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Abstract: Objective. Accurate and efficient detection of steady-state visual evoked potentials 15 
(SSVEP) in electroencephalogram (EEG) is essential for the related brain-computer interface (BCI) 16 
applications. Approach. Although the canonical correlation analysis (CCA) has been applied 17 
extensively and successfully to SSVEP recognition, the spontaneous EEG activities and artifacts 18 
that often occur during data recording can deteriorate the recognition performance. Therefore, it is 19 
meaningful to extract a few frequency sub-bands of interest to avoid or reduce the influence of 20 
unrelated brain activity and artifacts. This paper presents an improved method to detect the 21 
frequency component associated with SSVEP using multivariate empirical mode decomposition 22 
(MEMD) and CCA (MEMD-CCA). EEG signals from 9 healthy volunteers were recorded to 23 
evaluate the performance of the proposed method for SSVEP recognition. Main results. We 24 
compared our method with CCA and temporally local multivariate synchronization index (TMSI). 25 
The results suggest that the MEMD-CCA achieved significantly higher accuracy in contrast to 26 
standard CCA and TMSI. It gave the improvements of 1.34%, 3.11%, 3.33%, 10.45%, 15.78%, 27 
18.45%, 15.00% and 14.22% on average over CCA at time windows from 0.5 s to 5 s and 0.55%, 28 
1.56%, 7.78%, 14.67%, 13.67%, 7.33% and 7.78% over TMSI from 0.75 s to 5 s. The method 29 
outperformed the filter-based decomposition (FB), empirical mode decomposition (EMD) and 30 
wavelet decomposition (WT) based CCA for SSVEP recognition. Significance. The results 31 
demonstrate the ability of our proposed MEMD-CCA to improve the performance of SSVEP-based 32 
BCI. 33 

Keywords: Brain computer interface; canonical correlation analysis; electroencephalogram; 34 
multivariate empirical mode decomposition; steady-state visual evoked potentials. 35 

 36 

1. Introduction 37 

Brain computer interface (BCI) provides an advanced communication method to people 38 
suffering from severe motor disabilities with external environment via measures of brain activity [1]. 39 
In the past few years, a range of BCI systems have been investigated including P300 [2, 3], steady 40 
state visual evoked potential (SSVEP) [4, 5], motor imagery [6] and hybrid BCI system [7, 8]. In 41 
particular, SSVEP-based BCIs have attracted widespread interest because of its high information 42 
transfer rate (ITR), high signal-to-noise ratio (SNR), and minimal training [9, 10]. SSVEP is defined 43 
as periodic evoked potentials elicited by rapidly oscillating visual stimulus, typically exhibiting the 44 
same frequency as the target as well as its harmonics. SSVEP-based BCI system mainly contains 45 
several visual stimuli flickering at distinct frequencies. When users focus attention on one of the 46 
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frequency-coded stimuli, there will be a corresponding component increase in SSVEP signals at the 1 
same frequency. The target thus can be determined by analyzing the frequency information of 2 
SSVEP signals.  3 

In current SSVEP-based BCI systems, the most commonly used technique to obtain the SSVEP 4 
is electroencephalogram (EEG) because of its very high temporal resolution and convenience [11]. 5 
The EEG noninvasively records electrical activity of the brain by placing the electrodes along the 6 
scalp. Therefore, the SSVEP recognition highly depends on algorithms for features extraction from 7 
recorded EEG signals. Various methods have been proposed to extract the SSVEP information from 8 
EEG in the real BCI application [9, 12, 13]. The power spectrum density analysis (PSDA) was widely 9 
used for frequency detection corresponding to SSVEP in BCI systems [14]. The spectrum of EEG can 10 
be estimated using fast Fourier transform (FFT) method with low computational cost, where the 11 
peak of the power spectrum density is considered as the SSVEP component induced by the visual 12 
target. However, this method is sensitive to artifacts in EEG and needs long window size for 13 
spectrum estimation with high frequency resolution [15]. Canonical correlation analysis (CCA) has 14 
been validated as a more efficient technique than PSDA for frequency recognition [16]. CCA as a 15 
multivariable statistical algorithm can estimate the degree of correlation within two multivariate 16 
signals. The largest coefficient between recorded EEG and pre-constructed reference signals is used 17 
to identify the target. The reference signals comprise a series of sine-cosine waves at the 18 
fundamental and higher harmonic frequencies of stimulus. Multivariate synchronization index 19 
(MSI) [17] detects the SSVEP by measuring the synchronization between recorded EEG and 20 
pre-constructed reference signals with the same frequency of visual stimuli. The temporally local 21 
MSI (TMSI) [4] improves the original MSI using temporally local information of signals. And 22 
likelihood ratio test (LRT) [18] is another tool to measuring the correlation between two set of 23 
multivariate signals and has been used in frequency detection of SSVEP-based BCIs. They all could 24 
achieve better performance than CCA. 25 

The CCA-based method provides an improvement in SNR of SSVEP signals, thus achieves 26 
significantly higher recognition accuracy, and has been widely used in BCI system because of its 27 
efficiency and robustness [19, 20]. However, reference signals of sinusoidal waves lack sufficient 28 
information from real SSVEP. Therefore, several extensions of CCA algorithms have been 29 
introduced to optimize reference signals with calibration in order to enhance the accuracy. Bin et al. 30 
[21] developed a BCI system based on code modulation VEPs, in which VEP templates obtained by 31 
averaging the EEG over multiple stimulus cycles were used as the references. A multiway CCA 32 
(MCCA) method considered optimized reference signals from space and trial data modes instead of 33 
the original sinusoidal reference signals [22]. A L1-regularized multiway canonical correlation 34 
analysis (L1-MCCA) was further proposed for reference signal optimization [23]. In addition, a 35 
multiset canonical correlation analysis (MsetCCA) [24] and a common feature analysis (CFA) [25] 36 
achieved reference signal optimization by extracting the common features completely based on 37 
training data. All these extended CCA approaches focus on optimizing reference signals and have 38 
been successfully implemented to improve the identification accuracy compared with the standard 39 
CCA in SSVEP-based BCI. Nevertheless, the performance depends not only upon reference signals 40 
but also upon EEG data. The spontaneous EEG unrelated to stimulus could deteriorate the detected 41 
accuracy. Besides, artifacts in EEG may inevitably result in misleading detection. Therefore, there is 42 
a need to further improve the accuracy by optimizing the EEG signals. 43 

In this study, we assume that the original EEG signals contain several non-overlapping 44 
frequency sub-bands, and the SSVEP related brain activities are located within some sub-bands 45 
rather than whole frequency band. The extracted signal occupying such sub-bands may bear a 46 
higher SNR, thus performs more efficiently in using CCA for SSVEP recognition. The traditional 47 
band-pass filters based on Fast Fourier Transform (FFT) divides a signal into several separate 48 
frequency domains with predefined bandwidth. The wavelet transform (WT) successively 49 
decomposes the signal into different frequency components. However, the EEG signals generated 50 
by human brain, a complex nonlinear system, are essentially nonlinear and non-stationary. The 51 
linear methods like FFT and WT are based on predefined basis functions and usually require 52 
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assumption of stationarity, thus they are inappropriate to deal with the highly complex EEG 1 
showing nonlinear dynamics and chaos, although they may work well for short time intervals. 2 
Therefore, new nonlinear methods are needed to analyze signals exhibiting nonlinear and 3 
non-stationary characteristics. Empirical mode decomposition (EMD) [26] is one of such techniques. 4 

