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Abstract—Speculative execution is the mechanism adopted by
current MapReduce framework when dealing with the straggler
problem, and it functions through creating redundant copies
for identified stragglers. The result of the quicker task will
be adopted to improve the overall job execution performance.
Although proved to be effective for contention caused stragglers,
speculative execution can easily meet its bottleneck when mitigat-
ing data skew caused stragglers due to its replication nature: the
identical unbalanced input data will lead to a slow speculative
task. The Map inputs are typically even in size according
to the HDFS block configuration, therefore the skew caused
stragglers happen mainly in the Reduce phase because of the
unknown intermediate key distribution. In this paper, we focus
on mitigating data skew caused Reduce stragglers, propose ImKP,
an Intermediate Key Pre-processing framework that enables the
even distributed partition for Reduce inputs. A group based rank-
ing technique has been developed that dramatically decreases
the pre-processing time, and ImKP manages to eliminate this
timing overhead through parallelizing the pre-processing with the
file uploading procedure (from local file system to HDFS). For
jobs that take input directly from HDFS, ImKP minimizes the
overhead by storing the < GroupedKey,Reducer > mapping
result on every node within the cluster for reuse. Experiments are
conducted on different datasets with various workloads. Results
show that, compared to the popular hash partition, ImKP can
dramatically decrease Reduce skew, achieving a 99.8% reduction
in the coefficient of variation of the input sizes in average, and
improve up to 29.37% job response performance.

Keywords—Stragglers, MapReduce, Skew-handling, Partition.

I. INTRODUCTION

The MapReduce framework proposed in 2008 [1] has now

become the de facto platform to support large-scale parallel

processing and data analytics in production systems. Under

this framework, the computation of a job is divided into several

sub-tasks running on distributed machine nodes. Map phase is

prior to the Reduce phase, and within each phase, sub-tasks

are executing in a parallelized manner. There are many chal-

lenges in efficient MapReduce job execution, and the straggler

problem is one of them [2]. In this paper, stragglers refer to the

tasks that are suffering from unexpected slow execution and

exhibit obvious longer duration compared to other parallelized

tasks within the same phase of the MapReduce job.

The dominant method to mitigate stragglers is speculative

execution [1], which functions via redundant methodology in

a “detection-reaction” manner. Once a straggler is identified,

a replication task will be generated to compete with the

straggler, and it is expected that the speculative copy will

complete prior to the straggler to save the overall job execution

time. In addition, in order to avoid the identification delay,

some methods push the speculative execution to extreme and

functions in a pure cloning based manner [3], in which each

sub-tasks will have two running copies co-exist within the

system and only the quickest result will be adopted.

These existing redundant based mechanisms achieved some

level of success. For example, the speculative execution is

officially adopted by Hadoop and is deployed in production

systems including Google, Facebook, Yahoo!, etc. [4]. How-

ever, the efficiency of such methods is still far from perfect:

observations reported in [5] based on Yahoo! data reveal that

as many as 90% speculations are actually useless - finish after

the original stragglers and end up being killed by the system.

Wasted replications make no contributions to improve job

execution and can deteriorate system availability. The reason

behind such low speculation efficiency varies. For example,

some may due to the late identification of stragglers that leaves

limited time for the duplication to catch up. Another source of

unreasonable speculation is created when dealing with skew

caused stragglers. Due to the fact that the replication has

to process identical input with the straggler, the speculative

copy will still suffer from long execution. And unlike the late

detection which can be improved by advanced speculation,

the skew caused straggler is the unavoidable bottleneck that

requires additional solutions.

Many real world applications exhibit large amounts of data

skew [6], and there is much literature that focuses on handling

skews in MapReduce framework. For Map, the parallelization

process is usually automatic, dependent on the input size and

HDFS [7] block size, therefore Map skews can be addressed

by further splitting the expensive map tasks or adjusting the

HDFS data chunk size. In contrast, skews in the Reduce phase

is much more challenging: for an arbitrary application, the

distribution of the intermediate data cannot be determined

ahead of time. In this paper, we analyze the skew behaviors

with various data sets under MapReduce and illustrate their

influence toward efficient job execution.

