk samples were absent from the scaled material. A further noticeable observation 

was the portlandite peak, being depleted in the scaled matter. An increase in the calcite content, 

indicative of carbonation was noticed in the scaled matter and consistent with the literature (Deja, 

2003, Johannesson and Utgenannt, 2001, Utgenannt, 2002).  

The freeze-thaw damaged and undamaged regions were observed by SEM.  The images were collected 

throughout the sample after scaling was noticed. Figures 9 (a-c) were acquired at locations within the 

bulk concrete (i.e. undamaged regions). An intimate mix of aggregates, hydrates and unreacted 

particles could be seen.  

Significant changes in the microstructure were seen following the freeze-thaw exposure, irrespective 

of the cement composition. Cracks emerged, but to a lesser extent in the CEM I 42.5 R compared to 

the composite cement concretes. Three regions marked as regions 1-3 could be differentiated based 

on the grey scale (see Figure 9 dʹf). Region 1, closest to the test surface, appeared darker and 

corresponded to a region of lower atomic mass due to the presence of voids. This region was thus 

more porous due to degradation of hydrates. A closer look at this region reveals pockets of hydrates 

particularly inner product C-S-H in the binary slag blend. Such features were not so visible in the 

limestone containing concrete.  Projecting needle-like features were rather noticed.  

 

C1 C2S C2S-L 
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Figure 9 microstructural changes upon freeze-thaw of concretes showing the effect of cement type 

The intermediate region (2) showed a partially degraded microstructure. The region seems more 

compact but differences in the grey scales could be seen as the cement type changed. It is conceivable 

that this region shifted with the progressing ice front. The changes in grey scale were reflective of 

portlandite loss, as revealed by XRD and DTG, and possibly from C-S-H, AFt and AFm decalcification. 

In mix C2S-L however, the grey scale between the interface and the undamaged region is similar but 

the former was characterized with coarser C-S-H compared to the undamaged region, 3. 

The interfacial transition zone (ITZ), due to the high porosity and accumulation of portlandite 

(Scrivener et al., 2004) is known to be a weaker region.  Previous studies have identified this zone as 

a precursor to freeze-thaw damage (Basheer et al., 2005). This study indicates that the ITZ is only 

influential once in the vicinity of the ice front, as shown in Figure 9 (m ʹ o).  Here, the hydrates in the 

ITZ erode and provide channels for further crack propagation and possibly water and ion migration. 

 

Conclusions 

The freeze-thaw resistance of concretes prepared from CEM I, binary slag and ternary slag-limestone 

cements have been investigated.  The microstructures differed in terms of the proportions of hydrates 

and also the pore structure as revealed by sorptivity.  The compressive strengths were however 

similar. The carbonation resistance decreased slightly in the composite cements. The composite 

cement concretes showed lower resistance to scaling and internal damage compared to the CEM I 

42.5 R concrete, with the presence of limestone further reducing the freeze-thaw durability. The 

amount of scaled matter was higher in the composite cements which also had reduced carbonation 

resistance. Therefore, barring carbonation, the composite cements may exhibit improved freeze-thaw 

resistance comparable to the reference CEM I 42.5 R. It is thus imperative that existing standards and 

test methods take into account the lower portlandite content, as well as the reduced carbonation 

resistance of composite cement, concretes.  Prolonged curing is one alternative to achieve this.  

The phase composition of the scaled matter was different from the bulk material; being deficient in 

portlandite while the calcium carbonate content increased and carboaluminates decomposed. The 

composition of the scaled matter was similar in all three types of cement apart from the calcite 

content, which was obviously influenced by the initial limestone content.  
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It is probable that the mechanism controlling scaling is common for the cement types studied and 

associated with a decalcification process. It is concluded from the SEM images that the outer product 

C-S-H degrades much quicker which reflects differences in the strength of the C-S-H.  It is probable 

that differences in the strength of the C-S-H in blended cements compared to the reference cements 

may also hold explanations about their freeze-thaw resistance.   The ITZ where portlandite may also 

accumulate appears to accelerate crack propagation only when in the vicinity of the ice front.  
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