EMD is a completely data-driven technique based on local properties of the signal. It 5 
adaptively decomposes the signal into a set of components called intrinsic mode functions (IMFs) 6 
through a sifting process without prior assumptions on the data. The IMFs indicate oscillation 7 
modes in the signal and are complete and almost orthogonal, thus they can serve as the basis 8 
functions derived from the data itself. This decomposition has been widely used to analyze the 9 
nonlinear and non-stationary processes, such as bio-signals, climate and earthquake [27-29], etc. 10 
Corresponding analyses show that EMD acts essentially as dyadic filter bank within the 11 
decomposed IMFs. Choice of IMFs in which SSVEP is more prominent according to time�frequency 12 
analysis of EEG via the Hilbert transform [26] provides a potential optimization for features 13 
detection from frequency sub-bands. However, in EMD technique, there are two obstacles: mode 14 
mixing in single-channel decomposition and mode misalignment in multiple-channel 15 
decomposition. The multivariate empirical mode decomposition (MEMD) has been proposed to 16 
better align the corresponding IMFs of multichannel signals [30]. In addition, by adding extra white 17 
noise channels, the mode mixing problem is reduced and the IMFs are forced to follow a dyadic 18 
filter bank structure. It is the so-called noise-assisted MEMD (N-A MEMD) [31]. Taking into account 19 
both properties of narrowband IMFs and multichannel nature, we propose a MEMD-CCA 20 
approach to improve the accuracy of SSVEP recognition. 21 

2. Materials and Methods  22 

2.1. EEG collection 23 

Nine healthy subjects (6 males and 3 females) with normal or corrected-to-normal vision from 24 
the University of Auckland participated in the study. Ethical approval was obtained from the 25 
University of Auckland Human Participants Ethics Committee (UAHPEC). Written informed 26 
consents were also received from all subjects. All experiments were managed by g.BCIsys (g.tec 27 
medical engineering GmbH, Austria), which is g.tec's BCI research environment as shown in Figure 28 
1. The bio-signal acquisition system g.USBamp was used to record the EEG data sampled at 256 Hz. 29 
The data were further passed through a band-pass filter with a bandwidth of 0.5-60 Hz, and a notch 30 
filter at 50 Hz. Eight EEG channels including �PO7�, �PO3�, �POz�, �PO4�, �PO8�, �O1�, �Oz� and 31 
�O2� according to the extended international 10�20 system were selected for analysis. The right 32 
earlobe electrode served as reference channel, and �FPz� was defined as ground. Visual stimuli 33 
were generated using four white colored LEDs with 8 mm diameter on the SSVEP box (i.e., 34 
g.SSVEPbox) controlled by the Paradigm Control and g.STIMbox blocks at the flashing frequencies: 35 
10, 11, 12 and 13 Hz, respectively. 36 

g.SSVEPbox

g.USBamp

g.GAMMAbox
g.STIMbox

LED

8 mm

78 mm
44 mm

91
 

m
m

150 mm  37 
(a)         (b) 38 

Figure 1. Experimental setup. (a) Overview of participant�s location at the table and g.BCIsys. The 39 
distance between the subjects and the target is about 70 cm. The g.USBamp is an amplifier and 40 
acquisition system. The g.STIMbox is used to generate and record trigger signals. The g.SSVEPbox is 41 
a stimulation device for SSVEP. And g.GAMMAbox is used for power supply and driver/interface 42 
box for 16 active electrodes. (b) The layout of SSVEP stimulation box (i.e., g.SSVEPbox) with four 43 
bright white LEDs (type WU-2-104WD, diameter 8 mm each with luminous intensity of 1500 mcd). 44 
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 1 
(a) 2 

 3 
(b) 4 

Figure 2. Illustration of the whole experiment. (a) The experiment process of 1 run. Each run 5 
contains 4 trials corresponding to 4 different frequencies, and in each trial, the subjects are asked to 6 
gaze at one of the targets for 5 s, rest for 3 s before shifting to the next target. (b) The experiment 7 
process of 1 session and the whole experiment. Each session includes 5 runs. Between sessions, the 8 
subjects can relax for 2-5 mins to avoid the visual fatigue. For each subject, the whole experiment 9 
consists of 5 sessions. 10 

The whole experiment is presented in Figure 2. All participants were seated in a comfortable 11 
chair facing the SSVEP visual stimulation box with a distance of 70 cm. Each subject completed 5 12 
sessions, each containing 5 runs with a rest between 2-5 mins as shown in Figure 2(b). After 5 runs, 13 
the subject has a 2-5 mins rest. Each run includes 4 trials associated with four stimulus frequencies, 14 
and the current target is marked by a small green LED. Subjects stare at the current stimulus for 5 s 15 
from the beginning of corresponding cue during each trial. They then have a 3 s rest before moving 16 
attention to the next target. The synchronized trigger signals indicating the subjects concentrate on 17 
a target LED or have a rest were also recorded on an event channel. A total of 100 trials (4 trials  18 
5 runs  5 sessions) data were recorded from each subject. 19 

2.2. Subbands decomposition 20 

2.2.1. Fourier decomposition 21 

The Fourier transform decomposes a time series into sinusoidal functions with different 22 
frequencies. A series of linear band-pass filters is able to divide the input signal into a number of 23 
sub-bands. The eighth-order type I Chebyshev filters [32] are designed in this study to implement 24 
the band-pass filters. The filtering process is applied to each channel of EEG separately. Then the 25 
components in the predefined pass-bands are extracted from original EEG signals. Since this type of 26 
filter as one of the classical infinite impulse response (IIR) filters has nonlinear phase distortion, so 27 
the function �filtfilt� in Matlab (v7.13, MathWorks Inc., Natick, MA, USA) is used to compensate for 28 
the distortion. This allows for design and implementation of zero-phase band-pass filters. 29 

2.2.2. Wavelet decomposition 30 

The Fourier transform decomposes a signal into sine and cosine waves, while wavelet 31 
transform (WT) decomposes the signal into coefficients with respect to the wavelet functions [33]. 32 
The wavelet coefficients are calculated to represent the correlation between the wavelets and signal. 33 
The WT can provide both time and frequency information simultaneously through translations and 34 
dilations of the mother wavelet and is defined as: 35 

                            (1) 36 
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with 1 

( , )( )a b

t b
t

a

− = ΨΨ  
 

                                 (2) 2 

where ( )f t is the original signal,∗ represents the complex conjugate function, ( )xΨ is the mother 3 
wavelet function. Wavelet basic functions ( , )( )a b tΨ  are translation and dilation versions of the 4 
mother wavelet at a and b .  5 
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2
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 6 

Figure 3. Illustration of a 3 level decomposition of WT. 7 

In practical applications, the discrete wavelet transform (DWT) using discrete scales and 8 
translations is commonly employed to separate a given signal into orthogonal set of wavelets and 9 
results in finite coefficient sets. Figure 3 presents typically dyadic wavelet decomposition. A series 10 
of half band filters are used to compute the DWT of a given signal [ ]x n , h[n] are the half band 11 
high-pass filters and g[n] are the half band low-pass filters, respectively. Half frequencies of the 12 
input signal are removed after filtering, so half number of points is redundant according to 13 
Nyquist�s rule, and then the outputs are down-sampled by 2. The high-pass and low-pass filters 14 
results in detail coefficients (i.e., D) and approximation coefficients (i.e., A) at each level. Each of the 15 
coefficient sets represents activities of origin signal in certain sub-bands. 16 

2.2.3. Empirical mode decomposition 17 

Empirical mode decomposition (EMD) is a data-driven and adaptive algorithm for analyzing 18 
nonlinear and non-stationary data according to local characteristic time scale [26]. This method 19 
decomposes any complicated time series into a set of IMFs. Given any time series )(tx , the EMD 20 
algorithm are outlined below: 21 

