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Abstract 

Several numerical investigations into the impact of the spear and nozzle configuration of impulse turbine injectors 

can be found in the literature, however there is little or no experimental data available for the effect on Turgo 

impulse turbine performance.  A recent 2D numerical Design of Experiments (DoE) study found that much steeper 

nozzle and spear angles than the industry standard produced higher efficiencies.  This work was extended to 

compare the performance of an industry standard injector (with nozzle and spear angles of 80° and 55°) and an 

improved injector with much steeper angles of 110° and 70° using a full 3D simulation of the injector, guide vanes 

and first branch pipe. The impact of the jets produced by these injectors on the performance of a Turgo runner 

was also simulated. The results for both CFD tools used suggest that steeper injector nozzle and spear angles 

reduce the injector losses, showing an increase in efficiency of 0.76% for the Turgo 3D injector.  

In order to investigate the numerical results from the previous studies further, three Turgo impulse turbine injectors 

were manufactured by Gilbert Gilkes & Gordon Ltd for testing on the 9” Gilkes HCTI Turgo rig at the Laboratory 

of Hydraulic Machines, National Technical University of Athens (NTUA).  The injector designs tested were the 

standard (80/55) design, with nozzle and spear tip angles of 80° and 55° and the Novel 1 design (110/70) with 

nozzle and spear tip angles of 110° and 70° based on previously published CFD optimisation studies. The 

optimisations in the previous studies showed that the nozzle and spear angles in the upper limit of the investigated 

test plan, which was much higher than current industry guidelines, gave higher efficiencies. The DoE response 

surfaces in that study suggested that the optimum nozzle and spear angles may be even steeper and therefore an 

additional, third design (Novel 2) with even steeper angles (150/90) was also manufactured and tested.  

This paper presents the experimental data obtained for the three injector designs which were tested in a Turgo 

model turbine at various rotating speeds and flow rates.  The 70 kW Turgo was coupled to a 75kW DC generator 

which allowed continuous speed regulation.  The inlet conditions into the Turgo model turbine were controlled 

by a high head adjustable speed multistage pump of nominal operation point Q=290 m3/h, H=130 m (coupled via 

a hydraulic coupler to a 200 kW induction motor) which pumped water from the 320 m3 main reservoir of the 

Lab. The tests were carried out in single jet and twin jet operation. Testing and calibration of all the sensors was 

carried out according to testing standard IEC 60193 Hydraulic turbines, storage pumps and pump-turbines – 

Model acceptance tests (IEC 60193:1999). 

The results show that the Novel 2 injector performs best overall, which is consistent with the results obtained in 

previous 2D injector simulations.  The achieved turbine efficiency with this injector is of the order of 0.5-1% 

higher than the Standard design, for both single and twin jet operation.  The Novel 1 injector’s performance is 

between the Standard and Novel 2 injectors overall.  Some images of the jets were also taken at various openings 
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and are presented to qualitatively analyse the impact of each injector design on the disturbances on the outside of 

the jet. 

A further 2D axisymmetric CFD analysis is carried out to validate the measurements and to analyse the 

mechanisms which lead to injector losses.  The results found that the majority of the losses occur in the region 

just upstream of the nozzle exit, where the static pressure is converted into dynamic pressure and the flow 

accelerates.  In the Standard design, this conversion begins sooner and the flow travels over a longer distance at 

higher velocities leading to an increase in the losses.  The CFD results found the differences between the designs 

to be smaller than the experiments however the trend of the results was similar, suggesting that the steeper angle 

injectors achieve higher efficiencies and better jet quality.  The next stage of this research is to carry out a CFD 

analysis of the three injector designs in 3D, including the guide vanes and branch pipes, to investigate the impact 

of the steeper angles on the secondary velocities within the jet and the impact this has on the runner performance. 

1. Introduction 

The Turgo turbine was invented by Eric Crewdson of Gilkes in 1919 and is suitable for medium head applications. 