In order to mitigate the Reduce skews, we propose ImKP,

the Intermediate Key Pre-processing framework that enables

the even distribution of Reduce inputs. By inserting a pre-



processing layer prior to the original Map phase, the mapping

decision of < intermediateKey,Reducer > can be directly

used by the corresponding ImKP even partitioner. In addition,

a group based ranking technique is adopted by ImKP that

dramatically cuts back the pre-processing calculation timing

overhead, and storing the file of < GroupedKey,Reducer >
instead of < intermediateKey,Reducer > saves the space

as well as the accessing latency. Another optimization of

parallelizing the pre-processing with the file uploading phase

is implemented to eliminate the overhead for workloads that

take inputs from local file system rather than HDFS. Results

show that ImKP is capable of decreasing the skewness of

Reducer inputs by 99.8% in average (through the measurement

of coefficient of variation), and achieved an improvement of

up to 29.37% in job response time.

The rest of the paper is structured as follows: Section 2

presents the related work; Section 3 discusses the problem

description; Section 4 illustrates the ImKP design to cope with

the reduce skew; Section 5 discusses the experiments setup and

results; Section 6 introduces conclusions and future work.

II. RELATED WORK

The MapReduce job performance degradation due to the

straggler problem is widely discussed in recent years with

speculative execution [1] to be the dominant straggler mit-

igation method deployed in production systems. It monitors

the progress of each parallel task and launches redundant

task replicas for identified stragglers with the assumption that

the speculation will surpass the original task. There exist

numerous techniques which extend speculative execution in

terms of specified cases such as LATE [8] for heterogeneous

nodes environments. It adopts the metrics of the Longest

Approximate Time to End instead of the traditional progress

score for MapReduce jobs to enhance the straggler detection

precision. Dolly [3] is designed for small jobs with less than

10 parallel tasks, adopting full cloning instead of creating

speculations only for identified stragglers.

While these speculation based works are shown to be

effective in mitigating stragglers caused by reasons such as

resource contention or hardware heterogeneity, they encounter

unavoidable bottleneck when dealing with data skew caused

stragglers: due to the duplication nature, the replica task

processes identical input file with the skew straggler will

still suffer from the uneven input distribution. It is shown

that a lot of stragglers in MapReduce framework are caused

by the curse of skew: the Zipf distribution of the input or

intermediate data [6]. In order to alleviate this bottleneck,

MCP [9] improves speculation by deliberately avoid creating

task copies for skew caused stragglers, however, this avoidance

base method did not mitigate the skew at all.

For Reduce skew handling approaches, Co-worker [10]

functions in a way that as long as a straggler is identified, the

reserved co-worker task will help process the remaining data.

Its effectiveness is dependent on the choice of the reserved co-

worker number, and will introduce resource overhead when

there is no skew. SkewTune [11] is another popular skew

mitigation method that works through re-partition. As long as

there is a free slot within the system, the task with the greatest

remaining time will be re-partitioned. However, the Reduce

outputs of both these two methods have to be reconstructed

due to the fact that the MapReduce requires all tuples sharing

the same key to be dispatched to the same Reducer, and this

reconstruction introduces additional complexity.

There are some methods rely on node performance when

dealing with Reduce skews. For example, the work detailed

in [12] splits the cluster into two groups depending on machine

processing capacity. The intermediate data number per Re-

ducer is counted. As long as the number for a certain Reducer

surpasses a threshold, this Reducer will be assigned to quick

nodes for execution. However, the threshold to decide the skew

level differs with different workloads, and the coarse grain

node classification is limited for efficient skew mitigation.