(1) Identify all local maxima and minima of )(tx . 22 
(2) Interpolate all maxima with cubic splines to obtain an upper envelope max( )e t . 23 
(3) Interpolate all minima with cubic splines to obtain a lower envelope min ( )e t . 24 
(4) Compute local mean by averaging envelops 25 

1 max min( ) ( ( ) ( )) 2m t e t e t= +                               (3) 26 
(5) Subtract the local mean from the original data to extract the first component 27 

1 1( ) ( ) ( )h t x t m t= −                                   (4) 28 
(6) Check the properties of 1( )h t . If 1( )h t fulfills the requirements of IMF, 1( )h t  is an IMF, it is 29 

designated as 30 
1 1( ) ( )c t h t=                                      (5) 31 

If 1( )h t does not satisfy an IMF, then 1( )h t  is treated as the original data, that is 32 

1( ) ( )x t h t=                                      (6) 33 
And repeat above procedure until 1( )h t  becomes an IMF. 34 

(7) Separate the IMF 1( )c t from the data, the residual is designated as 35 

1 1( ) ( ) ( )r t x t c t= −                                   (7) 36 
(8) Treat the residual 1( )r t  as the new data, that is 37 

1( ) ( )x t r t=                                     (8) 38 
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(9) Repeat the procedure from (1) to (8) on all the subsequent residuals, until the residual 1 
satisfies the stopping criterion, the result is 2 

2 1 2 1( ) ( ) ( ) ( ) ( ) ( )n n nr t r t c t r t r t c t−=− =−                         (9) 3 
Finally, the signal ( )x t  can be decomposed into n IMF and a residual expressed as follows: 4 

1
( ) ( ) ( )

n

i n
i

x t c t r t
=

= +∑                                (10) 5 

Generally, an effective IMF need to satisfy two conditions including: 1) the numbers of extrema 6 
and zero-crossings are the same or differ at most by 1, and 2) the average of upper envelope and 7 
lower envelope is zero at any point [26]. The first condition guarantees the traditional narrow band 8 
requirement, and the second condition innovatively defines a local requirement by local maxima 9 
and minima instead of the classical global one. With these two conditions, a meaningfully 10 
instantaneous frequency can be calculated to obtain localized time-frequency spectrogram through 11 
the Hilbert transform  12 

( )1
( ( )) di

i

c t
H c t P t

t tπ
+∞
−∞

′
′= ∫ ′−
                            (11) 13 

from each IMF, where 1( )c t  is the i IMF, P is Cauchy principal value. Then the analytic signal 14 
( )iZ t  is defined as 15 

( )( ) ( ) ( ( )) ( ) ij t
i i i iZ t c t jH c t a t e θ=+ =                         (12) 16 

the instantaneous frequency is given by 17 
d ( )

( )
d

i
i

t
t

t

θ
ω =                                  (13) 18 

2.2.4. Multivariate empirical mode decomposition 19 

Multivariate empirical mode decomposition is a recently proposed method to extend the 20 
standard EMD for analyzing multivariate signal [30]. EMD separately decomposes each channel of 21 
a multivariate signal, but this decomposition may result in mode nonalignment which means that 22 
the total number of IMFs and scale properties in the same-index IMFs derived from different 23 
channels can be different. MEMD simultaneously decomposes multichannel data ensuring better 24 
alignment of corresponding IMFs from different channels, which will benefit narrowband SSVEP 25 
detection with broadband spontaneous EEG. For multivariate data, the local mean by averaging 26 
upper and lower envelopes cannot be defined directly due to no clear definition for local maxima 27 
and minima of complex signals. To solve this problem, projections of the input signal along 28 
different directions in multidimensional space are calculated. Then extrema of those projections are 29 
identified and interpolated to obtain the multivariate envelopes. Finally, local mean can be 30 
computed by averaging multiple envelopes. Given a n-channel multivariate signal 31 

1 2( ) { ( ), ( ), , ( )}x nt x t x t x t=  , MEMD algorithm is summarized as follows: 32 

(1) Generate a suitable set of direction vectors s kθ  using low discrepancy Hammersley 33 
sequences [30] on an (n ┑ 1) sphere, that is 34 

1 2{ , , , } 1,2, ,s k k k k
ns s s k Kθ ==                              (14) 35 

where kθ is the direction angle of corresponding direction vector, defined by 36 

1 2 1{ , , , }k k k k
nθ θ θ θ −=                                  (15) 37 

(2) Calculate projection of the input signal along each direction vector, then we obtain a set of 38 
projections for all k, denoted by ( ), 1,2, ,kp t k Kθ =  . 39 

(3) Identify all maxima and their corresponding time instants k
it
θ  of the projection ( )kp tθ  for 40 

all k. 41 
(4) Interpolate [ , ( )]xk k

i it tθ θ  for all k to generate multivariate envelope ( ), 1,2, ,e k t k Kθ =  . 42 
(5) Calculate the mean of envelopes by 43 

1

1
( ) ( )m e k

K

k
t t

K
θ

=
= ∑                               (16) 44 
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(6) Subtract ( )m t from original signal to obtain the detail component ( )d t , given by 1 
( ) ( ) ( )d x mt t t= −                               (17) 2 

(7) Check the properties of ( )d t  to sift appropriate IMFs. If ( )d t fulfills the requirements for 3 
multivariate IMF, repeat the above steps to ( ) ( )x dt t− , otherwise repeat them to ( )d t  until all 4 
projected signals satisfy the stop criteria. The requirements for multivariate IMF are similar to 5 
definition in EMD, while the constraint for numbers of extrema and zero-crossings is not required. 6 

To further circumvent the mode mixing problem in EMD. Extra channels containing 7 
multivariate independent white noise are introduced into original signal. Because of the broadband 8 
property of white noise and dyadic filter bank behavior of MEMD on white noise, IMFs 9 
corresponding to the original signal also exhibits a quasi-dyadic structure enforced by the extra 10 
noisy channels, in turn reducing the mode mixing problem and the spectral overlap between IMFs 11 
[31]. Therefore, MEMD provides a potentially useful technique for feature extraction and fusion of 12 
narrowband but non-stationary activities from multichannel signals, for instance SSVEP detection 13 
in multichannel EEG.  14 

In fact, it should be named noise-assisted MEMD (N-A MEMD) method instead of the original 15 
MEDM by adding uncorrelated Gaussian white noise channel to the input multivariate signal in the 16 
process of decomposition. Different with original MEMD, in N-A MEMD, m-channel independent 17 
white noise is firstly created and added into the original n-channel inputs, obtaining a (m + 18 
n)-channel combined signal. And then MEMD is used to decompose such a signal to get 19 
multivariate IMFs. Finally, the IMFs corresponding to the channels of original signal are extracted. 20 
However, it should be mentioned that the so-called noise-assisted methods also use the MEMD to 21 
decompose such a combined signal including original inputs and extra noise channels. So in this 22 
study, we use the name of MEMD instead of N-A MEMD in spite of adding extra noise in all 23 
decompositions. 24 

2.3 Canonical correlation analysis 25 

2.3.1. Standard CCA 26 

Canonical correlation analysis is a tool for measuring the linear relationship between two sets 27 
of variables. Given two multivariate variables X  and Y , their respective linear combinations 28 
designed as x  and y  can be given by 29 

w XT
xx =                                        (18) 30 

and 31 
w YT

yy =                                        (19) 32 
where w x  and w y  are two corresponding weight vectors. The CCA seeks w x  and w y  to 33 
maximize the correlation between x  and y . This indicates that the parameter of correlation to be 34 
maximized is 35 

E[ ]E[ ]
( , )

E[ ]E[ ] E[ ]E[ ]

w XY w

w XX w w YY w

T TT
x y

T T T T T T
x y y y

xy
x y

xx xy
ρ ==                     (20) 36 

In SSVEP recognition using CCA [16], X  corresponds to the multichannel EEG and Y  is the 37 
predefined reference signal corresponding to the nth stimulus frequency. Assume the data length is 38 
L  and the sampling rate is sf , the reference signal can be defined as 39 

sin(2 )

cos(2 )
1 2

, [ , , , ]

sin(2 )

cos(2 )

Y=Y

n

n

n
s s s

n

n

f t

f t
L

t
f f f

Nf t

Nf t

π
π

π
π

 
 
 
 ==
 
 
  

                       (21) 40 

where nf  is the fundamental frequency of a certain target, N  is the number of harmonics. CCA 41 
computes the correlation between X  and Y for all stimulus frequencies respectively, and then the 42 



8 of 17 

SSVEP frequency is recognized as that of reference with maximal correlation value. Figure 4 1 
presents the flowchart of the standard CCA for SSVEPs recognition. 2 

CCA

X

max( )
Yn

f ρ=

1Y 2Y Yn...

