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Abstract

Differences in the evolution of stably stratified turbulence with and without mean shear are investigated
by means of direct numerical simulations for moderate Reynolds number (Re, = 42.7) and seven values of
the Froude or Richardson number. The molecular Prandtl number is unity. In stratified flows without
shear, energy decays quickly initially but at reduced rate later when gravity waves dominate the flow
pattern. Gravity waves occur when the Ellison length scale reaches about 0.3 to 0.8 times the Ozmidov
length scale. The flow becomes anisotropic before the first waves arise. The developed flow is dominated
by gravity waves, and turbulent mixing is considerably suppressed, when the Ellison length scale is about
six times the Kolmogorov length scale. For sheared turbulence the importance of buoyancy relative to
shear forcing depends on the Richardson number Ri. For an initial shear number Shy =3, we find a
critical Richardson number of 0.13 which is smaller than the value 0.25 predicted by linear inviscid theory
because of the rather strong dissipation in the present simulations. In subcritical flows (Ri < Ri,;),
turbulence is dominated by shear. If the Richardson number is supercritical (Ri > Ri,,; ), the turbulence is
controlled by gravity and behaves at large scales as if no shear would be present. But shear causes
small-scale turbulence {(possibly by wave breaking) and hence the dissipation is larger than without
shear. The degree of anisotropy increases with increasing Richardson number but gets limited when
counter-gradient fluxes (CGF) of heat and momentum appear in the vertical direction. Temporally
oscillating and sign-changing vertical fluxes at large scales have to be distinguished from persistently
positive fluxes (p-CGF) at small scales. Both types develop in sheared as well as in unsheared stratified
flows. The oscillating flux exchanges energy between kinetic and potential energy reservoirs and can
be described by rapid-distortion calculations. The p-CGF is due to an imbalance between kinetic and
potential energy sources and sinks at small scales.

Introduction

By means of direct numerical simulation we investigate homogeneous initially
isotropic turbulence under the influence of four different forces, i.e. inertia, viscous
forces, buoyancy and shear forces. Turbulence in stably stratified fluids decays quite
differently from unstratified turbulence since gravity causes anisotropy in the
horizontal and vertical velocity variances as well as in the horizontal and vertical
length scales. Due to stable stratification, gravity waves are formed in the flow which
contribute to the velocity variance with little vertical mixing. Counter-gradient
fluxes develop in order to keep the energy budget in equilibrium. Ultimately,
turbulence collapses and might get converted into horizontal motion patterns
(Riley et al. 1981; Stillinger et al. 1983; Itsweire et al. 1986; Meétais and Herring
1989).
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Here, results of seven unsheared experiments will be compared with correspond-
ing cases with shear in order to investigate differences between both types of flow.
We investigate the appearance of gravity waves as a function of the Ellison length
scale Ly and the Ozmidov length scale L, which are defined as

T g \!?
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where z, Ty, &, and N describe the vertical space coordinate, the reference (mean)
temperaturc, the mechanical dissipation rate, and the Brunt- Viisili frequency,
respectively. Primes denote root-mean-square (rms) values. Ly is a measure for a
typical vertical size of an eddy in a buoyant medium and L, is the length where, at
large Reynolds numbers, buoyancy is of the same order of magnitude as inertia. For
stratified turbulent flows, Gibson's theory (Gibson 1981} predicts that three-
dimensional turbulence is active (overturning) when L; is in the range

iy 1/4

06Ly > L, >7.5L () where L= (%) (b) 2)
is the Kolmogorov length scale and v the kinematic viscosity. According to Gibson’s
theory, the limit 0.6L,, marks the vertical size of turbulent eddies which are first
influenced by the gravity force such that they induce gravity waves. The limit 7.5L, is
the vertical length scale of an eddy when the mean vertical heat flux first goes to zero,
indicating that buoyancy acts at all scales. Itsweire and Helland (1989) analysed direct
measurements of the buoyancy flux in a density-stratified turbulent flow and found
that at this stage vertical mixing gets strongly suppressed at all scales (extinction of
turbulence). Mcasurements of Stillinger et al. (1983) and Itsweire et al. (1986) yielded
a range of active turbulence in unsheared stratified flows of (0.70---0.85)Ly > Ly >
(7.6---9.9) Ly, which confirms Gibson’s predictions fairly well.

I stably stratified turbulence is forced by shear, the gradient-Richardson
number Ri controls whether turbulence grows or decays in time so that the flow is
either subcritical or supercritical. Linear inviscid theories predict a critical
Richardson number Ri,,;, =0.25 (Miles 1961). This critical value has been cor-
roborated by observations in the atmosphere where the Reynolds numbers are large
(Businger et al. 1971). At lower Reynolds numbers, to which laboratory flow
experiments (Rohr et al. 1988) and direct simulations (Holt et al. 1989) are limited,
also lower values of Ri,; are observed. Holt et al. (1989) found a dependence of Ri_.
on the integral-scale Reynolds number Re,. We will determine the critical value from
a series of seven experiments with different Richardson numbers where the Reynolds
numbers are rather small (Re, =42.7, Re, = 26.4).

