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A review of methods for comparing treatments evaluated in studies which form disconnected 
networks of evidence 

John W Stevens, Christine Fletcher, Gerald Downey, Anthea Sutton 

Abstract 

A network meta-analysis allows a simultaneous comparison between treatments evaluated in 
RCTs that share at least one treatment with at least one other study. Estimates of treatment 
effects may be required for treatments across disconnected networks of evidence, which 
requires a different statistical approach and modelling assumptions to account for imbalances 
in prognostic variable and treatment effect modifiers between studies. In this paper, we 
review and discuss methods for comparing treatments evaluated in studies which form 
disconnected networks of evidence. Several methods have been proposed but assessing which 
are appropriate often depends on the clinical context as well as the availability of data. Most 
methods account for sampling variation but do not always account for others sources of 
uncertainty. We suggest that further research is required to assess the properties of methods 
and the use of approaches that allow the incorporation of external information to reflect 
parameter and structural uncertainty. 

1. Introduction 

The National Institute for Health and Care Excellence (NICE) is responsible for making 
recommendations on the use of new treatments within the National Health Service in 
England. Amgen was recently invited to submit evidence to NICE in support of a Single 
Technology Appraisal (STA) (National Institute for Health and Care Excellence, 2015) of the 
clinical and cost-effectiveness of talimogene laherparepvec, an oncolytic viral 
immunotherapy derived from the herpes simplex virus type-1 (Kaufman et al., 2015), for the 
treatment of metastatic melanoma, a rare but serious form of skin cancer, within its European 
Union marketing authorisation i.e. adults with unresectable melanoma that is regionally or 
distantly metastatic (Stage IIIB, IIIC and IVM1a) with no bone, brain, lung or other visceral 
disease. The comparator treatments of interest were those representing the current standard of 
care in the UK: ipilimumab, vemurafenib and dabrafenib (for people with BRAF V600 
mutation positive disease). 

Talimogene laherparepvec has been evaluated against subcutaneous granulocyte-macrophage 
colony-stimulating factor (GM-CSF) in an open-label Phase 3 randomised controlled trial 
(RCT) known as OPTiM (Andtbacka et al., 2015). However, OPTiM did not include any of 
the comparator treatments of interest because ipilimumab, vemurafenib and dabrafenib were 
not available when the OPTiM study was designed or when the first subject was enrolled in 
April 2009. Therefore, a network meta-analysis (NMA) allowing an indirect comparison 
between talimogene laherparepvec and ipilimumab, vemurafenib and dabrafenib was 
required. 

An NMA is an extension of a standard pairwise meta-analysis that coherently summarises all 
direct and indirect evidence about treatment effects and allows a simultaneous comparison to 



be made between all pairs of treatments (Dias et al., 2013). The assumptions made in an 
NMA are: 1) the studies to be synthesised form a connected network of evidence such that 
there is a chain of pairwise comparisons that connects every treatment to every other 
treatment (a network that is connected provides an anchored indirect comparison with respect 
to a reference treatment); 2) randomisation is not broken so that treatment effects are 
estimated within studies before being combined across studies; 3) for every study included in 
the network, irrespective of the treatments that were actually compared, the true effect of 
Treatment ܤ relative to Treatment ܣ in Study ݅, ߜ௜஺஻, is the same in a fixed effect model (i.e. ߜ௜஺஻ ൌ ݀஺஻) or exchangeable between studies in a random effects model (i.e. ߜ௜஺஻̱ܰሺ݀஺஻ǡ ߬ଶሻ). An NMA makes use of the consistency equations which state that for any 
three treatments ܺǡ ܻǡ ܼ, say, the population mean effects, ݀௑௒, ݀௭௒ and ݀ ௭௑ are related such 
that: ݀௑௒ ൌ ݀௓௒ െ ݀௓௑. 

It is assumed that the distribution of treatment effect modifiers is balanced between the ܼǡ ܻ 
and ܼ ǡ ܺ studies, otherwise the indirect estimate of ݀௑௒ will be biased. 

In situations when an anchored indirect comparison is not possible because studies do not 
share a common treatment, naïve or unadjusted indirect treatment comparison (ITC) could be 
performed by ignoring differences between studies in variables that affect response and 
effectively assuming that the data on each treatment arose from a single RCT (Song et al., 
2003). When several studies evaluate a particular treatment, a naïve ITC would involve an 
arm-based synthesis of evidence across studies. Naïve ITCs and arm-based models have been 
criticised for potentially generating biased estimates of relative treatment effect by ignoring 
the randomisation within studies and are generally not recommended (Dias and Ades, 2016). 

In the absence of a connected network of evidence, it is sometimes possible to form a 
connected network by adding one or more treatments to the comparator decision set to create 
a chain of pairwise comparisons that connects at least one treatment in each network to at 
least one treatment in another network, thereby forming an extended synthesis decision set 
(Ades et al., 2013). When this is not possible it will be necessary to use alternative methods 
of analysis and/or to make additional modelling assumptions to allow a valid ITC. Such 
modelling gives rise to an unanchored comparison in which there is no common reference 
treatment in each study. 

The aim of this paper is to present the findings of a review of evidence synthesis methods to 
estimate the relative effect of treatments evaluated in studies forming disconnected networks 
of evidence. Although we mention methods for making indirect comparisons between 
treatments that can be applied when individual patient-level (IPD) are available for treatments 
from all studies (Faria et al., 2015), our focus is on methods that can be applied in situations 
where IPD is available on one or more studies but only aggregate data is available from 
studies of other comparator treatments. In addition, our interest was in methods for making 
indirect comparisons between treatments that have been, or can be applied, to data from 
studies of patients with advanced melanoma. 



The paper is organised as follows: Section 2 describes the systematic review and presents the 
evidence network for talimogene laherparepvec and the comparator treatments; Section 3 
describes the systematic review of evidence synthesis methods for comparing treatments 
across disconnected networks; Section 4 describes the methods that have been used to 
compare treatments across disconnected networks of evidence; Section 5 provides a 
discussion; Section 6 provides some concluding remarks. 