The most popular methodology for Reduce skew mitigation

focuses on optimized partition approaches to distribute the

intermediate keys to Reducers. Hash and range are two of the

most common partition methods. Hash partition is relatively

straight forward, only requires the Reducer number to gener-

ate the < intermediateKey,Reducer > mapping decision

through hash calculation, while range partition requires the

developer to know the data distribution, therefore sometimes

needs sampling. LIBRA [13] is the representative work of this

type. It launches selected sample Map tasks first to estimate the

intermediate data distribution for partition decision making.

However, the efficiency of this method is largely dependent on

the estimation accuracy, which varies with different sampling

strategies, sample portion selections, etc.

III. BACKGROUND AND PROBLEM DESCRIPTION

Before presenting our algorithm, it is necessary to introduce

the background of the MapReduce framework, detailing the

types of skews and analyzing why skew handling is important

as a complementary part for straggler mitigation schemes.

The notions used in the paper are defined as follows: the

cluster is consisting of M machine nodes with MapReduce

jobs J running on it. Each job J has N subtasks running

in parallel, where TMi
j and TRi

j represents the ith Map and

Reduce task belonging to J respectively. It is assumed that

subtasks in the same phase from the same job exhibiting non-

straggler behavior have similar response time. The duration of

TMi
j and TRi

j are defined as the time between scheduling and

completion, represented as DMi
j and DRi

j , respectively.

A. The MapReduce Framework

MapReduce is the de facto model for applications that

process vast amounts of data in parallel on large clusters of

commodity hardware in a reliable, fault-tolerant manner [1],

responsible for scheduling, monitoring tasks and re-executing

the failed ones automatically. YARN is the second version

of Hadoop [14] - the most popular open source version of

MapReduce, which consists of a master ResourceManager,

a NodeManager per node, and an AppMaster per applica-

tion [15]. MapReduce jobs J usually split inputs into inde-



Fig. 1. The word distribution of (a) the Shakespeare collection, (b) the English
wiki dataset, and the edge number distribution of (c) the Google web dataset,
(d) the Facebook social circles dataset

pendent chunks stored on HDFS, which are then processed

by TMi
j s in a parallel fashion. TRi

j s take the Map outputs as

inputs to generate the final result.

The overall flow of a typical MapReduce job J is as follows:

(input) < K1, V1 >→ Map → [< K1, V1 >] → combine

→< K1, [V1] >→ partition →< K1, [V1], R >→ shuffle

→< K2, [V2] >→ Reduce → [< K2, V2 >] (output). The

TMi
j s transfer the input file into key value pairs with the

customized keys defined by the application developer. For

example, in a WordCount job which counts the frequency of

each word in a document, the keys are defined as independent

words, with the value of “1” indicating one appearance of the

key. The combine phase is an optional optimization which

combines the value of the same keys within each TMi
j to

reduce the network traffic for later shuffle phase. In the pre-

vious WordCount example, the combine process will generate

one record of < word, 5 > out of 5 < word, 1 > pairs.

The partition phase is responsible for marking the keys with

Reducers, which determines the Reduce input distribution.

The < K1, V1 > pairs in the aforementioned flow is marked

with suffix 1 to indicate that the corresponding operations are

belonging to the Map phase in the framework. The operations

in Reduce phase are marked with suffix 2 in the flow. The

suffix number is only used to differentiate the MapReduce

phases, doesn’t mean K1 and K2 are different keys.

For the Reduce phase, there are primary three parts: the

shuffle operation where the TRi
j copies the output marked with

its own ID from each TMi
j using HTTP across the network;

the sort operation merges and sorts the intermediate keys for

TRi
j since different TMi

j s may have output the same key;

and the Reduce phase where the Reduce function is called

for each < K2, [V2] > in the sorted inputs. The shuffle and

sort operations often occur simultaneously, i.e. while the Map

outputs are being fetched, they are merged and sort.

B. Types of Skews in MapReduce Framework

The skews in MapReduce stem from different reasons. For

Map, the most common skew is caused by uneven input file

size [16]. For example, if a 150MB size input is processed

by the application running on a Hadoop cluster with 128MB

HDFS block size, the input will be divided into two sub

files with 128MB and 22MB in size. The Map skews can be

addressed by splitting the expensive file or adjusting the HDFS

block configuration, therefore is relatively straightforward. In

contrast, skews in the Reduce phase are more complicated.