Some recent discussions are addressed on the degree of anisotropy of stably
stratified turbulence. Based on observations of isotropic turbulence in stably
stratified layers in the ocean, Gargett (1988) argues that it is reasonable that the
observed anisotropy belongs entirely to gravity waves and hence turbulence itself
remains isotropic in stably stratified environments. Gargett further asserts that the
encrgy-containing eddies of the stably stratified salt-water flows studied by Stillinger
ct al. (1983) and Itsweire et al. (1986} were affected by buoyancy already initially due
to grid-generated gravity waves and that the turbulence approached an isotropic
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state further downstream depending on the thermal stability. This explanation of a
return to isotropy under stable stratification is quite the opposite to the interpret-
ations advanced by Stillinger et al. (1983) and Itsweire et al. (1986). They assumed
that the grid-generated turbulence was fully developed, three-dimensional and
isotropic a short distance behind the grid and that it became anisotropic further
downstream due to gravity.

Discrepancies with respect to anisotropy in shear flows have been discussed in
the literature. Webster (1964) found a steady increase of anisotropy with increasing
Richardson number as does Launder’s (1975) model. On the other hand, Komori
et al. (1983) found reduced anisotropy at high Richardson numbers. This is
corroborated by direct numerical simulations which we performed for Pr = 5 (Gerz
et al. 1989) and by eigen-analysis of a second-order closure model for comparable
conditions (Schumann 1987). Schumann (1987) and Gerz et al. (1989) explain this
inverted trend by the effect of a temporally persistent counter-gradient heat-flux.

Temporally persistent counter-gradient heat-fluxes (p-CGHF) arise to compen-
sate an imbalance between the dissipation rates of kinetic energy and available
potential energy {for high Prandtl numbers). A second mechanism, mentioned by
Holloway (1988), results from differences in the efficiency of nonlinear energy
transfer from large to small scales for both kinetic and potential energy. The present
study will discuss both explanations.

Method and Parameters

The three-dimensional Navier-Stokes and temperature equations for perturbation
velocities (u, v, w) or (u,,u,, u3) and temperature T are integrated in a cubic domain
with coordinates (x,y,z) or {x,,x,,Xx;) pointing in downstream, spanwise and
vertical directions, respectively. The Boussinesq approximation is used. The vertical
profiles of reference temperature Ty(z) and mean velocity U(z) are superimposed on
the fluctuation fields. The profiles are linear so that the turbulence statistics remain
spatially homogeneous. Periodic and shear periodic boundaries are applied in the
horizontal and vertical directions, respectively. Details of the numerical method
have been documented and verified by comparison to various experiments in Gerz
et al. (1989). A spatial resolution of 64° grid points provides sufficient accuracy for
cases with Re; =25, Pr =1, and narrow initial spectra. Simulations with a much
more refined grid of 160° gridpoints have been performed by Gerz (1990) to reveal
coherent vortex structures in stratified and sheared turbulence.

In order to normalize the results, we define the reference scales p, for density and
¢ o o and ¢ d Ty/dz for the initial values of the integral length scale, the rms velocity
and the temperature fluctuation related to the mean temperature gradient,
respectively. The box length Lis chosen such that L/#, = 4n. For sheared turbulence
the initial value of the shear number S$h = (dU/dz) (¢/v) is chosen to be Shy =3 as in
Gerzet al. (1989). Buoyancy effects grow with Fr~ ! and Ri*’? where Fr = v/(N#) and
Ri=(Sh Fr)~? are the Froude number and the Richardson number, respectively.
The values of Fr and Ri in cases A to G are selected such that comparable sheared
and unsheared flows have the same values of Fr~! and ShyRi'/2. The Brunt-Viisili
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Table 1. Initialization parameters of stratified unsheared and sheared turbulence. For both types of
turbulence seven cases A to G arce considered. In case A the temperature is passive. The symbols v,y N =
(ogd Tp/dz)2, o, and g are constant and stand for kinematic viscosity, temperature conductivity, Brunt
Viisili frequency, isobaric volumetric expansion coefficient, and gravitational acceleration, respectively.
The bar denotes the average over the entire domain. In the text the initial values are denoted by subscript
7ero

Grid points M3 643
Box length Lir 4n
Rms velocity v = (w,/3)'7? 0.8226
Rms temperature T =(TT? 0
Shear number Sh=(dU d=z){(¢ /) 0,30
Reynolds numbers Re, =vifv,Re,=vf/v 26.4,42.7
Prandtl number Pr=yv/y l
Froude number Fr=0/(N£)
Richardson number Ri=(ShFr)~?
Cases A B C D E F G