2. Evaluation of the evidence network for talimogene laherparepvec 

Amgen conducted a systematic literature review in accordance with the Preferred Reporting 
Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines (Moher et al., 2009) 
to identify published RCTs (and non-RCTs) for the treatment of patients with metastatic 
malignant melanoma. MEDLINE, EMBASE and the Cochrane Central Register of Controlled 
Trials databases were searched from 1990 until 3 June 2015 using Ovid. Additional records 
were identified through other sources including clinical trial registries, previous regulatory 
and health technology assessment (HTA) reviews and conference abstracts. 3475 records 
were identified of which 97 records related to 59 RCTs. The inclusion criteria were restricted 
to Phase 3 RCTs published since 2010 to reflect the more recent and relevant melanoma 
treatments and their studies. Ten studies met the additional inclusion criterion. The systematic 
literature review found that the OPTiM study was isolated, having no treatment in common 
with the evidence base formed by the comparator treatments (Figure 1). Therefore, a 
conventional NMA of studies comprising the comparator decision set was infeasible. 

[Figure 1 about here] 

Evidence from studies comparing additional treatments was added to the comparator decision 
set in an attempt to form a connected network but was unsuccessful. Consequently, it was 
necessary to use alternative methods of analysis to generate indirect estimates of relative 
treatment effects. 

3. Systematic review of evidence synthesis methods for comparing treatments across 
disconnected networks 

A two-stranded approach was used to systematically review evidence synthesis methods in 
the scientific literature that allow comparisons to be made between treatments across 
disconnected networks of evidence (Figure 2). This entailed keyword searching of the 
MEDLINE database (via OvidSP) and pearl growing based on citation searching of 11 
published journal articles dealing with novel approaches to making indirect comparisons 
between treatments forming disconnected networks (Ahn and French, 2010, Caro and Ishak, 
2010, Gross et al., 2013, Ishak et al., 2015, Korn et al., 2008, Mandema, 2011, Mandema et 
al., 2011, Mercier et al., 2014, Signorovitch et al., 2010, Signorovitch et al., 2012b, Thom et 
al., 2015). 

3.1 Keyword searching 

Consideration was given to developing and implementing a keyword search strategy that was 
both sensitive and specific. The main objective was to identify methods that allow indirect 



comparisons to be made between treatments because there is no direct evidence. However, 
using the terms “indirect comparisons” and “direct evidence” were thought to be 
insufficiently specific. A more specific phrase that encompassed the issue of there being no 
relevant or direct evidence in a target patient population was variants of “no head-to-head” 
and “absence of head-to-head” in combination with terms for “network meta-analysis”, 
although we recognised that this did not specifically focus on methods for comparing 
treatments across disconnected networks. Therefore, we also included the term “disconnected 
network” in combination with terms for “meta-analysis”. Details of the search strategy are 
provided in the Appendix. 

MEDLINE via OvidSP (1946-Present including MEDLINE In-Process) was searched on 26 
August 2015. 23 references were retrieved based on the keyword searching with 19 
references remaining once duplicates were removed. One article was removed because it was 
one of the 11 originally known to the authors. None of the remaining 18 articles involved 
making comparisons between treatments across disconnected networks but were applications 
of conventional network meta-analyses. 

3.2 Citation searching 

Citation searches were conducted for each of the 11 published journal articles using the “cited 
reference” search feature of Web of Science. 343 cited references were retrieved with the 
majority of them (i.e. 258) referring to a single journal article (Korn et al., 2008). 328 unique 
references remained once duplicates were removed. The titles and, where necessary, abstracts 
of each article were reviewed to identify potentially relevant articles. 285 articles were 
excluded based on the titles and abstracts leaving 43 articles for consideration. Two articles 
were excluded because they were foreign language papers. Five articles were excluded 
because they were one of the 11 used in the citation searching process. Of the remaining 36 
articles, full text articles were reviewed during which a further eight articles were excluded 
because they discussed the general issue of comparative effectiveness or were about specific 
clinical aspects, leaving 28 articles (Assawasuwannakit et al., 2015, Demin et al., 2012, 
Denney and Nucci, 2013, Dequen et al., 2012, Di Lorenzo et al., 2011, Di Lorenzo et al., 
2012, Feng et al., 2013, Gibbs et al., 2012, Hoaglin, 2013, Kimko et al., 2012, Li et al., 
2015a, Li et al., 2015b, Mandema et al., 2014, Mould, 2012a, Nie et al., 2013, Ravva et al., 
2014, Reddy et al., 2013, Salinger et al., 2013, Signorovitch et al., 2011a, Signorovitch et al., 
2011b, Signorovitch et al., 2012a, Signorovitch et al., 2015, Sikirica et al., 2013, Tiu and 
Kalaycio, 2012, Van Wart et al., 2013, Van Wart et al., 2014, Zhao et al., 2012, Zhou and Al-
Huniti, 2013, Nixon et al., 2014). 

4. Methods used to compare treatments in studies forming disconnected networks 

The systematic review found that a variety of methods have been used or are available to 
estimate relative treatment effects when studies comprising the evidence base form a 
disconnected network. The following description of the methods used is based on the 28 
articles identified through the citation searching, the 11 articles already known to the authors, 
and articles referred to by, or in response to, the reviewers. 



4.1 Use of external controls 

One approach that could be used to link disconnected networks is to make use of external 
evidence about the expected response to a control treatment in one or more studies. In the 
context of RCTs, the problems associated with the use of historical controls (such as a group 
of untreated patients at an earlier time) are well known and relate to the lack of randomisation 
and control for known and unknown baseline characteristics that might affect outcomes 
(International Conference on Harmonisation of Technical Requirements for Registration of 
Pharmaceuticals for Human Use, 2000). Studies making direct use of historical data make the 
constancy assumption that the expected response to a control treatment remains constant 
between the historical studies and the additional studies, which is unlikely, although some 
analysts have been known to use sample historical control data as if it had been generated as 
part of an RCT. 

An alternative approach is to use the historical evidence to formulate a prior distribution for a 
parameter, ߤ௜, say, such as the mean for a continuous outcome or the log odds for a binary 
outcome for an external control treatment in study ݅ in at least one study in each group of 
disconnected studies in order to facilitate a Bayesian random effects network meta-analysis 
(Schmidle et al., 2014, Viele et al., 2014). Spiegelhalter et al. (2004) (Spiegelhalter et al., 
2004) discuss five different approaches to using historical control data, ݕ௛, ݄ ൌ ͳǡ ǥ ǡ  that ,ܪ
provide information about parameters ߠ௛ from ܪ studies: 

 The simplest and most common approach that is used when analysing data arising from 
an RCT is to ignore the historical control data either because inferences are required to 
be made based on the sample data from the new RCT alone or because the historical 
data is thought not to provide any information about the parameter of interest. 