The turbine is an impulse machine and produces power by utilising an axially inclined high velocity water jet 

impinging on a number of blades. To date, there have been several studies where numerical techniques are used 

to model the performance of impulse turbine injectors [1-7]. Despite the Turgo sharing the same injector design 

with the Pelton turbine, studies that analyse the performance of injector designs experimentally [8-10] have been 

focussed on the Pelton turbine and there has been little research into the impact of the injector geometry on the 

performance of Turgo turbines.  A review paper [11] into the experimental and numerical Turgo research shows 

that although some studies have been carried out using both CFD [12-15] and experimental techniques [16-20] 

the focus has been on the geometry of the runner, not the injectors.  A recent study [21] used two modern 

commercial CFD software packages to compare the performance of a standard and improved impulse turbine 

injector and their impact on the performance of a Turgo runner. The results for both CFD tools suggest that steeper 

injector nozzle and spear angles will reduce the injector losses, showing an increase in efficiency of 0.76% for the 

Turgo 3D injector.  

In the present study, experimental results are used to compare the performance of the standard and improved 

injector geometry presented in [21], as well as to examine an additional steeper nozzle and spear tip configuration 

for a Turgo test case. The standard configuration was tested and used as a datum for the comparison. The study 

was taken further using CFD simulations of the injectors in order to understand why both novel designs were 

more efficient than the standard design, as shown experimentally. 2D axisymmetric simulations of the injector 

were performed to analyse the effect of the nozzle and spear configuration on the flow patterns and formation of 

the free jet. 

2. Turgo Injector Testing 

2.1 Injector designs and test rig 

Following on from the previous CFD studies on injectors undertaken by the authors [21], three similar Turgo 

injector designs were manufactured for testing at the Laboratory for Hydraulic Machines (LHT), National 

Technical University of Athens.  The injector design parameters being investigated  are the nozzle and spear 

angles, which were found to have the biggest impact on the injector losses based on previous research [22].  A 

Standard injector design, with nozzle and spear angles of 80° and 55° respectively was modified by increasing the 

steepness of the angles and producing two steeper angled designs, Novel 1 and Novel 2, as shown in Fig.1.  



 

Fig.1.  Turgo Nozzle and spear angle variations used in the tests. 

As an increase in the nozzle and spear angle reduces the maximum flow rate the injector can accommodate, (i.e. 

for large spear travel the flow rate is lower at the cases of higher nozzle angles due to geometrical conditions) 

therefore the Novel 1 and Novel 2 injectors were scaled up in order to match the maximum flow rate of the 

Standard injector.  The scaling used can be seen in Table 1, below. 

Injector design 
Nozzle Angle 

[deg] 

Spear Angle 

[deg] 

Nozzle Diameter 

[mm] 

Standard 80 55 78.00 

Novel 1 110 70 81.25 

Novel 2 150 90 84.70 

Table 1-Turgo injector main dimensions 

The tests were carried out using a commercial Gilkes 9” Turgo design with a runner nominal diameter of 229 mm.  

The 70kW turbine has a rated head of 50m, single jet flow rate of 0.0654m3/s (Q11=0.176m3/s) and nominal speed 

of 1330rpm. The layout of the main components of the new Turgo test rig are shown in Fig.2 and an image of the 

completed test rig installed in the LHT is shown in Fig.3.   

 

Fig.2. 3D CAD model of 9” Turgo test rig 



 

Fig.3. New Gilkes 9” Turgo test rig, Laboratory for Hydraulic Machines, NTUA 

Testing and calibration of all the sensors was carried out according to testing standard IEC 60193 Hydraulic 

turbines, storage pumps and pump-turbines – Model acceptance tests (IEC 60193:1999). 

The sensors used on the Turgo test rig and the details of their operation are given in Table 2 below.  The total 

systematic uncertainty was calculated from the calibration error for each instrument as ±1.01%.  The total random 

uncertainty, at 95% confidence using the Student’s T distribution (as recommended by the IEC60193 standards) 

was calculated at ±0.09%.  This gives a total uncertainty of 1.02%.  However, as the purpose of this study is to 

compare the difference in performance of the three injector designs, the systematic uncertainty can be disregarded 

when drawing comparisons. 

Instrument Manufacturer and 

Model 

Measured Parameter Range Calibration 

error 

Pressure sensors ESI Technology Ltd., 

model: Ellison-

Pr3200 

Net head (H) 0-10bar ±0.3% 

Flow meter ABB, model: DE41F Flow rate (Q) 0-600m3/hr ±0.5% 

Speed sensor Efectron, model: 

GA3005-ANKG 

Rotational speed (n) 100 pulses/rev ±0.1% 

Torque meter Datum electronics, 

model: M425 

Torque (M) 0-600Nm ±0.3% 

Table 2- details of the sensors used for the generation of the turbine hill charts 

The characteristic equations (1)-(5) used to define the operation and performance of the turbine, are given below. 