 3 
Figure 4. Flowchart of the standard CCA method for frequency detection of SSVEPs. X  is the 4 
recorded EEG data and Yn  is the nth reference signal. The SSVEP frequency is recognized as the 5 
frequency of Yn  that maximizes correlation. 6 

2.3.2. Sub-band CCA 7 

The standard CCA detects the frequencies of SSVEPs in the whole frequency band of EEG. In 8 
this case, the spontaneous EEG and artifacts reduce the SNR and recognition accuracy of SSVEPs. 9 
Therefore, a sub-band CCA provides a solution to further improve the performance in 10 
SSVEPs-based BCI. The specific benefits of certain sub-bands containing the discriminative 11 
information of SSVEPs are investigated. This study proposes a MEMD-CCA approach to improve 12 
SSVEP recognition accuracy in sub-bands instead of the whole band of EEG. In addition, we 13 
compare MEMD with traditional filter-based decomposition (FB), discrete Wavelet decomposition 14 
(WT) and EMD in sub-bands extraction and frequency detection in CCA. Figure 5 shows the 15 
flowchart of the FB-CCA, WT-CCA and EMD-CCA methods for frequency detection of SSVEPs. 16 
These methods all firstly decompose each channel of the multivariate EEG into several sub-bands, 17 
then the components corresponding to the SSVEPs are reconstructed for further frequency 18 
detection in CCA. Figure 6 gives the flowchart of the MEMD-CCA for SSVEPs recognition. Unlike 19 
FB-CCA, WT-CCA and EMD-CCA methods, MEMD-CCA simultaneously separates the 20 
multivariate signal as a whole into multivariate components. Moreover, MEMD considers the 21 
consistency of decomposition across channels by adding two extra channels containing white noise 22 
to align the separated components. In addition, by introducing another four reference channels, 23 
each of which compromises the sum of reference signal corresponding to target and white noise, 24 
MEMD ensures the consistency of extracted EEG patterns across trails and subjects. 25 

...

... ... ...

FB/DWT/EMD FB/DWTEMD FB/DWT/EMD

...

CCA

X

1x 2x 8x

1SB 2SB NSB 1SB 1SB2SB 2SBNSB NSB

1x 2x 8x

max( )
Yn

f ρ=

1Y 2Y Yn...

 26 
Figure 5. Flowchart of the FB-CCA, WT-CCA and EMD-CCA methods for frequency detection of 27 
SSVEPs. Assume eight channel EEG signals are recorded and denoted as 1 2 8{ , , , }x x x=X  . Each of 28 
them is first decomposed into N sub-bands by FB, DWT and EMD methods, designed as 29 

1 2, , , NSB SB SB . Then the sub-bands related to SSVEP are reconstructed for further frequency 30 
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detection via CCA. The reconstructed signal is defined as 1 2 8{ , , , }x x x=X    . Yn  is the predefined 1 
reference signal corresponding to the nth stimulus frequency defined in Eq(21). 2 

...

MEMD

CCA

...

X

w
gn

w
gn

1x 2x 8x... 1w 2w

1Y 2Y Yn

wgn +

...

1wY 2wY wnY...
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1x 2x 8x
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Yn

f ρ=

1Y 2Y nY...

sum

 3 
Figure 6. Flowchart of the MEMD-CCA method for frequency detection of SSVEPs. 4 

1 2 8{ , , , }x x x=X   is the recorded EEG, Yn  is the nth reference signal and �wgn� is the white noise. 5 
A composite signal is first constructed by adding extra channels contain two channel white noise 6 
and n channel reference signals. Then MEMD is employed to decompose such combined signal. The 7 
IMFs corresponding to the original EEG are reserved to extract sub-bands related to SSVEP. Note 8 
that Yn  may be a multivariate signal containing several harmonics, it is converted into a 9 
one-dimensional data nY  by summing up all harmonic components. Then each of them is 10 
corrupted by added white noise to generate extra reference channels. 11 

3. Results 12 

3.1 Performance evaluation 13 

The classification accuracy is calculated to evaluate the performance of our proposed 14 
MEMD-based method for SSVEP recognition. A comparison of our improved method with 15 
standard CCA and TMSI is performed. In addition, in order to illustrate the advantages of MEMD, 16 
we compare it with traditional filter-based decomposition, WT and EMD methods described in 17 
previous sections for SSVEP detection. The validation is estimated using 100 trials data from each 18 
subject. The paired sample t-test in IBM SPSS Statistics (Version 23.0, Armonk, NY: IBM Corp.) is 19 
used to indicate their statistically significant difference of averaged accuracy across all subjects. 20 
Furthermore, Bonferroni correction is employed for multiple comparisons. All tests are two tailed, 21 
and the statistical significance level is 0.05p < . 22 

3.2. Time-frequency analysis of SSVEP 23 

Owing to the dyadic structure of WT, EMD and MEMD on a decomposed signal, the original 24 
EEG is separated into seven components to match the frequency properties of SSVEP. Both WT and 25 
EMD act as a dyadic filter bank on one-channel signal while MEMD acts on each channel of 26 
multivariate signal as a dyadic filter bank. A collection of dyadic band-pass filters are also 27 
implemented with type I Chebyshev. Table 1 shows the corresponding frequency ranges of 28 
separated components from EEG signal in terms of rhythmic activity. The collected EEG signal is 29 
sampled at 256 Hz, so the highest frequency included in the signal is 128 Hz according to Nyquist 30 
sampling theorem. In this case, the dyadic tiling in frequency domain approximately reflects the 31 
typical bandwidths in EEG known as delta-band (0�4 Hz), theta-band (4�8 Hz), alpha-band (8�16 32 
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Hz), beta-band (16�32 Hz), gamma-band (32�64 Hz), and the EMG band (64-128 Hz). The exact 1 
boundaries of these rhythms are not consistent across studies, while in this study the frequency 2 
ranges in decomposition is conducted according to Gajic, et al. [34] and Nguyen-Ky, et al [35]. The 3 
components B1-B7 are decomposed by a set of non-overlap band-pass filters using type I 4 
Chebyshev, D1-D7 are decomposed by DWT method, while C1-C7 are decomposed by EMD or 5 
MEMD method. 6 

Table 1. Frequencies of EEG corresponding to decomposition levels. 7 

Sub-band 
Clinical 

band 

Frequency 

range(Hz) 