 Alternatively, we could assume that the historical control groups are exchangeable such 
that ߠ௛̱ܰሺߠǡ ߬ଶሻ. The prior distribution for ߤ௜ is then the predictive distribution of the 
effect in a new study rather than the posterior distribution of the random effects mean, ߠ. 

 We could assume that the ߠ௛ are related to the target parameter such that ߠ௛ ൌ ௜ߤ ൅  ௛ߜ
where ߜ௛ represents a bias that depends on study characteristics. The bias could be 
assumed to be known with some fixed value or unknown with probability distribution ߜ௛̱ܰሺߤ௕ ǡ  .௕ଶሻߪ

 A slightly more arbitrary approach is to use a power prior that discounts the historical 
evidence such that ሾ݈݅݇ሺݕ௛ȁߠ௛ሻሿఈ, Ͳ ൏ ߙ ൏ ͳ, where ߙ ൌ Ͳ means that we ignore the 
historical evidence and ߙ ൌ ͳ means that we include the historical evidence without 
any discounting. 

 Finally, we could assume that the parameter of interest is functionally dependent on the 
historical evidence, perhaps because of differences in variables that effect response, 
such that ߤ௜ ൌ ݂ሺߠଵǡ ǥ ǡ  .ுሻߠ

Korn et al. (2008) (Korn et al., 2008) considered the problem of creating an external control 
to use as a benchmark (or performance criteria) in future single-arm studies in patients with 
metastatic Stage IV melanoma. Their aim was to generate an estimate of the true response for 



an untreated group corresponding to a sample of patients in the single-arm study. They 
developed prediction models (see Section 4.4) using data from 2100 patients in 42 
randomised and single-arm Phase 2 studies involving 70 study arms of various treatments 
(assumed to be inactive) conducted between 1975 and 2005. Variables affecting overall 
survival (OS) and progression-free survival (PFS) were assessed using Cox proportional 
hazards models, and for OS and PFS events rates using logistic regression. Patient-level 
variables that were evaluated included sex, age, Eastern Cooperative Oncology Group 
performance status (ECOG PS), presence of visceral metastases and serum lactate 
dehydrogenase level; study-level variables that were evaluated included exclusion of patients 
with brain metastases, exclusion of patients with liver metastases, exclusion of patients with 
visceral metastases, previous treatment for metastatic disease and the year during which 
accrual was completed. Cox multiple regression analysis using complete cases suggested that 
gender, ECOG PS, visceral disease and brain metastases were predictive of OS and that 
pairwise interactions were not statistically significant. They generated an external control 
survivor function for an untreated group of patients as a weighted sum of ݊ patients with 
baseline characteristics depending on the patients in the treated group such that ܵҧሺݐሻ ൌଵ௡ σ ௜ܵሺݐሻ௡௜ୀଵ , where ܵ ௜ሺݐሻ ൌ ሾܵ଴ሺݐሻሿுோ and ܴܪ ൌ σ ௜௣௜ୀଵݔ௜ߚ , where the ݔ௜ are the covariates 

and the ߚ௜ are the coefficients corresponding to gender, ECOG PS, visceral disease and brain 
metastases. ܵ଴ሺݐሻ represented the survivor function for female patients with ECOG PS 0, no 
visceral disease and without brain metastasis. However, the authors did not provide an 
assessment of the performance of the models. More importantly, the authors did not discuss 
uncertainty in the baseline survivor function or the impact of uncertainty and correlation 
associated with the estimated hazard ratios in the prediction model, and they assumed that 
there was no unexplained heterogeneity between studies. As proposed, the method does not 
produce a joint posterior distribution for parameters in a parametric survivor function 
corresponding to an untreated group. In addition, to implement the method it is necessary to 
have access to the prediction model responses for all patients in each study that did not 
include a concurrent untreated group. Although companies will have access to IPD from their 
own studies, it is unlikely that they will have access to IPD from other company’s studies. It 
is more likely that relevant variables will be presented (if at all) as summary statistics in 
published articles. This is important in the case of non-linear models because the expectation 
of a function is not the same as the function evaluated as its expectation i.e. ܧ௑ሾ݂ሺܺሻሿ ്݂ሺܧሾ തܺሿሻ. Consequently, the use of summary statistics about a comparator treatment to 
generate a posterior distribution from prediction models may generate biased estimates of 
parameters.  

In the absence of any empirical evidence to inform parameters prior distributions could be 
generated using elicitation of experts’ beliefs (O'Hagan et al., 2006).  

Finally, the value of this approach in the context of a time-to-event outcome measure is in the 
ability to use more flexible modelling rather than assuming that the hazards for each 
treatment are proportional but it relies on the assumption that data can be reconstructed from 
published Kaplan-Meier survivor functions. The use of external controls was not considered 
as part of the submission to NICE of talimogene laherparepvec. 



4.2 Treatment effect parameter 

Abrams et al (2016) (Abrams et al., 2016) explored the impact of using various models to 
link disconnected networks using registry data. One approach was to use the registry data as 
if it came from a ‘fictional study’ that provided an estimate of the relative effect of treatments 
that were in separate networks of evidence formed by RCTs. The observational data was 
included without any discounting and also with discounting using a power prior. The 
modelling assumptions are the same as those for a network meta-analysis of RCTs, including 
that there are no internal biases. 

In the absence of any empirical data, and as an alternative to generating a prior distribution 
for a study-specific response to treatment, we could generate a prior distribution for the 
population relative effect of two treatments across disconnected networks using elicitation of 
experts’ beliefs (O'Hagan et al., 2006). For example, in Figure 1, we might generate a prior 
distribution for the population relative effect of GM-CSF compared to vemurafenib. The 
uncertainty represented by the prior distribution would affect comparisons between the 
networks but not the comparisons within networks (Dias et al., 2011; last updated April 
2012). Goring et al, (2016) (Goring et al., 2016) discuss the use of prior information in a 
similar context but suggest that it should be suitably wide to reflect the overall uncertainty of 
this approach rather than reflecting genuine prior beliefs as would be the approach in a proper 
Bayesian analysis. We are not aware of any examples where elicitation of experts’ beliefs has 
been used to generate prior distributions about relative treatment effects to facilitate indirect 
comparisons between treatments in disconnected networks. The elicitation of a relative 
treatment effect to connect networks was not considered as part of the submission to NICE of 
talimogene laherparepvec. 