The pitch circle diameter, D, of the Turgo runners used in this testing was 229mm and the width, B, was 80mm.  

        



𝑛11 =
𝑛

𝐷2×√𝐻
   (1) 

𝑄11 =
𝑄/𝑁𝑗

𝐵2×√𝐻
  (2) 

𝑃𝑜𝑢𝑡 = 𝑀𝑚𝜔  (3) 

𝑃𝑖𝑛 = 𝜌𝑔𝐻𝑄  (4) 

𝜂 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
  (5) 

Where n11 is the unit speed, Q11 is the unit flow rate, 𝜂 is the efficiency, n is the rotational speed of the runner, H 

is the net head, Q is the flow rate, Nj is the number of jets, M is the torque measured on the turbine shaft, ρ is the 

density of water and g is the acceleration due to gravity.  ρ and g were calculated according to the tables provided 

in the testing standards (IEC60193:1999). 

For each test point, 180 readings are taken from the pressure, torque, flow and speed sensors over a period of 90 

seconds.  From these voltage readings, the pressure, flow rate, speed and torque can be calculated using the 

calibration curves for each instrument and used to determine the efficiency. 

2.2 Injector test plan 

The Turgo injector test plan was constructed to incorporate lower flow rates than normally tested.  Eight flow 

rates were selected, ranging from a unit flow rate, Q11, of 0.03 m3/s to 0.25 m3/s.  The spear position was adjusted 

in 0.25 mm increments in order to match the flow rates as closely as possible for each injector design.  For each 

flow rate, four rotational speeds were tested, with unit speeds, n11, from 38 rpm to 50 rpm. As the maximum spear 

travel is restricted by the worm gear to around 43.5 mm we were unable to test the injectors up to the fully open 

position so instead we tested to a maximum flow rate of around 0.0997 m3/s (Q11=0.27m3/s).  The unit flow rate 

Q11 is plotted against the spear travel/standard injector diameter (s/Ds) for each injector in Fig.4.   

 

Fig.4.  Flow curve comparison for the Standard, Novel 1 and Novel 2 injectors 
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2.3 Injector test results 

For each single jet flow rate at n11=42 rpm (which is the closest test speed to the nominal n11 of 43 rpm) the jet 

was photographed in order to investigate the impact of the nozzle and spear angles on the jet surface quality.  The 

two lowest flow rates (Q11=0.03-0.07 m3/s), where the disturbances on the outside of the jet and the jet dispersion 

are greatest, are shown in Fig.5.  The higher flow rates (Q11=0.11-0.25 m3/s), where there are less disturbances in 

the jet, are shown in Fig.6.  What is interesting from these images is that for the steeper angled designs (Novel 1, 

Novel 2) the jet dispersion (beyond the vena Contracta) is more pronounced, particularly at the lowest flow rate 

(Fig.5).  As the spear opening is increased, the jets of the three injectors become more similar, although the 

disturbances on the outside of the steeper angled designs are slightly more pronounced (Fig.6). 

Standard Novel 1 Novel 2 

   
Q11=0.03 m3/s 

   
Q11=0.07 m3/s 

Fig.5- Single jet operation for Q11=0.05 m3/s and 0.03 m3/s at n11=42 rpm 

  



Standard Novel 1 Novel 2 

   
Q11=0.11 m3/s 

   
Q11=0.19 m3/s 

   
Q11=0.25 m3/s 

Fig.6- Single jet operation for Q11=0.11-0.25 m3/s at n11=42 rpm 

 



All turbine efficiency measurements have been normalised against the highest recorded efficiency value.  For the 

lowest flow rate (Q11= 0.03 m3/s or ~10% of the maximum flow rate), the normalised efficiencies were very low 

(below 85%) and the results were rather spurious (Fig.7 and Fig.8).As can be seen in Fig.5, the Standard injector 

produces a more stable jet for such a small flow rate, which results in higher turbine efficiency for both single and 

twin jet operation (Figs. 7 and 8). This difference is in the range of 5%-10% against Novel 2 design, whereas 

Novel 1 shows a less consistent performance (Figs. 7 and 8).  