There are mainly two types of skews Reduce tasks can

encounter: the expensive key group skews and the partition

skews. For the former, the MapReduce framework requires

that all tuples sharing the same key should be dispatched to the

same Reducer. Key groups refer to the sequence of < K, [V ] >
pairs. Many real world datasets exhibit skews in nature. Fig. 1

shows some examples. Fig. 1 (a) is the word frequency from

the Shakespeare collection [17] and Fig. 1 (b) is from the wiki

English dataset [18]. Reduce tasks can easily encounter the

expensive key group skew if WordCount is run on such data:

for Fig. 1 (a), there are altogether 67,056 words with the most

frequently used one appeared 23,197 times, while the average

word count is 13; for Fig. 1 (b), there are 21,433,355 words

with the most frequently used word appeared 46,134,908

times, while the average word count is 43. Another example

would be the PageRank application, a link analysis algorithm

that assigns weights to each node in a graph by iteratively

aggregating the weights of its inbound neighbors. If a graph

contains nodes with a large degree of incoming edges such as

Fig. 1 (c) and Fig. 1 (d), PageRank will suffer from Reduce

skew. Fig. 1 (c) is the Google web dataset and Fig. 1 (d) is the

Facebook social circles dataset [19], with X axis referring to

the web pages (represented as nodes in the PageRank graph)

and Y axis to be the number of hyperlinks in each page

(represented as edges in the PageRank algorithm). For Fig.

1 (c), there are 739,454 pages, and the biggest graph node

contains 456 linked edges, with 7 to be the average number of

edges per node; for Fig. 1 (d), there are 3,363 pages included,

the largest graph node contains 1,043 edges while the average

edge number per node is 24 in this example.

The other type of skew is exclusive for Reduce tasks. It is

called partition skew because it is mainly caused by unreason-

able partition decisions. For example in Fig. 2 (a) with two Re-

ducers, if the hash function categorize the intermediate key of

“A”,“B”, and “F” to a group and “C”, “D”, and “E” to another,

the Reducer1 will have to process 1.9 times of < K,V > pairs

compared with Reducer2, where a partition skew occurs. With

different number of Reducers, the severity of the intermediate

data skew varies. This is illustrated in Fig. 2 (b) with three

Reducers. When processing the same intermediate data with

Fig. 2 (a), the hash partitioner may result in a different Reduce

skew situation. Sometimes the degree of skew can be alleviated

by enlarging the Reducer number, however, such practice can

introduce new challenges like overloaded network traffic due

to the increased communication, etc. There are some general



Fig. 2. Reduce skew illustration and possible improvement the ImKP partitioner can achieve

principles of choosing the reasonable Reducer number, which

is not the research focus of this paper. We care about the

improved partition policy, and any potential achievement will

be discussed under the same Reduce number configurations.

For an arbitrary application, the distribution of the intermediate

data cannot be determined ahead of time. This brings a huge

challenge toward partition skew mitigation.

C. When Speculative Execution Breaks Down: Skew-Caused

Straggler Mitigation Analysis

Current speculative execution scheme has an unavoidable

limitation when dealing with skew caused stragglers. It is

shown in [20] that, even with the speculator in function, the

OpenCloud cluster still encounter a 5% straggler rate at the

task level, and this affects almost half of the parallel jobs to

experience extended response time. This statistics is similar to

what has been found in other production clusters that do not

have speculation deployed [21], revealing a fact that current

speculative scheme still has a huge gap in solving the straggler

problem. This finding is consistent with other literature such

as [5], which claims that in Yahoo!’s system, as many as

90% speculations are actually ended up being killed, with no

benefits achieved in execution performance improvement.