4.3 Random baseline models 

Assuming a standard generalised linear model framework (Dias et al., 2013), the linear 
predictor can be written as: ߠ௜௞ ൌ ௜ߤ ൅  ሼ௞ஷଵሽܫ௜ǡ௕௞ߜ
where ߠ௜௞ is the population response in arm ݇ of study ݅  ௜ is the study-specific baselineߤ ,
response in study ݅ and ߜ௜ǡ௕௞ is the study-specific treatment effect of the treatment in arm ݇ 

relative to the control treatment in arm ܾ (b=1) in that study. 

Random baseline models have been proposed in the context of conventional meta-analyses 
and assume that the ߤ௜ are exchangeable (or conditionally exchangeable given prognostic 
variables) i.e. ߤ௜̱ܰሺߤ஻௔௦௘ ǡ ߬஻௔௦௘ሻ (Dias et al, 2013). In an NMA where not all studies may 
have included the reference treatment, it is necessary to ensure that the ߤ௜ refer to the 
reference treatment. Random baseline models rely on the assumption that the baseline model 
is correct (Goring et al., 2016), and the main criticism against them is that they break the 
randomisation and assume that patients are randomised across studies as well as within 
studies; there is relatively little work comparing their properties to unconstrained baseline 
models. 



Thom et al. (2015) (Thom et al., 2015) used random baseline models to form a connected 
network of RCTs by assuming that the placebo effects in each study were exchangeable 
across studies. The primary study was a placebo controlled adjunctive study stratified by one 
of four baseline treatments, which were treated as separate studies, but the authors also 
included data from single-arm, before-and-after observational studies. The indirect 
comparison of interest was between two treatments in two different strata that had no 
treatments in common with any other RCT. In addition, the distribution of baseline variables 
affecting response was different between the strata. The authors considered four separate 
models: 1) NMA of aggregate data from RCTs and observational studies; 2) NMA of IPD 
and aggregate data from RCTs and observational studies; 2) between-study and within-study 
covariate adjustments on the placebo effects; 4) within-study covariate adjustments on 
treatment effects. The authors also performed two separate sensitivity analyses, firstly by 
down-weighting the observational evidence using a power prior and secondly by constructing 
a prior distribution for a control arm for the observational studies but still including covariate 
adjustments. The authors acknowledged that their models have some limitations and involve 
several untestable modelling assumptions, including the use of random baseline models, but 
recommended this approach when networks are not connected. 

4.4 Adjusted Treatment Response 

Causal estimates of relative treatment effect across disconnected studies can be derived by 
modelling the probability of treatment assignment, generating a regression model for the 
outcome conditional on a set of covariates or a mixture of both (i.e. doubly robust estimation) 
(Faria et al., 2015). The aim of such adjusted treatment response methods is to generate 
adjusted responses for at least one treatment arm to account for differences between studies in 
prognostic variable and treatment effect modifiers. The methods make the strong assumption 
that there are no unobserved prognostic variables or treatment effect modifiers. Indirect 
estimates of relative treatment effects are then derived across studies after adjustment as if the 
treatments being compared had been included in the same study. 

Stuart et al. (2011) (Stuart et al., 2011) and Hartman et al (2015) (Hartman et al., 2015) 
discuss the assumptions associated with methods for estimating the relative effect of 
treatments in a target patient population; these are summarised by Phillippo et al (2016) 
(Phillippo et al., 2016) for standard network meta-analyses, network meta-regression, and 
anchored and unanchored matching adjusted indirect comparisons and simulated treatment 
comparisons. 

Methods for making indirect comparisons between treatments after adjusting treatment 
responses with a focus on unanchored comparisons are described below. 

4.4.1 External Evidence-Based Adjustment 

Differences between studies in the distribution of variables that effect response can be 
adjusted for based on external evidence. In the case of metastatic melanoma, Korn et al. 
(2008) (Korn et al., 2008) (see Section 4.1) showed that gender, ECOG PS, visceral disease 
and brain metastases were predictive of OS in patients with metastatic Stage IV melanoma 



such that females, patients with an ECOG PS score of zero, patients with no visceral disease 
and patients with no brain metastases have better prognosis. Kotapati et al., (2011) (Kotapati 
et al., 2011) used the Korn model to adjust OS and compare treatments evaluated in studies 
which formed a disconnected network of evidence in an assessment of ipilimumab in the 
management of pre-treated patients with unresectable Stage III/IV melanoma. They 
reconstructed the OS probabilities over time from published Kaplan-Meier survivor functions 
and fitted Weibull distributions to the adjusted comparator treatment data as if the comparator 
treatment had been included in a target study. Specific details of the approach used were not 
provided in the conference abstract and presentation. However, the Korn et al. (2008) (Korn 
et al., 2008) model was developed in patients with mainly Stage IVM1b and Stage IVM1c 
melanoma and it may not be clinically relevant to patients with Stage IIIB, Stage IIIC and 
Stage IVM1a melanoma. 

Bristol-Myers Squibb (BMS) Pharmaceuticals Ltd developed a modified Korn model that 
was used for the assessment of ipilimumab in patients with previously untreated unresectable 
Stage III or IV melanoma (National Institute for Health and Care Excellence, 2014) based on 
a different dataset to Korn et al. (2008) (Korn et al., 2008) and with the addition of the 
variable lactate dehydrogenase (LDH). The modified Korn model produced by BMS was: logሺܴܪ௧ሻ ൌ െͲǤͳͷͶܺீ௘௡ௗ௘௥ୀி௘௠௔௟௘ െ ͲǤͶͲͲܺா஼ைீ௉ௌୀ଴ െ ͲǤʹͺͷܺ௏௜௦௖௘௥௔௟ୀே௢െ ͲǤ͵Ͳ͸ܺ஻௥௔௜௡ୀே௢ െ ͲǤ͹ͺʹܺ௅஽ுୀே௢௥௠௔௟ 
(Note: The original parameterisation of the Korn model (see Section 4.1) differed to the 
modified Korn model developed by BMS.) 