Fr= o0 1.42 1.16 092 0.58 041 0.29

Ri= 0 0.055 0.0825 0.13 0.33 0.66 1.32

Frolw ShRiIV:Z= 0 0.70 0.86 1.08 1.72 2.44 345
Integral length ¢ 0.9044
Taylor micro-length A 0.5581
Kolmogorov length Ly 0.05524

Mean velocily-derivative skewness coeflicient - 045

frequency N is the same in both types of flow so that times are comparable directly
relative to gravity oscillations. The isotropic velocity field is initialized with the
energy-density spectrum E(k) = 16\/2/7t(2n)‘ tdk*k, *exp(— 2k/k,)?). The trans-
fer spectrum is zero initially. To establish nonlincar turbulent interactions, the
velocity components are integrated without external forces until the mean velocity-
derivative skewness coefficient has reached the typical value of — 0.45 in isotropic
turbulence. This occurs at time (v,/7 )t = 1 indicating that the transfer spectrum is
fuily developed. The data at this time are taken as the initial paramcters for all
simulations and are summarized in Table 1.

We will discuss the cxchange of energy between kinetic and available potential
cnergy reservoirs. Therefore, the balance equations for the volume-averaged {luxes

wu;, ;T and kinetic energy Ey, = u/2 = 3v%/2, available potential encrgy E_,
=Fr*TT/2 and total energy E, = E;, + E,, arc listed here. They read for
homogencous stratified and sheared turbulence

duu -
— —2Sh0HW +q‘)ll 7{:11 (3)
dt
dov
2 = + ¢z — 3 (4)
di
dww — T
- 2Fry *wT + hyy — £33 )
dt
duw — -2 F
= — Showw+ Fri “uT + ¢ 3 — &3 (6)

dt
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are the respective dissipation rates, and

ou; T
¢ij_p(axj+ax) and ‘»biT—PaTci (14)

denote the mean pressure-strain and the pressure—temperature gradients. The
Eqgs. (3)-(12) display the terms of the total time change, the changes due to shear
production, buoyancy, pressure interaction and dissipation from left to right,
respectively.

Unsheared Stratified Turbulence

The influence of increasing stable stratification on an initially isotropic turbulent
flow with zero initial temperature fluctuations is illustrated in Fig. 1 by plots of E,,
E\;,, E . normalized rms velocities u'/u, and w'/wy, and correlation coefTicient of the
negative vertical heat flux versus time for cases A to G. While the decay of the total
energy is quite uninfluenced for weak stratification with small values of the inverse
Froude number Fr~ ! (cases A to D), it decays at a lower rate for Fr ' > 1.72(cases E
to F). Energy is exchanged periodically between the kinetic and potential energy
reservoirs for positive values of Fr™! as indicated by the phase angle of = between
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Fig. 1a—f. Energies (a—c), normalized rms velocities (d, e) and the correlation coefficient of the vertical
heat flux (f) versus time in stratified unsheared turbulence for cases A to G according to Table |

E,;, and E_,. These oscillations are called forth by the initial imbalance between
kinetic and available potential energy since the thermally equilibrated flow is
suddenly exposed to a mean temperature gradient at ¢ = 0. This explains also why
the amplitudes increase with increasing Fr~'.

Since Sh=0, the vertical heat flux wT is the only non-vanishing cross-
correlation in unsheared stratified homogeneous flows, see Egs. (6)—(8). This flux
accomplishes the transfer of energy between the potential and the kinetic reservoir
(Egs. (10), (11)). It oscillates periodically between negative and positive values. We
found for all values of Fr and at early times that the oscillation period scaled by N,
Nt =(vy/f o)t/Fr, was 3.4 which is little larger than half the Brunt-Viisilid period
Nty = 2n. The period decreases to Nt = 3.2 at later times approaching Ntg/2. In a
uniformly stratified flow the Brunt-Viisidld period is the only mode of linear
oscillations. The variances and covariances of energy and heat flux oscillate with half
this period. Thus, this value was also found by rapid distortion calculations as
performed by Hunt et al. (1988), who considered a linear and inviscid flow. We
conclude that in our simulations the initially larger oscillation period of wT
compared to linear theory is due to nonlinear inertia forces in the flow which are
neglected in rapid distortion theory.

The evolution of nonlinear energy transfer from large to small scales is reflected
in the evolution of the skewness coefficients of velocity and temperature derivatives

o @fex)y
F

= e (15)
[@f/6x)*]°"?