One of the reasons behind such speculation breakdown is

the skew caused stragglers. One biggest hypothesis assumed

by the speculative execution is that, the redundant copy will

behave as a quick task like other normal ones that do not

fall behind. Therefore even it is launched after the straggler,

it still has a chance to catch up. However, when mitigating

skew caused stragglers, because the speculative copy needs to

process identical input with the original task, itself will again

become a straggler caused by the uneven input distribution.

Fig. 3 illustrates this scenario with a WordCount example.

The job J processes 50 documents with 50 TMi
j s, the default

documents are 10M in size, with 0, 1, 3, 5, and 7 expensive

files that are 50M in size to simulate the uneven input

distribution for experiments. 0 indicates no skew inputs; 1 to

7 represents lightly skewed data towards more severe skewed

inputs. Results show that, the speculation failure rate increases

with the number of skewed inputs. In order to prevent such

speculation breakdown, it is necessary to develop a skew

mitigation scheme for MapReduce framework.

IV. THE IMKP APPROACH FOR REDUCE SKEW

MITIGATION

In this section, we first discuss the design requirements

for general skew mitigation systems, followed by the in-

troduction of the proposed ImKP approach. The key pre-

processing component is introduced in detail, together with a

brief analysis toward how the ImKP system fulfills the above

design requirements.

A. Skew Mitigation System Design Requirements

There are some general goals that a good skew mitigation

system should accomplish such as minimal developer burden,

mitigation transparency and flexibility, as well as minimal

overhead. For minimal developer burden, the MapReduce

application developer should be able to migrate their code into

Fig. 3. Speculation failure rate with different input skews



the proposed skew mitigation platform with no requirement of

learning new techniques. That is to say, the new system should

try to adopt uniform APIs with existing MapReduce platform

such as Hadoop YARN to minimize development complexity.

For skew mitigation transparency and flexibility, the former

requires the proposed technique to be transparent to the

end user. For normal users, when they launch MapReduce

applications on the new platform, there should be no need for

them to manually conduct additional configurations regarding

skew mitigation if they prefer not doing so, and they do not

need to get into the algorithm details such as parameter settings

for the partition policy, etc. The latter, on the other hand, is for

expert users who emphasize certain performance or some level

of control. The new framework should provide the possibility

for them to insert alternative information to generating flexible

partition results.

The requirement of minimal overhead asks for the additional

overhead spent on mitigating the skew phenomenon, including

extra computation and resources, to be trivial enough that

generates no negative impact toward final application level

performance indicators such as job execution time.

B. System Model Overview

In order to minimize the skew occurrence for Reducers

while fulfilling the aforementioned requirements, we propose

ImKP, the Intermediate Key Pre-processing framework that

enables the even distribution for Reduce inputs. The overall

architecture of the ImKP system is presented in Fig. 4. The

shaded parts are added components that belong to ImKP and

the rest are compatible with current Hadoop YARN imple-

mentation. Texts with green shade represent the workflow that

both original YARN application and the ImKP job need to go

through. The blue texts are exclusive to original YARN, while

the red texts solely belong to the ImKP logic. The procedures

with the same sequential number indicate the fact that they

are executing in parallel.

Under the ImKP framework, the input file is first sent to the

pre-processing component. This additional layer is responsible

for generating the key-Reducer mapping result < K,R > file

that enables the even partitioner. Details of the pre-processor

will be given in the next section. For applications whose input

is stored on local file system, ImKP utilizes the multithreading

implementation to parallelize the pre-processing with file

uploading to mitigate timing overhead. This is reflected in

Fig. 4 with two 1.1 steps in red and green texts respectively.

For applications whose input is stored on HDFS, we manage to

control the pre-processing overhead to a limited level through a

group based ranking technique. This guarantees trivial impact

toward job execution. The optimization detail is discussed

along with the pre-processor in the next section as well.