The adjustment factor, ܴܪ஺ௗ௝, for a comparator treatment is given by the hazard ratio for the 

new treatment, ܴܪே, divided by the hazard ratio for the comparator treatment, ܴܪ஼ i.e. ܴܪ஺ௗ௝ ൌ ேܴܪ ஼ൗܴܪ . Adjusted survivor functions for the comparator treatment can then be 

generated as: 

஺ܵௗ௝ሺݐሻ ൌ ܵ஼ሺݐሻுோಲ೏ೕ. 
The adjustment can be made to Kaplan-Meier and parametric survivor functions. When 
comparator treatments are studied in more than one study, Kaplan-Meier survivor functions 
could be combined across studies using the Mantel-Haenszel method after adjustment for 
differences in studies. The process involves generating the number of patients at risk, the 
number of events and the number of censored observations from an adjusted survivor 
function in pre-defined time intervals and then pooling the data in each time interval using 
the Mantel-Haenszel method. This was the approach used to adjust OS for a comparator 
treatment in a study other than OPTiM as if the comparator treatment had been included in 
the OPTiM study (Quinn et al., 2016). 

Some limitations with an external evidence-based adjustment approach, as generally applied, 
are that it assumes that differences between studies in all measured and unmeasured 
prognostic variables and treatment effect modifiers is captured by the prediction model and, 



as applied by Kotapati et al., (2011) (Kotapati et al., 2011) and Quinn et al., (2016) (Quinn et 
al., 2016), assumes that the regression coefficients are independent and estimated without 
uncertainty. 

An alternative approach to estimating the adjustment factor would be to use a Bayesian 
approach, thereby quantifying uncertainty about the joint distribution between parameters and 
without having to assume asymptotic multivariate normality of the parameters. The 
adjustment factor could then be applied to a parametric survivor function. However, this 
would require access to the IPD for all studies and would involve identifying a suitable 
parametric survivor function to represent the observed data. 

4.4.2 Iterative Proportional Fitting (IPF) 

Kalton et al. (2003) (Kalton and Flores-Cervantes, 2003) described six methods for weighting 
sample estimates of response to match population values in the context of surveys where 
respondents are classified according to two or more variables each with two or more levels. 
In the context of a clinical study this corresponds to patients being classified according to two 
or more variables that affect response (e.g. gender and race) with two or more levels (i.e. 
males and females; white, black, other). The methods that they described were cell weighting, 
iterative proportional fitting (IPF) (also referred to as raking), linear weighting, generalised 
regression estimation (GREG) weighting, logistic regression weighting, and mixture of cell 
weighting and another method (Kalton and Flores-Cervantes, 2003). 

Apart from IPF, we are not aware of any applications of the other five weighting methods for 
making indirect comparisons between treatments. IPF operates on the marginal distributions 
of the variables that affect response. The procedure is iterative in the sense that it starts by 
adjusting the sample row totals to correspond to the population (or target) row totals, and then 
adjusts the sample column totals to correspond to the population column totals, and continues 
until convergence is reached. The method assumes that there are no unobserved prognostic 
variables or treatment effect modifiers when making unanchored comparisons across studies. 
IPF has been used to make an indirect comparison between ponatinib and bosutinib in third 
line chronic phase chronic myloid leukemia (McGarry et al., 2016). 

4.4.3 Propensity Score Matching Methods 

A propensity score is the probability of treatment assignment conditional on observed 
variables that affect response and is estimated using logistic regression. There are four ways 
in which a propensity score can be applied: matching, with the most common approach being 
pair-matching in which pairs of patients treated with  new and comparator treatments are 
found that have similar propensity scores, although other methods are available such as full 
matching (Stuart, 2010); inverse probability of treatment weighting (IPTW); stratification; 
and covariate adjustment. 

Some limitations associated with propensity score matching methods are that estimates of 
treatment effect will be biased when there are unobserved prognostic variables and treatment 
effect modifiers (resulting in propensity score model misspecification) and when there is poor 



overlap in the distribution of observed prognostic variables and treatment effect modifiers 
(resulting in extreme weights) (Austin and Stuart, 2015). 

Conventional implementation of propensity score matching methods requires access to IPD 
on the new and comparator treatments, which (as in the case of talimogene laherparepvec) is 
generally not available. Section 4.4.5 discusses an approach to propensity score weighting 
when comparisons between treatments are required across studies in which there is IPD for 
one study and aggregate data for another study. 

4.4.4 Entropy Balancing 

Entropy balancing is an approach similar to propensity score methods for reweighting 
samples. As with propensity score methods, weights are estimated using a logistic regression 
but an assessment is then made whether the distributions of the covariates are similar subject 
to a set of predefined constraints on the moments of the covariate distributions (Hainmuller, 
2012). Entropy balancing has been applied in the context of matching overall survival data in 
patients with non-small cell lung cancer to a population of patients defined by observational 
data (Happich et al., 2016). 

Some limitations with entropy balancing as conventionally applied include that it requires 
access to IPD on the new and comparator treatments; it assumes that there are no unobserved 
prognostic variables or treatment effect modifiers; it is not possible to generate weights when 
the balancing constraints are inconsistent; the set of weights may include no positive weights 
in situations when there is limited data and extreme constraints; when there is limited overlap 
of the distributions of the covariates, the solution may involve extreme adjustments of the 
weights associated with some patients, which means that the final analysis may depend on a 
small set of highly weighted observations. 

4.4.5 Matching-Adjusted Indirect Comparisons (MAIC) 

Signorovitch et al., (2010) (Signorovitch et al., 2010), Signorovitch et al., (2012) 
(Signorovitch et al., 2012b) and Phillippo et al, (2016) (Phillippo et al., 2016) considered the 
problem of making indirect comparisons between treatments when there are differences 
between studies in variables that affect outcome. The method makes use of IPD from a study, ܲ, of one of the treatments and weights the data using an approach similar to propensity score 
weighting so that their average covariate values matches those in a study, ܲᇱ, of the other 
treatments. 

The estimator for treatment ݐ in population represented by study ܲᇱ is a weighted sum of the 
outcomes for patients in a population represented by study ܲ: 

෠௧௉ᇲߠ ൌ σ ௜௧ே೟ು௜ୀଵσݓ௜௧௉ݕ ௜௧ே೟ು௜ୀଵݓ  

with weights, ݓ௜௧ ൌ expሺ்ܺߚ௜௧ሻ⁡,corresponding to the odds of being included in the 
population represented by study ܲᇱ versus study ܲ, and ܺ ௜௧ a vector of variables that affect 



the outcome for patient ݅ receiving treatment ݐ. However, the weights cannot be estimated 
using conventional methods because it involves aggregate data from patients in study ܲᇱ; 
Signorovitch et al. (2010) (Signorovitch et al., 2010) addressed this by proposing estimation 
based on the method of moments. 