Filter-based 

decomposition 

Wavelet 

decomposition 
EMD/MEMD 

1 EMG 64-128 B1 D1 C1 

2 Gamma 32-64 B2 D2 C2 

3 Beta 16-32 B3 D3 C3 

4 Alpha 8-16 B4 D4 C4 

5 Theta 4-8 B5 D5 C5 

6 Delta 2-4 B6 D6 C6 

7 Delta 0-2 B7 D7 C7 

 8 
We illustrate the operation of filter-based decomposition (FB), discrete Wavelet decomposition 9 

(WT), EMD and MEMD in simulated data decomposition, the simulation signal is given by 10 
1 2 3 4( ) s ( ) ( ) ( ) ( ) ( )s t t s t s t s t wg nt= + + + +                          (22) 11 

where 

1 1 1

2 2 2

3 3 3

4 4 4

( ) sin(2 ) 0.5*sin(2 2 ) 0 4

( ) sin(2 ( 7)) 0.5*sin(2 2 ( 7)) 7 11

( ) sin(2 ( 14)) 0.5*sin(2 2 ( 14)) 14 18

( ) sin(2 ( 21)) 0.5*sin(2 2 ( 21)) 21 25

s t f t f t t

s t f t f t t

s t f t f t t

s t f t f t t

π π
π π

π π
π π

= ∗ ∗ + ∗ ∗ ≤ ≤
 = ∗ ∗ − + ∗ ∗ − ≤ ≤
 = ∗ ∗ − + ∗ ∗ − ≤ ≤

= ∗ ∗ − + ∗ ∗ − ≤ ≤






, 1 10f Hz= , 2 11f Hz= , 12 

3 12f Hz=  and 4 13f Hz=  are four stimulus frequency of the target. The SSVEPs are simulated with 13 
four sinusoidal signals and its first harmonic at different time delay (i.e., 0 s, 7 s, 14 s and 21 s). And 14 

( )wgn t  is the white noise to simulate spontaneous EEG activities. For MEMD, the one channel 15 
signal is extended to eight channels and each channel is generated using Eq (22). Then two extra 16 
independent white noise channels are added into the eight-channel simulation signal. MEMD 17 
decomposes such a combined signal. The IMFs associated with the first channel are reserved for 18 
further analysis. A comprehensive comparative study of FB, WT, EMD and MEMD to produce 19 
spectrogram estimates is shown in Figure 7. The first column presents the time-frequency 20 
spectrograms of the simulation signal using short-time Fourier transform (STFT), continuous 21 
wavelet transform (CWT), the Hilbert�Huang spectrogram (HHS) based on EMD and MEMD. STFT 22 
is calculated using the Hamming window with 1s data length and 128 data points overlap. And the 23 
complex Morlet wavelet is applied to compute CWT. The wavelet has a default effective support of 24 
[-8, 8] used in Matlab (v7.13, MathWorks Inc., Natick, MA, USA). It is constructed with a bandwidth 25 
parameter of 3 and a wavelet center frequency of 3. The length of the wavelet is taken to be 256. The 26 
time-frequency spectrograms of the simulation signal obtained using all four methods present 27 
obvious stimulus frequencies for the duration of the SSVEP task, while HHS based on EMD and 28 
MEMD is more localized. However, EMD exhibits more mode mixing. 29 
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 1 
  (a) STFT spectrogram    (b) Filter-based decomposition  (c) Power spectra 2 

 3 
 (d) Wavelet (Morlet) spectrogram  (e) Wavelet (sym4) decomposition  (f) Power spectra 4 

 5 
(g) EMD spectrogram by Hilbert transform  (h) EMD decomposition   (i) Power spectra 6 

 7 
(j) MEMD spectrogram by Hilbert transform   (k) MEMD decomposition   (l) Power spectra 8 

Figure 7. Time-frequency analysis using the Fourier transform method (a, b, c), wavelet (d, e, f), 9 
EMD (g, h, i) and MEMD (j, k, l) methods. 10 
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 1 
     (a)           (b) 2 

 3 
     (c)           (d) 4 

 5 
     (e)           (f) 6 

 7 
     (g)           (h) 8 

Figure 8. Reconstruction using the components decomposed by FB, WT, EMD and MEMD. (a), (c), 9 
(e) and (g) are the reconstructed signals and (b), (d), (f) and (h) are their corresponding spectrum. 10 
The red points indicate the frequency of the stimulus and their first harmonic. 11 

Subfigures in the middle column in Figure 7 show the components decomposed by FB, WT, 12 
EMD and MEMD method, while subfigures in the right column in Figure 7 present the spectra of 13 
the corresponding components. The WT decomposition is calculated using the sym4 mother 14 
wavelet. The time-frequency components of B4 decomposed by FB and D4 decomposed by WT 15 
method locate in the alpha band component and contain the basic frequency of SSVEP. And B3 and 16 
D3 within beta band contain the first harmonic of stimulus. The frequency ranges of the 17 
decomposition by FB and WT are consistent with classical sub-bands of EEG in Table 1. For EMD, 18 
the SSVEP signal is mainly located in the components of C3 and C4, while it is within C3, C4 and 19 
C5 decomposed by MEMD, and C4 mainly contains the 13 Hz component. Note that MEMD 20 
reduces the spectral overlap between two consecutive components and thus provides a higher 21 
frequency resolution compared with other methods. Furthermore, Figure 8 presents the extracted 22 
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sub-band components and their spectrum decomposed by FB, WT, EMD and MEMD. The 1 
components related to SSVEP are estimated from the simulation data at B3 and B4 derived from FB, 2 
D3 and D4 derived from WT, C3 and C4 using EMD, and C3, C4 and C5 using MEMD, respectively. 3 
All methods can reserve SSVEP rhythms. In particular, the MEMD retains less spontaneous EEG 4 
components, thus SSVEP is more prominent than those observed in other methods. 5 

 6 
Figure 9. The inSuenceやofやnoiseやonやtheやcorrelationやofやCCAやbetweenやtheやsimulatedやtargetやsignalや〉i╆e╆╇や7 
SSVEP) and its related contaminated signal via simulation. Larger correlation (i.e., ȡ) indicates higher 8 
possibility in target recognition, so increasing the SNR may improve recognition accuracy. The 9 
SSVEP is simulated using sinusoidal waveforms and then the contaminated SSVEPs are generated at 10 
different SNR by adjusting the value of i defined in Eq (23). 11 

 12 
Figure 10. Performance comparison of the anti-noise capability of FB, WT, EMD and MEMD 13 
through simulation at various SNR. The FB method uses B3 and B4 to reconstruct the SSVEP, and 14 
WT method use D3 and D4. Note that EMD(2-4) indicates that the SSVEP is reconstructed using 15 
components C2, C3 and C4 decomposed by EMD, and MEMD(3-4) means that the SSVEP is 16 
reconstructed using components C3 and C4 decomposed by MEMD, and so on. 17 

In order to illustrate the performance of the CCA approach for recognition of target signal at 18 
various signal-to-noise ratio (SNR), we generate the stimulated SSVEP at different levels with 19 
respect to the white noise in Eq (22), defined as  20 

1 2 3 4( ) *(s ( ) ( ) ( ) ( )) ( )s t i t s t s t s t wg nt= + + + +                   (23) 21 
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where [0.1,0.2, 10]i =   defines the level of simulated SSVEP. Figure 9 shows the correlation of 1 
CCA for recognition of target signal at various SNR. When SNR gets lower, the correlation falls 2 
rapidly, whereas when SNR increases over approximately 10dB, the correlation increases slowly. 3 
The simulation study demonstrates that frequency feature of SSVEP is more prominent by 4 
increasing the SNR. Then the anti-noise capability of the four approaches is compared through 5 
simulation as shown in Figure 10. The reconstructed SSVEP using components C3 and C4 derived 6 
from EMD and MEMD perform better in lower SNR (< -10 dB) compared with FB and WT, while 7 
MEMD also perform better in high SNR (> 3 dB). The highest SNR is obtained with the MEMD. 8 
However, the anti-noise capability of summing C3 and C4 decomposed by MEMD decreases 9 
between approximate -10 dB and 3 dB. In this case, the SSVEP is mainly located in the components 10 
of C3, C4 and C5 as shown in subfigures in the bottom in Figure 7. It should be considered that 11 
SSVEP responses are extremely weaker than background EEG activity in real application and have 12 
lower SNR. Therefore, C3 and C4 corresponding to beta and alpha band in EEG will be used to 13 
reconstruct the SSVEP for frequencies detection. 14 