After pre-processing and file uploading, Map tasks will be

generated to handle the input data chunks, which is consistent

with the original MapReduce framework. Once the Map func-

tion finishes, unlike the default partitioner which does the hash

calculation in order to label the intermediate key generated by

Map with Reducer ID, the even partitioner in ImKP directly

Fig. 4. The system model for the ImKP framework

look up the < K,R > mapping table. The table is stored

on every machine node within the YARN cluster to ensure

the local access for the even partitioner, regardless of the

Mapper positions. And because of the group based ranking

optimization, the < K,R > mapping table is extremely small

in size, containing only #Reducer × scale rows. The notion

of scale is a user defined parameter implying the degree of

evenness in ImKP pre-processor, with default value of 50. For

example, for applications with 10 Reducers, there will only be

500 bi-tuple in the mapping table. This small size guarantees

the promptness of the local read operation. We have tested the

timing overhead of reading the mapping file from memory and

doing the hash calculation, the average time for the former

operation is 10,000ns while the latter is 9,000ns, which is

only 1,000ns in difference. In other words, the default hash

partitioner and the ImKP even partitioner take approximately

same time when conducting the partition operation.

C. The Pre-processor in ImKP

The pre-processor is an additional layer before the normal

Map phase. Its main purpose is to get the accurate distribution

of the intermediate keys and generate a balanced dispatch

solution depending on the number of Reducers. The pre-

processing procedure forms the most important component of

the ImKP system, and it mainly consists of following steps:

• Define customized keys: In order to calculate the inter-

mediate key statistics from the input, the definition of

the keys must be given. For example, keys are defined

as separate terms in a document in WordCount, or as

each graph node in PageRank. Because the keys required

by this initializer is identical to the keys in the Map

phase which is already given by the original MapReduce

framework, this step does not need additional developer

intervene. The ImKP system can automatically copy the

key define function from the user program.

• Rank the intermediate keys: In this step, the frequencies

of the intermediate key occurrence will be counted and

ranked. The biggest challenge encountered here comes



from the fact that the MapReduce framework is designed

for big data applications that process large scale inter-

mediate keys. If the frequency for each key is recorded

separately for ranking, it will come at huge computational

(O(n log n) complexity) and storage costs. In order to

solve this problem we propose a group based ranking

scheme. The assumption supports this optimization is

that, we believe the number of keys is way beyond the

number of Reducers, therefore one Reducer would have

to process multiple keys. Instead of directly rank all

the intermediate data, we first map the keys into groups

using hash to decrease the number of items that need

to be ranked. A parameter of scale is adopted in this

procedure to imply the total number of grouped keys one

Reducer will later receive. Altogether #Reducer×scale
number of key groups will be created. The key occurrence

frequency will be counted per group for ranking.

• Even distribute the key groups based on frequency rank-

ing: This step generates the < K,R > mapping result

for the ImKP even partitioner to assign intermediate

keys to Reducers. We adopted the best fit policy in

our implementation for this bin-packing problem: the

key group with the maximum occurrence frequency in

the remaining queue will be mapped to the Reducer

with the minimum sum of frequencies. The intermediate

keys in the same group will be mapped to the same

Reducer. For advanced users, we provided an API so

that this default best-fit method can be replaced with

more dedicated algorithms. For example, if additional

information on the performance diversity among machine

nodes is introduced, we can always adjust this even

distribute scheme. The result mapping file will be stored

on every worker node within the cluster so that the local

access for the ImKP even partitioner can be guaranteed.

Fig. 5. Number of inputs per Reducer for (a) Inverted Index on Shakespeare
data; for (b) PageRank on Freebase data; and for (c) WordCount on Zipf data

V. EVALUATION

The ImKP evaluation focuses on answering following three

questions: (1) can it mitigate the Reduce skews by generating

a more balanced input size distribution for Reducers; (2)

whether the skew mitigation overhead is small enough to be

ignored; and (3) whether the overall job response time can be

improved. For each question, we either test different workload

types or different MapReduce configurations to verify whether

the performance improvement remains consistent through dif-

ferent operational situations.

A. Experiment Set Up

In order to evaluate the effectiveness of the ImKP frame-

work, we run various experiments in a 15 virtual machine

(VM) cluster build on top of the ExoGENI infrastructure [22].