Signorovitch et al. (2010) (Signorovitch et al., 2010) claimed that the method can incorporate 
any number of continuous and categorical variables that affect response. Signorovitch et al. 
(2010) (Signorovitch et al., 2010) and Ishak et al. (2015) (Ishak et al., 2015) suggested that 
the method can be used to compare treatments across studies in which there is no common 
comparator, including single-arm studies. However, a limitation with this approach as usually 
applied is that it assumes that there are no unobserved prognostic variables or treatment effect 
modifiers, although Signorovitch et al. (2010) (Signorovitch et al., 2010) claimed that it is 
robust to model misspecification. Di Lorenzo et al. (2011) (Di Lorenzo et al., 2011) used this 
approach when making an adjusted indirect comparison between everolimus evaluated in a 
placebo controlled study and sorafenib evaluated in a single arm study. 

Ishak et al. (2015) (Ishak et al., 2015) pointed out that to make the adjustment there needs to 
be overlap in the distributions of the covariates in each study. In the case of categorical 
outcomes, it would not be possible to adjust for a factor if a particular category is not 
represented in one of the studies e.g. gender might be an important prognostic factor but all 
patients were females in one study. In the case of a continuous outcome measure, it may not 
be possible to weight the values for which there is IPD so that they match the average 
baseline value in the comparator decision set. Extreme weights arise when there is poor 
overlap in the joint distribution of covariates between studies (Radice et al., 2012). 

Belger at al (2015a) (Belger et al., 2015a) and Belger et al (2015b) (Belger et al., 2015b) 
considered the application of MAIC when there are multiple studies and treatments, and 
proposed a modification based on entropy balancing.  

In the case of talimogene laherparepvec, the application of MAIC was inappropriate because 
it would produce adjusted responses as if talimogene laherparepvec had been evaluated in 
patient populations defined by the comparator treatments, which would be outside of its 
licensed indication. 

4.4.6 Simulated Treatment Comparisons (STC) 

STCs were introduced by Caro et al., (2010) (Caro and Ishak, 2010) and were described in 
further detail by Ishak (2015) (Ishak et al., 2015) and recently by Phillippo et al (2016) 
(Phillippo et al., 2016). STCs are similar to MAICs in that they generate adjusted responses 
for a treatment in a study for which there is IPD in order to match the sample characteristics 
of patients who received a comparator of interest in a separate study but differ in the way that 
the adjustments are made. 

STCs use IPD from an index or reference study to generate a prediction model for the 
outcome measure of interest as a function of prognostic variables and treatment effect 
modifiers. The estimated coefficients are then applied to the average baseline characteristics 



in the comparator study to generate predictions for treatments in the index study that reflect 
the sample of patients represented by the patients in the comparator study. The model for the 
data on the linear predictor scale is: ߠ௧௉ሺࢄሻ ൌ ଴ߚ ൅ ଵ்ࢼ ࢄ ൅ ሺߚ௧ ൅  ሼ௧ஷ௕ሽܫாெሻࢄଶ்ࢼ
where ߚ଴ is the response for the baseline treatment (ܾ), ߚ௧ is the relative effect of treatment at ࢄ ൌ ૙, ࢼଵ is a vector of coefficients corresponding to prognostic variables, ࢼଶ is a vector of 
coefficients corresponding to treatment effect modifiers ࢄாெ.  

An estimate of the mean response for the new treatment as if it had been evaluated in study ܲᇱ subject to the mean covariate values in study ܲᇱ. Ishak et al., (2015) (Ishak et al., 2015) 
suggest that a benefit of using prediction models in the case of a continuous variable affecting 
response is in its ability to make predictions outside the range of values observed in the index 
study. However, the method produces biased estimates in the case of non-linear models 
because the expectation of a function is not the same as the function evaluated as its 
expectation i.e. ܧ௑ሾ݂ሺܺሻሿ ് ݂ሺܧሾ തܺሿሻ. 

As with MAICs, Signorovitch et al. (2010) (Signorovitch et al., 2010) and Ishak et al. (2015) 
(Ishak et al., 2015) suggest that STCs can be used to compare treatments across studies in 
which there is no common comparator, including single-arm studies, the assumption being 
that there are no unobserved prognostic variables or treatment effect modifiers. 

In the case of talimogene laherparepvec, the application of STCs was inappropriate because it 
would produce adjusted responses as if talimogene laherparepvec had been evaluated in 
patient populations defined by the comparator treatments, which would be outside of its 
licensed indication. 

4.5 Model-Based Meta-Analysis (MBMA) 

A model-based meta-analysis is an extension of conventional meta-analyses and is a 
relatively mature field in terms of applications; the first published examples appeared in the 
1990s (Mould, 2012b). There is no single approach to, or guidance on, implementing a 
model-based meta-analysis, which may depend on the context as well as the analyst (Mould, 
2012a) (Zhao et al., 2012) (Assawasuwannakit et al., 2015). The appropriateness and 
properties of a model-based meta-analysis is further complicated in models that combine a 
mixture of IPD data and aggregate data (Kimko et al., 2012) (Van Wart et al., 2013) (Ravva 
et al., 2014) (Van Wart et al., 2014). 

Applications of MBMAs often involve fitting compartmental pharmacokinetic models but are 
increasingly being applied to other outcome measures collected longitudinally in studies with 
multiple doses and/or multiple treatments (Ahn and French, 2010) (Mandema et al., 2011) 
(Mandema et al., 2011) (Demin et al., 2012) (Gibbs et al., 2012) (Kimko et al., 2012) 
(Denney and Nucci, 2013) (Salinger et al., 2013) (Zhou and Al-Huniti, 2013) (Mandema et 
al., 2014) (Mercier et al., 2014) (Li et al., 2015b) (Li et al., 2015a). Some analysts adhere to 
the principle of concurrent controls and include fixed study effects while others assume 



random study effects, which are generally not recommended in conventional meta-analyses. 
Mawdsley et al. (2016) (Mawdsley et al., 2016) showed how to implement a MBMA in the 
context of an NMA while respecting the randomisation. The rationale for the choice depends 
on previously published applications and the availability of data as well as the objectives of 
the analysis. In particular, the aim of a model-based meta-analysis is often seen to be broader 
than simply estimating a relative treatment effect, which is the main parameter estimated in a 
conventional meta-analysis. The evidence as a whole is typically used to describe the 
longitudinal placebo (or natural history) response in a particular disease in addition to 
describing any dose-response relationships or comparisons between multiple treatments by 
placing random effects on baseline responses as well as relative treatment effects in each 
study. Estimating treatment specific responses is also an objective in an HTA but the 
recommendation in this case is to fit separate treatment effect and baseline models and to 
combine the results from the separate models. The validity of MBMA models has typically 
been justified in terms of goodness-of-fit or their predictive ability without any discussion 
regarding the issue of respecting the randomisation. 