 15 
   (a) S1      (b) S2      (c) S3 16 

 17 
   (d) S4      (e) S5      (f) S6 18 

 19 
   (g) S7      (h) S8      (i) S9 20 

Figure 11. SSVEP recognition accuracies with respect to time window length (i.e., 0.25 s, 0.5 s, 0.75 s, 21 
1 s, 1.5 s, 2 s, 3 s, 4 s and 5 s) for each of the nine subjects S1-S9 derived by the CCA, FB-CCA, 22 
WT-CCA, EMD-CCA, MEMD-CCA and TMSI, respectively. The components corresponding to the 23 
beta and alpha sub-bands in EEG are used for frequency detection. FB-CCA uses the sub-bands of 24 
B3 and B4, WT-CCA uses D3 and D4, EMD-CCA and MEMD-CCA use C3 and C4. 25 

3.3. SSVEP recognition 26 

The frequencies of SSVEP (i.e., 10, 11, 12 and 13 Hz) and its first harmonic (i.e., 20, 22, 24 and 26 27 
Hz) in this experiment are mainly within the frequency range of alpha-band (8�16 Hz) and 28 
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beta-band (16�32 Hz). In Table 1, it can be found that the third and fourth components decomposed 1 
by FB, WT, EMD and MEMD correspond to alpha and beta rhythms, respectively. And Figure 10 2 
indicates that the reconstructed signal using C3 and C4 have higher SNR than that using C3, C4, 3 
and C5 in the case of lower SNR. Therefore, C3 and C4 in EEG are empirically chosen to reconstruct 4 
the SSVEP of nine subjects for frequencies detection. According to the analysis above, the 5 
SSVEP-related sub-bands are estimated from the components of B3 and B4 derived from FB, D3 and 6 
D4 divided by WT, C3 and C4 using EMD/MEMD in real application, respectively. Figure 11 shows 7 
the SSVEP recognition accuracies for each subject at time windows of 0.25 s, 0.5 s, 0.75 s, 1 s, 1.5 s, 2 s, 8 
3 s, 4 s and 5 s. The fundamental frequency and first harmonic are used in the reference signals. The 9 
recognition accuracies increase with respect to time window length. Generally, the methods based 10 
on MEMD outperformed standard CCA when time window is more than 1 s. It also outperformed 11 
TMSI except S7 and S8. The FB-CCA and WT-CCA achieve higher accuracy than standard CCA in 12 
some cases, such as S1 and S2 in Figure 11, while EMD-CCA provides no improvement in 13 
recognition accuracy on most occasions. This indicates that the alpha and beta band related to SSVEP 14 
in EEG have been better decomposed by MEMD, and the extracted components including C3 and 15 
C4 are more consistent across all subjects. The EMD extracts and aligns the IMFs poorly in 16 
comparison with MEMD for multichannel EEG decomposition. In particular, an adaptively dyadic 17 
filter bank structure of MEMD on each channel of EEG signals promotes the consistency across the 18 
subjects. It is noted that the accuracy is absolutely poor at small time windows (< 1 s) for all 19 
methods. 20 

Table 2. Comparison of the recognition accuracy across nine subjects between our proposed 21 
methods (i.e., FB-CCA, WT-CCA, EMD-CCA and MEMD-CCA) and existing methods (i.e., standard 22 
CCA, TMSI), respectively. The time window is from 0.25 s to 5 s. The results are presented as mean ± 23 
standard deviation. The paired t-test is also used to determine whether the mean of recognition 24 
accuracy over all nine subjects are significant difference between MEMD-CCA and standard CCA, 25 
TMSI. The statistically significant difference (p < 0.05) is marked by asterisks (*) and daggers (�), 26 
respectively. 27 

TW (s) 
Accuracy (%) 

CCA FB-CCA WT-CCA EMD-CCA MEMD-CCA TMSI 

0.25 26.33 ± 2.96 25.44 ± 3.91 22.11 ± 5.58 26.67 ± 4.50 25.33 ± 6.61 28.78 ± 3.73 

0.5 27.44 ± 3.97 29.33 ± 3.91 28.44 ± 6.39 27.56 ± 3.71 28.78 ± 5.83 28.78 ± 6.02 

0.75 30.00 ± 4.72 29.78 ± 8.27 31.67 ± 8.47 31.78 ± 4.68 33.11 ± 7.36 32.56 ± 5.90 

1 32.56 ± 4.75 31.44 ± 5.98 34.00 ± 5.22 29.78 ± 4.58 35.89 ± 9.99 34.33 ± 6.93 

1.5 36.22 ± 10.08 36.33 ± 9.87 35.56 ± 11.01 33.89 ± 10.60 46.67 ± 9.94*† 38.89 ± 13.63 

2 40.22 ± 12.78 42.56 ± 11.54 41.22 ± 10.05 40.89 ± 12.75 56.00 ± 8.99*† 41.33 ± 18.77 

3 51.33 ± 18.47 53.11 ± 18.66 53.11 ± 18.50 49.44 ± 20.31 69.78 ± 11.34*† 56.11 ± 20.68 

4 62.00 ± 18.92 64.00 ± 19.58 63.33 ± 18.45 60.67 ± 19.19 77.00 ± 13.25*† 69.67 ± 18.12 

5 69.78 ± 16.98 72.56 ± 16.83 72.89 ± 15.45 67.89 ± 18.49 84.00 ± 7.83*† 76.22 ± 15.55 

* Accuracy calculated from improved methods is significantly higher compared with that from standard CCA. 28 
� Accuracy calculated from improved methods is significantly higher compared with that from TMSI. 29 

The averaged accuracies of nine subjects are shown in Table 2. The FB-CCA and WT-CCA 30 
achieve higher averaged accuracies than standard CCA and EMD-CCA at time windows from 2 s to 31 
5 s. TMSI achieves higher averaged accuracies than standard CCA with all data length. Especially, 32 
MEMD-CCA yields the highest accuracy on average and gives the improvements of 1.34%, 3.11%, 33 
3.33%, 10.45%, 15.78%, 18.45%, 15.00% and 14.22% over standard CCA at time windows from 0.5 s to 34 
5 s. It also gives the improvements of 0.55%, 1.56%, 7.78%, 14.67%, 13.67%, 7.33% and 7.78% over 35 
TMSI at time windows from 0.75 s to 5 s. Furthermore, the paired-sample t-test is used to analyze the 36 
statistical difference between the standard CCA, TMSI, and each of the FB-CCA, WT-CCA, 37 
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EMD-CCA and MEMD-CCA over all subjects. The results indicate that MEMD-CCA achieves 1 
significantly higher accuracies than standard CCA and TMSI over 1.5-5 s data length, while the 2 
FB-CCA, WT-CCA and EMD-CCA method achieve no significantly higher accuracy than that of the 3 
standard CCA and TMSI methods. 4 