 

Fig.7. Single jet operation at Q11=0.03 m3/s 

  

Fig.8. Twin jet operation at Q11=0.03 m3/s/injector 

The higher jet dispersion seen for the Novel designs at low flow rates is likely due to the steeper nozzle angles 

that cause a more sudden change in direction of the water at the nozzle exit. Moreover, the spear travel from closed 

position for a particular low flow rate becomes smaller for steeper angles, and this may give rise to non-symmetric 

effects of possible very small imperfections or tolerances in the spear valve injector manufacture.  
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The attainable efficiencies become quite high in the entire loading range of the turbine above that lowest flow 

rate, namely for Q11=0.07-0.27 m3/s, as can be seen in Figs. 9 and 10.  Although the images in Fig. 6 give the 

impression that the Standard design produces a cleaner looking jet overall, the turbine efficiency with the steeper 

angled designs are considerably higher up to about Q11= 0.2 m3/s or ~70% of the maximum flow (Figs. 9 and 10). 

The Novel 2 injector seems to perform best overall, and this is consistent with the results obtained in previous 2D 

injector simulations [21]. The achieved turbine efficiency with this injector is of the order of 0.5-1% higher than 

Standard design, for both single and twin jet operation (Figs. 9 and 10, respectively), at least up to the Best 

Efficiency Point loading (BEP single jet: Q11= 0.177 m3/s, n11= 43 rpm).  

The performance of the Novel 1 design is similar to the Standard injector for single jet operation and between the 

other two designs for twin jet operation (Figs. 9 and 10). This behaviour may be attributed to possible very small 

differences between the two similar Novel 1 injectors’ design or installation.  

 

Fig.9. Turgo injector efficiency comparison at n11=42rpm-single jet 
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Fig.10. Turgo injector efficiency comparison at n11=42 rpm- twin jet 

Fig.11 and Fig.12 show the variation in normalised efficiency with n11 at Q11= 0.19 m3/s which is closest to the 

BEP flow of Q11=0.177 m3/s.  The results show that the Novel 2 injector performs  better than the Standard injector 

across all unit speeds, for both single and twin jet operation, with the differences being greater at higher speeds.  

For single jet operation, the Novel 1 injector is very similar to the Standard injector but performs better during 

twin jet operation.  As mentioned previously, this could be a result of slight differences in the geometry or fitting 

of the two Novel 1 injectors. 

 

Fig.11. Single jet operation at Q11= 0.19 m3/s 
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Fig.12. Twin jet operation at Q11= 0.19 m3/s/injector 

 

3. Discussion 

According to the experimental results, the new injector designs with steeper nozzle and spear angles provided an 

increase in the overall efficiency of the Turgo turbine. To have a better insight on why these design modifications 

have improved the performance, CFD analysis of the flow in the injectors has been carried out. The flow in the 

last section was modelled as a steady state axisymmetric case using the ANSYS Fluent software. The Volume of 

Fluid (VOF) multiphase model was used together with a RANS turbulence model, k-ω SST. 

A grid convergence study has indicated that a very dense mesh containing 0.5 million mesh elements is required 

to accurately capture the flow behaviour. The solution is successfully converging with all residuals reaching a 

target of 10-7 using the Coupled Scheme (Pressure-Velocity) and double precision. 

All the results were analysed using the equations presented below. The interest is to identify where the most 

energy is lost as the water escapes the injector into the air domain with atmospheric pressure. Eq. 1 was used to 

calculate the losses that are accumulated between the inlet plane and any selected downstream reference plane. 

𝐿𝑟𝑒𝑓 = (1 −
𝑃𝑟𝑒𝑓

𝑃𝑖𝑛
) ∙ 100%          (1) 

where Lref is the losses in the reference region, Pin is the power at the inlet plane and Pref is the power at the 

reference plane. 

The fluid power, Pref, at any selected reference plane is calculated using Eq. 2. 