Each VM contains 1 CPU core, 3G RAM, and 25G disk,

running the CentOS6.7 OS. In all experiments, we configured

the HDFS to maintain two replicas for each data chunk, and

the container for both Map and Reduce tasks are 1G in size.

Popular applications including WordCount, PageRank, and

Inverted Index provided in the Bespin toolkit [23] are tested,

on both synthetic and real world datasets. We generate 1.6GB

synthetic data files following the Zipf distribution with varying

σ parameters from 0.4 to 1.4 to control the degree of the skew.

The larger σ value represents a heavier skew. Zipf distribution

is very common in the data coming from the real world,

e.g., the word occurrences in natural language, features of the

Internet, etc [6]. For real world data, we run our experiments

mainly on the Shakespeare collection [17], the English Wiki

dataset [18], and the Freebase data set [24].

B. Skew Mitigation Effectiveness

Fig. 5 illustrates the number of < K,V > pairs processed

by each Reducer using the default hash partition and the

ImKP even partition algorithm running Inverted Index (a),

Fig. 6. The pre-processing overhead.



TABLE I
REDUCE INPUT SKEW MITIGATION RESULTS FOR DIFFERENT SKEW DEGREES

Reduce Input Size σ=0.4 σ=0.5 σ=0.6 σ=0.7 σ=0.8 σ=0.9 σ=1.0 σ=1.1 σ=1.2 σ=1.3 σ=1.4

5 reducer
Cv Improvement 99.76% 94.94% 97.52% 98.92% 99.98% 99.75% 99.87% 99.94% 80.09% 56.28% 40.68%

Cv Times 416.27 19.75 40.33 92.25 4187.47 406.16 775.18 1665.17 5.02 2.29 1.69

10 reducer
Cv Improvement 90.40% 93.68% 97.35% 98.68% 99.25% 99.72% 69.28% 46.62% 32.06% 21.94% 15.14%

Cv Times 10.42 15.83 37.71 75.54 133.67 354.84 3.25 1.87 1.47 1.28 1.18

PageRank (b) and WordCount (c). From Fig. 5 (a) and (b),

it is observable that ImKP achieved extremely good skew

mitigation results: the number of ImKP Reducer inputs are

close to the ideal even distribution. We use the coefficient

of variation defined in Equation 1 to measure the skewness

of the Reduce inputs. Table I details the Cv improvement

((Cv(Hash)− Cv(ImKP ))/Cv(ImKP )) and the Cv times

(Cv(Hash)/Cv(ImKP )) with varies degree of skews to show

the effectiveness of the ImKP in mitigating Reduce skews.

Cv =
StdDev(ReducerInputs)

Avg(ReducerInputs)
(1)

Meanwhile, we see from Fig. 5 (c) that the ImKP algorithm

has a limitation. The Zipf σ in Fig. 5 (c) is 1.4, which indicates

a severe skew and the existence of an expensive key. ImKP is

mainly designed for solving the partition skews, for situations

of expensive key skews (the number of intermediate data

belongs to a certain key surpasses the sum of the others),

ImKP can only achieve a more balanced result, yet may

still exhibit slightly skew. Fig. 2 (b) illustrates this limitation

with a straight forward example. And this explains the Cv

improvement changing trend in Table I as well.

C. Skew Mitigation Overhead

The mitigation overhead is one of the biggest concern

for the ImKP system design because it inserts an extra pre-

processing layer before the normal Map phase. Different with

the literature that estimates the complete intermediate key

distribution, ImKP pre-processing adopts a group based rank-

ing scheme that dramatically decreased the ranking element

numbers based on the fact that one Reducer has to process

multiple intermediate keys. Fig. 6 illustrates the exact pre-

processing time compared to the file uploading time for the

WordCount application run on various input sizes.