Although the SSVEP responses with high amplitude can be record by electrodes located at the 5 
occipital areas, the best locations are subject specificity. Signal-to-noise ratio (SNR) can be used as 6 
the criterion to determine optimal electrode positions for each subject. It is estimated by a ratio of 7 
power at a given stimulation frequency with respect to the mean power of the adjacent points 8 
according to [36]. This estimator approximately represents the SNR of SSVEP. Figure 12 illustrates 9 
the SNR with different electrodes across the nine subjects. For example, the electrodes placed at the 10 
bottom region (i.e., �O1�, �Oz� and �O2�) have the best SNR for S1. While the middle region (i.e., 11 
�PO3�, �POz�, �PO4�, �O1�, �Oz� and �O2�) has relatively higher SNR for S2. 12 

 13 
(a) S1      (b) S2      (c) S3 14 

 15 
(d) S4      (e) S5      (f) S6 16 

 17 
(g) S7      (h) S8      (i) S9 18 

Figure 12. Signal-to-noise-ratio (SNR) of SSVEP at different stimulation frequencies with respect to 19 
EEG electrodes for each of the nine subjects S1-S9, respectively. The bar is averaged SNR over 20 
experiment realizations (5 runs ×  5 sessions for each frequency). The mean value across four 21 
frequencies for a given electrode is also indicated with red dashed line. 22 

Furthermore, the computational time of selected six methods is compared as shown in Table 3. 23 
The time is calculated in Matlab (v7.13, MathWorks Inc., Natick, MA, USA) on a personal computer 24 
with the configuration of AMD A8-7410 APU @ 2.20 GHz, 8 GB RAM, 64 bit Win 10. The EMD-CCA 25 
and MEMD-CCA take larger time than CCA, FB-CCA, WT-CCA and TMSI. Especially, 26 
MEMD-CCA requires the longest computational time. In fact, although MEMD-based methods 27 
outperform the traditional algorithms in processing the nonlinear and non-stationary signals, they 28 
always require large computational resources. 29 
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Table 3. The computational time for CCA, FB-CCA, WT-CCA, EMD-CCA, MEMD-CCA and TMSI, 1 
respectively. Five session data from S1 are used. For each time window, there are total 100 2 
computations. The results are presented as mean ± standard deviation. 3 

TW (s) 
Computational time (s) 

CCA FB-CCA WT-CCA EMD-CCA MEMD-CCA TMSI 

0.25 0.0043 ± 0.0061 0.0144 ± 0.0152 0.1571 ± 0.0760 1.06 ± 0.09 29.46 ± 18.29 0.0159 ± 0.0116 

0.5 0.0036 ± 0.0008 0.0126 ± 0.0025 0.1448 ± 0.0065 1.37 ± 0.09 32.72 ± 15.83 0.0175 ± 0.0048 

0.75 0.0037 ± 0.0010 0.0120 ± 0.0012 0.1482 ± 0.0120 1.47 ± 0.06 37.95 ± 17.15 0.0191 ± 0.0044 

1 0.0037 ± 0.0008 0.0120 ± 0.0016 0.1470 ± 0.0054 1.74 ± 0.14 40.32 ± 9.28 0.0238 ± 0.0053 

1.5 0.0040 ± 0.0007 0.0126 ± 0.0015 0.1491 ± 0.0075 1.86 ± 0.11 49.16 ± 11.71 0.0496 ± 0.0110 

2 0.0047 ± 0.0012 0.0129 ± 0.0013 0.1509 ± 0.0106 2.12 ± 0.04 57.04 ± 17.60 0.0915 ± 0.0382 

3 0.0056 ± 0.0013 0.0144 ± 0.0018 0.1516 ± 0.0073 2.35 ± 0.12 71.42 ± 14.58 0.1547 ± 0.0449 

4 0.0062 ± 0.0019 0.0160 ± 0.0023 0.1479 ± 0.0053 2.69 ± 0.08 87.22 ± 13.98 0.2666 ± 0.0651 

5 0.0063 ± 0.0022 0.0163 ± 0.0021 0.1531 ± 0.0099 2.83 ± 0.09 103.19 ± 26.70 0.3865 ± 0.0597 

 4 

4. Discussion 5 

Analysis of the SSVEP demonstrates that MEMD-CCA is able to achieve the highest accuracy 6 
compared with standard CCA, FB-CCA, WT-CCA, EMD-CCA and TMSI. While the FB-CCA, 7 
WT-CCA and EMD-CCA methods give a similar performance as the standard CCA method. The 8 
significant improvements for recognizing SSVEP suggest that the beta (i.e., 16-32 Hz) and alpha (i.e., 9 
8-16 Hz) bands in EEG corresponding to C3 and C4 decomposed by MEMD show much better 10 
discriminatory properties in comparison with the whole frequency band. The empirical sub-bands 11 
extraction by MEMD for recognizing SSVEP approximates the ground truth. The SSVEP performs 12 
more prominent in the extracted sub-bands. The fundamental frequency components (i.e., 10, 11, 12, 13 
and 13 Hz) are mainly located in the alpha band, and their first harmonics (i.e., 20, 22, 24, and 26 Hz) 14 
are in the beta band. MEMD is more appropriate to analyze nonlinear and non-stationary signal 15 
like EEG compared with linear method like FFT and WT, therefore, it performs better than FB and 16 
WT in adaptive separation of alpha and beta bands. Although EMD can decompose each channel of 17 
EEG into several data-driven components, it misaligns the same-index IMFs across multiple 18 
channels, and thus it fails to achieve the effective fusion of multivariate signal. Unlike the standard 19 
one channel EMD algorithm, MEMD simultaneously separates the multivariate signal as a whole 20 
into multivariate IMFs, effectively aligns the frequency range of the IMFs with same index, and 21 
therefore solves the mode misalignment in multivariate IMFs. MEMD guarantees that the 22 
same-index IMFs contain the same information across the data channels and is suitable for the 23 
fusion applications to multiple components of a multivariate signal. 24 

In this study, the components C3 and C4 are selected empirically, the high recognition 25 
accuracy suggests that the MEMD estimates for SSVEP is proper. However, the important thing is 26 
that there is no clue to choose the summation of only C3 and C4 to obtain the SSVEP-related 27 
sub-band. There is no any standard criterion for the selection. MEMD may produce different 28 
numbers of IMFs when it is applying on the same signal in different times because of mode mixing. 29 
Hence the choice is not always perfect to achieve the sub-band extraction goal. However, by adding 30 
two extra channels containing white noise and another four reference channels, each of which 31 
compromises the sum of reference signal corresponding to target and white noise, MEMD behaves 32 
as an adaptively dyadic filter bank structure on each channel of EEG signals and ensures the 33 
consistency of extracted EEG patterns across trails and subjects. The reference channels enable the 34 
enhanced decomposition accuracy by alignment with the stimulus frequency. Moreover, MEMD is 35 
able to reduce the mode mixing problem due to the broad band property of white noise, 36 
consequently decrease frequency overlapping of two consecutive IMFs and improve the frequency 37 
resolution. 38 
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Note that the designed stimulus frequencies of the target are located in the alpha band in this 1 
study, so the dyadic filter bank structure ensures that their first harmonics are located in the beta 2 
band. In practice, the stimulus frequencies may be in other bands, thus the IMFs can be differently 3 
selected towards the highest detection accuracy. Moreover, Bin et al. [37] has indicated that 4 
reference signals containing different numbers of harmonics give no significant difference for 5 
SSVEP recognition accuracy by CCA. Therefore, we only select the first harmonics in the reference 6 
signals for SSVEP recognition. In this study, only four targets are designed using LEDs to illustrate 7 
the performance of our proposed method. Just like CCA, the improved MEMD-CCA is also suitable 8 
for large number of targets with different frequencies. It will be better that the fundamental 9 
frequencies of stimulus are within a single sub-band as shown in Table 1. However, when using the 10 
traditional frame-based method to generate visual stimulation, the number is generally restricted 11 
by the LCD screen refresh rate. Therefore, over recent years, several methods have been proposed 12 
to encode more targets with limited stimulus frequencies [5, 19]. In [5], a novel stimulation method 13 
is proposed to overcoming the limitation of refresh rate of a monitor. The authors designed 9 14 
targets based on intermodulation frequencies on a LCD screen. In [19], any stimulation frequency 15 
up to half of the refresh rate can be implemented on a conventional LCD screen. The authors 16 
designed a SSVEP-based BCI platform using 12 targets including digits (i.e., 0-9), backspace, and 17 
enter keys in LCD screen. Their corresponding flashing frequencies are in the range of 9-11.75 Hz 18 
and the interval between two consecutive targets is 0.25 Hz. The frequency range (i.e., 9-11.75 Hz) is 19 
in the alpha-band (i.e., 8-16 Hz), and the first harmonic is in beta-band (i.e., 16-32 Hz). The design is 20 
the same as that in our study. So MEMD-CCA can be used to recognize the frequencies related to 12 21 
targets. However, it also should be noted that with the increase of the targets, MEMD-CCA will 22 
need more reference channels and thus consume more time. 23 