Although we envisaged that a MBMA might be applicable in the context of time-to-event 
data, we did not find any specific examples of the analysis of OS and PFS, although Reddy et 
al. (2013) (Reddy et al., 2013) described a joint PK/PD and time-to-dropout model and Feng 
et al. (2013) (Feng et al., 2013) addressed the problem of assessing the exposure-response 
relationship of ipilimumab on overall survival using Cox proportional hazards regression 
adjusted for various covariates without accounting for study effects or heterogeneity between 
studies. The reason we did not find examples in the analysis of time-to-event data is most 
likely because such data are not strictly longitudinal within patient and the model for the data 
is a survivor function rather than a repeated measures model. 

4.6 Multivariate Meta-Analysis 

Disconnected networks can arise in the case of individual outcome measures within a study 
even though the studies as a whole might form a connected network. In this situation, it might 
be possible to borrow strength across outcome measures using a multivariate NMA (Achana 
and Cooper, 2014). Abrams et al (2016) (Abrams et al., 2016) used this approach to connect 
disconnected networks based on whether treatment was first or second-line in patients with 
rheumatoid arthritis. Multivariate NMA is a developing area of research that typically 
synthesises sample estimates of treatment effect (e.g. sample log hazard ratio) using a 
multivariate normal likelihood function. We are not aware of any published methodology on 
multivariate meta-analyses in the context of time-to-event outcome measures that model the 
underlying data generation process exactly and compare treatments in more flexible models 
that do not assume hazards are proportional for each treatment. 

4.7 Class Effect Models 

In a connected (i.e. anchored) network meta-analysis model it is sometimes possible to 
include a further hierarchy by assuming that treatment effects within classes are exchangeable 
such that: 



௜௞ߠ ൌ ௜ߤ ൅ ௜ǡ௕௞௖ߜ ௕௞ǡ௖̱ܰ൫݀஺௞ǡ௖ߜ ሼ௞ஷଵሽܫ െ ݀஺௕ǡ௖ǡ ߬ଶ൯ ݀஺௞ǡ௖̱ܰሺߤ௖ǡ  ௖ଶሻߪ

where ߤ௖ represents the pooled effect for the cth class of interventions, ߪ௖ଶ represents the 
between-treatment variance within the cth class (which may assumed to be common to each 
class of treatments), and A is the reference treatment. 

The model relies on the assumption that treatment can be classified into sensible classes. The 
advantages of this model, particularly when there is a limited amount of evidence about 
specific treatment effects within a class, are that it borrows strength about, and increases the 
precision of, individual estimates of treatment effect. However, this form of class effects 
model cannot be applied when the evidence base comprises disconnected networks. 

Dequen et al. (2012) (Dequen et al., 2012) created a connected network at a class level where 
the treatments comprised a disconnected network by assuming that treatments were clinically 
equivalent within class. This approach meant that pairwise studies comparing treatments in 
the same drug class were excluded from the analysis and assumes that there is no treatment 
within drug class variability, including, for example, differences in effect according to dose. 
In addition, it raises the question whether decision-makers would be willing to approve 
treatments that might have relatively little evidence about their specific effect using evidence 
from other treatments, or whether companies would be prepared to accept this approach to 
sharing evidence. 

Table 1 presents the treatment classes for the treatments in the assessment of talimogene 
laherparepvec. The OPTiM study is still isolated even after considering treatments as a class 
so that this approach was not feasible as part of the submission to NICE of talimogene 
laherparepvec. 

5. Discussion 

A network meta-analysis provides a basis for simultaneously comparing all treatments of 
interest even if they have not been compared directly in head-to-head studies but assumes that 
the studies form a connected network of studies and that the distribution of treatment effect 
modifiers is balanced across studies comparing different pairs of treatments. It might be 
possible to avoid disconnected networks by careful consideration of relevant treatments to 
include as comparators in RCTs at the design stage or by expanding the comparator decision 
set to include additional treatments to link disconnected networks at the analysis stage. 
However, including multiple comparator treatments in an RCT or repeating an RCT with 
different comparators may not be possible if the patient population is relatively small or if 
doing so is prohibitively expensive. It is inevitable that there will be situations when evidence 
about all relative treatment effects of interest will comprise studies forming disconnected 
networks of evidence for reasons including those associated with the assessment of 
talimogene laherparepvec in the OPTiM study; when there is no single standard of care 



nationally or internationally; in single-arm studies of treatments in rare diseases (e.g. 
Waldenström’s Macroglobulinaemia (National Institute for Health and Care Excellence); and 
in studies evaluating different treatment durations without control groups (e.g. ledipasvir–
sofosbuvir for the treatment of chronic hepatitis C (National Institute for Health and Care 
Excellence, 2016a). Faced with such evidence, reimbursement agencies such as NICE must 
decide whether to recommend the new treatment based on an indirect estimate of the effect of 
the new treatment relative to comparators of interest. 

In this paper, we have presented the results of a systematic review of methods and 
applications described in the scientific literature that address the problem of making indirect 
comparisons between treatments across disconnected networks that was motivated by an STA 
of talimogene laherparepvec for the treatment of advanced melanoma. Our work compliments 
that by Goring et al. (2016) (Goring et al., 2016), that appeared after we completed our 
systematic review, and also of that by Phillippo et al (2016) (Phillippo et al., 2016), which 
focused primarily on the validity of MAIC and STC and appeared after we our submitted our 
work for peer review. 