From the figure it is observable that, the pre-processing

overhead is stable at a low level that remains smaller than

the file uploading time. This overhead is small enough even

for large inputs such as the 6G input from the English Wiki

dataset. And because of the multithreading parallelization

implementation, for applications that store their inputs on local

file systems, there will be no pre-processing overhead at all.

In addition, the pre-processing results are stored on every

datanode ready for possible reuse. This will benefit applica-

tions that have to go through MapReduce iterations such as

PageRank (the PageRank score updates at each iteration before

it convergences). Through this way, the influence of the initial

timing overhead is further reduced.

D. Job Execution Improvement

According to the aforementioned analysis, the two modifi-

cations made by ImKP based on the original Hadoop YARN,

the pre-processor and the different partitioner both generate no

obvious timing difference for overall job completion. There-

fore, the execution time difference listed in Table II is mainly

due to the different number of < K,V > pairs processed

by each Reducer. Fig. 7 summaries the job execution time

improvement for different levels of skew inputs. The results

are average values for three running tests, with coefficient of

variation Cv to represent the response time variance for each

test case. From the result we see that ImKP is capable of

improving average response time by up to 29.37%. For the

number of Reducers, as discussed in previous sections, differ-

ent configurations result in different levels of skew severance.

The improvements we discuss in this evaluation are conducted

under the same Reduce number configurations.

Fig. 7. The (a) execution time; the (b) execution coefficient of variation; and the (c) input size improvement for ImKP and hash partition on Zipf data



TABLE II
RESPONSE TIME IMPROVEMENT FOR WORDCOUNT APPLICATION ON THE ZIPF DATA WHEN σ CHANGES FROM 0.4 TO 1.4.

σ = 0.4 σ = 0.5 σ = 0.6 σ = 0.7 σ = 0.8 σ = 0.9 σ = 1.0 σ = 1.1 σ = 1.2 σ = 1.3 σ = 1.4

5 reducer

Improvement 19.01% 8.18% 6.63% 6.87% 23.71% 19.10% 23.86% 23.51% 8.08% 6.40% 15.15%

Cv(Hash) 0.04 0.01 0.01 0.12 0.01 0.03 0.01 0.05 0.01 0.17 0.20

Cv(ImKP) 0.21 0.02 0.06 0.13 0.04 0.07 0.17 0.13 0.04 0.15 0.05

10 reducer

Improvement 12.19% 0.96% 15.47% 26.34% 11.71% 14.80% 12.75% 4.96% 13.80% 29.37% 15.67%

Cv(Hash) 0.03 0.04 0.01 0.17 0.04 0.02 0.14 0.10 0.05 0.12 0.07

Cv(ImKP) 0.07 0.05 0.01 0.12 0.02 0.12 0.24 0.07 0.13 0.06 0.02

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed ImKP, an intermediated key

pre-processing framework that enables the even partition for

Reduce inputs. ImKP can be used to avoid data skew caused

stragglers for Reduce tasks. Main contributions include:

• Analyzed the skew behavior with various datasets and

illustrated the type of skews within current MapReduce

framework. The influence of data skew stragglers, es-

pecially the Reduce skews, toward efficient speculative

execution was discussed.

• Proposed ImKP, the Intermediate Key Pre-processing

framework that plugged an intermediate key ranking layer

before the original Map phase to enable the even partition

for Reduce inputs. Results show that the skewness for

Reducers can be decreased by 99.8% in average. And

overall job response can be improved up to 29.37%.

• Developed a group based ranking technique that dra-

matically reduced pre-processing overhead for the ImKP

system. And through parallelizing the pre-processing with

file uploading, we even managed to eliminate the over-

head for workloads that take inputs from local file system.

Future work includes the integration of Reducer split solu-

tions into current ImKP to deal with the expensive key skews.

The MapReduce requires intermediate data sharing the same

key to be processed by the same Reducer, and the related

work that splits expensive Reducers often comes with Reducer

reconstruct overhead as well as constraints toward workload

logic such as ordering preservation. Solving this can be the

possible extension of the ImKP framework.
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