EMD-based methods containing ensemble EMD (EEMD) and multivariate EMD (MEMD) are 24 
quite time consuming. Especially, MEMD takes even larger time due to introduction of white noise 25 
and reference channels including information of target frequency. It can be seen in Table 3, 26 
MEMD-CCA takes around 103 s to detect the SSVEP on an eight channel EEG with 1280 data points 27 
(time window 5 s). The enormous amount of computational time limits the applications in real-time. 28 
Nevertheless, advances in hardware solutions and parallel computing are expected to enable the 29 
online and real-time operation of MEMD-based algorithms. 30 

For SSVEP detection or recognition in BCI applications, many researchers have conRrmedやthatや31 
a sophisticated calibration with appropriate analysis method could signiR cantly improve the 32 
accuracy [25]. The extended CCA methods containing MCCA [22], L1-MCCA [23], MsetCCA [24] 33 
and CFA [25] optimize the reference signal from the training data. The trained reference signals 34 
include more discriminative information in comparison with sine and cosine functions used in 35 
standard CCA. Therefore, these extend methods effectively improve the accuracy of SSVEP 36 
detection. However, the optimized reference signals are derived from the whole band of training 37 
data. In further study, the MEMD methods can be employed to further optimize the reference 38 
signals from extracted sub-bands of training data. The optimization process of reference signals is 39 
based on extracted sub-band corresponding to SSVEP from the training data and thus could yield 40 
further improvements. 41 

Furthermore, other new techniques also have been proved to outperform the CCA method in 42 
SSVEP recognition, such as multivariate synchronization index (MSI) [17], temporally local MSI 43 
(TMSI) [4] and likelihood ratio test (LRT) [18]. However, the essence of these methods is the same as 44 
CCA, which is to investigate the relationships between two sets of variables. In SSVEP recognition, 45 
they all rely on the original EEG and pre-constructed sine-cosine waves instead of optimized 46 
signals. The MEMD-CCA estimates the SSVEP in an optimized narrowband of interest rather than 47 
original broadband activities. The results indicate that the MEMD-CCA also achieves higher 48 
accuracy on average than TMSI. Hence, the idea in our study is absolutely suitable for this class of 49 
methods for further improvement of SSVEP recognition. 50 

In SSVEP-based BCI systems, the stimulation frequency is a crucial factor for achieving high 51 
performance. Generally, SSVEP respond to flickering stimuli at a wide range of frequency from 1 to 52 
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100 Hz [38]. The frequency can be divided into low-frequency range (up to 12 Hz), 1 
medium-frequency range (12-30 Hz) and high-frequency range (above 30 Hz) [39, 40]. SSVEP 2 
magnitudes strongly depend on the stimulation frequency. The low-frequency stimuli evoke higher 3 
response magnitude and thus the SSVEPs have good SNR, while these responses significantly 4 
decrease in the high-frequency range. Consequently, the low and medium frequency stimuli are 5 
primarily used to elicit SSVEPs in majority of BCI systems [10, 13, 38, 40]. However, the stimulation 6 
in these frequency ranges may cause visual fatigue or even seizure in subjects. High-frequency 7 
visual stimuli can eliminate the above limitations for a more comfortable BCI system. Hence, many 8 
studies have focused on the high-frequency SSVEPs, but limited success has been achieved because 9 
of the rapid decrease of SNR with the increase of frequency [40]. The poor SNR and the 10 
non-stationarity of EEG demand an efficient algorithm for recognition of high-frequency SSVEPs. In 11 
this study, stimulation with frequencies of below 30 Hz is used to design the BCI system. 12 
Theoretically MEMD-CCA can improve the SNR of SSVEPs regardless of the frequency ranges and 13 
thus achieves higher accuracy. Therefore, this method may provide a potential solution to 14 
implement a high-frequency SSVEP-based BCI system. For example, the stimulation frequencies are 15 
in gamma-band (32�64 Hz), the components C1 and C2 can be chose to detect the SSVEPs. However, 16 
due to dyadic filter bank structure of MEMD, C1 and C2 have wider band than the high level 17 
components, hence there will retain relatively more spontaneous EEG activities. A higher frequency 18 
resolution by increasing sample rate can eliminate this problem. Furthermore, because the strength 19 
of spontaneous EEG activities also reduces at high frequency, the SNR is still appreciable. We will 20 
further consider the frequency range and compare our results with high-frequency system using 21 
MEMD-CCA. 22 

The selection of a neutral reference in EEG recording is a critical issue. Currently, earlobe 23 
reference, neck reference and mastoid reference etc have been used for EEG recording [41, 42]. The 24 
g.USBamp system in this study for EEG measuring typically uses the right earlobe electrode as the 25 
reference. However, because these reference locations are neither at neutral points nor zero of 26 
potential, they may cause an undesired temporal bias in recordings and even results in errors in 27 
EEG analysis. Many researchers have pay attention to this topic and proposed several solutions to 28 
this problem. The average reference (AR) [43] using average potential across all electrodes provided 29 
an available option. Yao [44, 45] introduced an approximate standardization of the reference in EEG 30 
measuring called reference electrode standardization technique (REST). A scalp point or the 31 
average reference is transformed to a reference point at infinity in REST. Both REST and AV have 32 
been proved to outperform all other known references. However, it also should be noted that none 33 
of these two methods are completely free of limitations [46]. The electrode density, electrode 34 
coverage and head model etc can cause extra errors in EEG. The diversity of optimal electrode 35 
positions across subject also should be considered in implementation of practical BCIs. 36 

5. Conclusions  37 

In this study, a novel MEMD method for improving the performance of SSVEP-based BCI is 38 
introduced. MEMD provided a robust way to analyze nonlinear and non-stationary signals and 39 
extract narrowband signal of interest from multichannel broadband signals. In a SSVEP-based BCI, 40 
the MEMD algorithm enhanced multi-component extraction of SSVEP responses buried in 41 
broadband background activities. In comparison with traditional linear method like FFT and WT, 42 
MEMD performed more suitable to analyze nonlinear and non-stationary EEG and estimated more 43 
localized in time-frequency analysis. Furthermore, unlike the standard single channel EMD method, 44 
MEMD can more correctly decompose the common oscillatory modes across multichannel EEG. 45 
The performance of the proposed approach for SSVEP detection in sub-bands exhibited significant 46 
improvements over CCA and TMSI, while FB-CCA, WT-CCA and EMD-CCA provided no 47 
significant difference with standard CCA. The further optimization of reference signals in a 48 
particular sub-band of training data rather than the whole frequency band may give an 49 
improvement, this will be investigated in the future work. 50 
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