The fundamental problem with making comparisons between treatments that have been 
evaluated in studies forming disconnected networks is that there may be differences between 
studies in the distribution of patient characteristics that are prognostic of response or are 
treatment effect modifiers. In this situation, a naïve, unadjusted indirect comparison produces 
a biased estimate of relative treatment effect and it is necessary to use alternative methods of 
analysis that are, by definition, not based on within-study estimates of treatment effect. In 
spite of the strong criticism that making comparisons between treatments evaluated in 
different studies, even after adjustment for observed variables that affect response, is a type 
of naïve indirect comparison and “its results are not worthy of consideration” (Hoaglin, 
2013), an indirect estimate of relative effect must be generated to estimate the health benefits 
that might be achievable with the new treatment but that would be foregone by committing 
resources to the current treatment i.e. the opportunity cost. 

Methods based on generating study-specific external controls and estimating relative 
treatment effects across networks using non-RCT evidence such as registry data or experts’ 
beliefs preserve the ability to make simultaneous comparisons between treatments (assuming 
that there is not an imbalance in treatment effect modifiers in studies comparing different 
pairs of treatments). We are more receptive than Goring et al. (2016) (Goring et al., 2016) 
appear to be regarding the use of expert beliefs, although we acknowledge that elicitation 
must follow a justifiable, documented and transparent process, and can be resource intensive. 
Indeed, it is precisely in the context where there is no sample data with which to estimate 
parameters that prior distributions elicited from experts can be useful. The concern regarding 
random baseline models is well known but they provide a basis for incorporating sample data 
other than from RCTs and have been recommended in sparse disconnected networks (Thom 
et al., 2015). Matching adjusted indirect comparisons and simulated treatment comparisons 
may be useful in some contexts but it is important to appreciate that inferences depend on the 
population characterised by the sample of patients in the comparator study and that the 
population could potentially differ with each comparator of interest; these approaches were 



not appropriate in the case of talimogene laherparepvec because inferences would be relative 
to the comparator treatment patient population rather than the talimogene laherparepvec 
patient population which would be outside its licensed indication. We are not aware of any 
research using MAICs or STCs that allow simultaneous inferences to be made across all 
treatment in the decision set in a specific population of interest. 

Specification of the patient population for the decision problem is an important part of the 
decision-making process. Inferences following the application of adjusted treatment response 
methods will generally differ from those following a random effects NMA. In a random 
effects NMA it is assumed that the study-specific population treatment effects are 
exchangeable (i.e. related but different) and it is generally recommended that inferences are 
be based on predictive distributions of effects in new studies rather than on the mean of the 
random effect distribution (Higgins et al, 2009). Inferences based on adjusted treatment 
response effects will generally depend on the sample of patients in one of the studies and this 
may not be generalizable to the target population. In the case of talimogene laherparepvec, 
the aim was to generate an adjusted OS survivor function that would be expected for a 
comparator treatment in a study other than the OPTiM study as if the comparator treatment 
had been included in the OPTiM study. 

In general, methods based on adjusted treatment responses have typically been proposed from 
a frequentist perspective which only account for sampling variation and do not allow for 
parameter uncertainty. Another source of uncertainty is structural uncertainty arising from 
model misspecification which produces biased estimates of relative effect, although it can be 
reduced using doubly robust estimation. Alternatively, it might be possible to incorporate 
external information to mitigate this or take a Bayesian perspective (Saarela et al, 2016). 
Generating joint posterior distributions about parameters should be seen as an important aim 
in health technology assessment in order to properly represent uncertainty about inputs to 
decision analytic models. 

Finally, in the case of the talimogene laherparepvec submission to NICE, an indirect 
comparison with ipilimumab was made using an external evidence-based adjustment 
according to the modified Korn model and by presenting a naïve unadjusted indirect 
comparison. Sensitivity analyses were also performed by weighting each of the ipilimumab 
studies by line of therapy proportional to that observed in the OPTiM study. Although the 
NICE Evidence Review Group (ERG) acknowledged the effort made to generate an indirect 
estimate of relative treatment effect in the target patient population, the ERG considered the 
application of the modified Korn model inappropriate because it was developed using data 
from people with predominantly Stage IVM1b and Stage IVM1c disease, which have 
different disease trajectories to Stage III-IV1a disease. Nevertheless, the NICE Appraisal 
Committee concluded that talimogene laherparepvec is clinically and cost-effective in people 
for whom treatment with systemically administered immunotherapies is not suitable. 
 
6. Conclusions 



In conclusion, this review has identified various methods that have been proposed for dealing 
with the problem of estimating the relative effect of treatments across disconnected networks. 
We have described the main assumptions and limitations associated with each method. 
Assessing which method or methods are appropriate often depend on the clinical context as 
well as the availability of data. While data sharing initiatives should help to mitigate some of 
the limitations associated with studies that provide only aggregate responses, there is a need 
for further research on their use. In particular, the properties of frequentist methods and the 
robustness of results should be evaluated in simulation studies across a range of study sample 
sizes; using different models for prognostic variables and treatment effect modifiers that are 
unobserved at the analysis stage; and across different outcome measures such as 
time-to-event with non-proportional hazards. Furthermore, examples should be generated 
using a Bayesian approach that allows the incorporation of external information to reflect 
parameter uncertainty in addition to sampling variation. 
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Table 1 Treatment classes involved in the assessment of talimogene laherparepvec   
Intervention Class 
Talimogene laherparepvec Oncolytic viral immunotherapy 
Dacarbazine (DTIC) Chemotherapy 
Dabrafenib BRAF inhibitor immunotherapy 
Ipilimumab CTLA-4 inhibitor immunotherapy 
Vemurafenib BRAF inhibitor immunotherapy 
GM-CSF Monomeric glycoprotein 
 

  



Appendix 

MEDLINE search strategy 
1     ("no head to head" or "no head-to-head").mp. (163) 

2     (network meta-analys* or network meta analys* or network metaanalys*).mp. (755) 

3     1 and 2 (12) = Search 1 

4     disconnected network*.mp. (17) 

5     (meta analys* or meta-analys* or metaanalys*).mp. (104932) 

6     4 and 5 (1) = Search 2 

7     ("absence of head to head" or "absence of head-to-head").mp. (61) 

8     2 and 7 (10) = Search 3 

[mp=title, abstract, original title, name of substance word, subject heading word, keyword 
heading word, protocol supplementary concept word, rare disease supplementary concept 
word, unique identifier] 

 

 

 