𝑃𝑟𝑒𝑓 = ∫ (𝑝 +
𝜌𝑢2

2
) ∙ 𝑢)

𝐴
𝑑𝐴 = ∑ 𝑝𝑖 ∙ 𝑢𝑖 ∙ 𝐴𝑖

𝑛
1 + ∑

𝜌𝑢𝑖
2

2
∙ 𝑢𝑖 ∙ 𝐴𝑖

𝑛
1      (2) 

where pi is the static (gauge) pressure, ρi is the fluid density, and ui  the fluid velocity at each individual mesh cell, 

i, A is the area at the cross-section and n is the number of cells in A at this section. The two terms on the right side 

represent the fluid power due to pressure (potential energy) and to kinetic energy of the fluid, respectively.  
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The accumulated injector losses at various reference locations are presented in Fig. 13. All these simulations were 

performed at the Best Efficiency Point conditions of the tested Turgo turbine. The vast amount of energy was lost 

right upstream and right downstream the nozzle exit. This was true for all the three injector designs that were 

analysed in this study. The CFD results agree with the experimental data showing that the Standard injector design 

is the least efficient and the Novel2 is the best design. The energy losses in the Standard design injector were 0.3 

to 0.5% higher than in the two novel designs, whereas the experimental results show even larger differences. This 

indicates that the 3D flow structure details in the distributor, such as secondary flows that can affect both the jet 

quality and the runner performance, remain more pronounced through the Standard than the Novel injector 

designs. This was also shown in the numerical results of [21] obtained by 3D modelling of spear valve injectors.  

It was also numerically shown, that modelling a complete 3D injector geometry amplifies the difference between 

the steeper and the shallower injector angle designs. These results, might explain why the experimental results 

also showed a larger difference between the losses when compared to the 2D axisymmetric CFD results. 

 

 
Fig. 13. Aggregation of the injector losses upstream and downstream of the nozzle exit for different injector 

designs. 

 

 

This behaviour can be explained with the aid of Fig. 14 that presents the variation of only the potential fluid power 

(gauge pressure) at various reference planes through the injector. The potential energy is gradually converted into 

kinetic energy, as the flow is approaching the nozzle exit and accelerates due to the cross section reduction (see 

Fig. 1). Drastic power conversion for all injectors can be observed in the region up to about 20 mm upstream of 

the nozzle exit, while the Novel2 design exhibits the steepest curve (Fig. 14). This happens because with this 

design the flow path area between spear and nozzle walls remains larger until almost the nozzle lips (Fig. 1). As 

a result, the acceleration of the flow in the injector is delayed, and consequently, the hydraulic (friction) losses are 

kept smaller. 

Fig. 14 shows that a small amount (~20% for all injectors) of potential energy remains in the flow after the exit 

from the nozzle, and it is completely converted into velocity of the free jet at about 80 mm downstream (Fig. 14).  
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Fig. 14. Change in the amount of potential fluid power for different injector designs. Results are normalised to the 

inlet power. 

Finally, in addition to hydraulic losses in the injector, the quality of the jet, defined by the uniformity of its velocity 

profile and the smoothness of its surface, is another important factor as the jet is interacting with the blades of the 

Turgo runner. As it was shown in a previous study [21], the steeper angled nozzle and spear can produce a better 

quality jet than the standard injector design. 

 

4. Conclusions 

A standard and two novel Turgo hydro turbine injector designs were experimentally tested, showing the impact 

of steeper nozzle and spear angles on the jet quality and the hydraulic performance of the injector and the turbine 

runner. The measurements of the model Turgo turbine’s efficiency showed that, with the exception of the 

extremely low flow rates, the injectors with steeper angles performed better, achieving an increase in efficiency 

of the order of 0.5-1% compared to the standard design, for a broad operating range below and above the best 

efficiency point.  For very low turbine load (~10% of the maximum flow rate), the deformation of the jet and the 

associated drop in efficiency is more pronounced in the injectors with steeper angles, and this should be considered 

in (rare) cases that a turbine must operate under such conditions. The experimental results were confirmed by 

CFD analysis of the injectors, by simulating the 2D axisymmetric case of the injector’s final stage, were the vast 

majority of the losses occur. Although numerically the differences between the designs were found to be smaller, 

the trend of the results was similar, suggesting that the steeper angle injectors achieve higher efficiencies and 

better jet quality. 

The present results contradict the preferred historical designs, which use much shallower nozzle and spear angles, 

and introduce new design guidelines for the spear valve injectors, which are also applicable to the more popular 

Pelton impulse hydro turbines. 
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