Direct Simulation of Homogeneous Turbulence and Gravity Waves 33

TEFEIar 1.5 aaaszansiandbeFEas s T IRS)

EST} b —_/f

1.5

(velfa) t {vefta) 1

Fig. 2a,b. Skewness coeflicients of velocity gradients (a) and temperature gradients (b) versus time in
stratified unsheared turbulence

(Batchelor 1953). The variable f stands for u; (no summation on i) or 7, respectively.
Figure 2(a)illustrates by means of the skewness coefficients for du/dx and dw/dz that
nonlinearity is maintained in the downstream velocity component for small inverse
Froude numbers and decreases slightly for large values of Fr ~ . The same behaviour
was found for the lateral coefficient S, (not shown). Depending on Fr, the skewness
of the vertical component is reduced more rapidly and approaches zero at late times.
Horizontal temperature-derivative skewnesses (see e.g. Sy, in Fig. 2(b)) are found to
be negligible due to the horizontally almost isotropic temperature field whereas S,
is large for Fr™' =0 (case A) due to the mean temperature gradient and diminishes
with increasing inverse Froude number to a minimum level of 0.3. Thus, for small
inverse Froude number, the nonlinear interactions measured by the skewness co-
efficient stay large and close to the value in unstratified isotropic flow (S,, = —045).
They get reduced if the flow is exposed to stable stratification when gravity
oscillations have developed. Since stable stratification reduces vertical mixing, this
reduction is largest in the skewness of vertical derivatives.

In agreement with laboratory experiment reported by Britter (1988), we observe
a reduced dissipation of total energy as seen in the reduced decay rate of E,, for
Fr=! = 1.72 (Fig. 1a). This stems from the reduced dissipation rate of tempera-
ture fluctuations as illustrated in Fig. 3. We see that £(t) behaves very similar as
E,;o(?) initially, but for late times it decreases at the same rate independent of the
degree of stratification. On the other hand, &, reflects the behaviour of the tem-
perature variance and diminishes monotonously when Fr ™! = oo.

All rms-velocity components decay at the same rate in case A with Fr™! =0.
They decay faster for Fr™' >0 because part of kinetic energy is stored in the
potential energy reservoir (see Fig. 1d,e for the downstream and vertical
components). However, there are remarkable differences between the evolution of i’
and w'. The latter receives and delivers energy from and to the potential energy

reservoir periodically (see Eq.(5)) reaching extreme values at times when wT
changes sign. This is a linear effect as can be seen from the respective balance
equations and has been described by rapid distortion theory (Hunt et al. 1988). The
horizontal fluctuations «’ experience only weak oscillations and decay monoton-
ously but at reduced rates when stratification is increased. Note that the decay rate
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of u' is reduced compared to that of w’ for this case. This corroborates results from
corresponding laboratory flows (Britter 1988) and reflects the change of flow
character from decaying isotropic turbulence to decaying anisotropic buoyancy
influenced motions. For strong stratification (Fr~' > 1.72), the decay rate of «’ is
even weaker than in the isotropic case A. The energy transfer among the velocity
components is effected by nonlinear interactions between pressure and local strain
(Egs. (3)-(5)). From the plots it is obvious that these forces become more significant
when stratification is increased which underlines the importance of buoyancy effects
on pressure-strain terms and on its proper modelling (Launder 1975 and Gerz et al.
1989).

Sheared and Stratified Turbulence

The development of sheared and stratified flows at different Richardson numbers
(cases A to G} is depicted in Fig. 4 by means of total, kinetic and available potential
energy and the correlation coeflicients of — uw, uT and — wT versus time. These
cases differ from the unsheared cases solely by the addition of a mean shear rate to
the flow. The values of the Richardson number Ri = (ShyFr,)~2 are given in Table 1.
As reflected by the close to steady-state behaviour of case D, the critical value of the
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Fig. 4a—f. Energies (a—c) and flux-correlation coefficients (d-f) versus time in sheared and stratified
turbulence for cases A to G according to Table 1

Richardson number is found to be Ri_;, =0.13. The critical or stationary
Richardson number of a sheared and stratified flow is defined as the value of Ri
where the kinetic energy E,;, approaches a constant level in time. For an inviscid,
laminar, continuously stratified shear flow, Miles (1961) derived a stability criterion
requiring a gradient Richardson number larger than Ri_;, =0.25. In viscous
homogeneous flows we yield from Eq. (10) for dE/dt = 0 the cniterion

) uw € €
Rlcril=—*(1+ __)=G.(1+— T) (16)
wT Shy Shouw Shouw

where o, is the turbulent Prandtl number. If dissipation ¢ equals production Shyuw
(< 0) it follows Ri;, = 0. Hence, any small but positive temperature gradient will
cause damping of the flow in this case. If viscous forces are much smaller than
production, Ri_,;, may approach the corresponding turbuient Prandtl number. Gerz
et al. (1989) suggested that the critical Richardson number is a function of the shear
number Sh = (¢//v)(dU/dz) when dissipation is important. For viscous flows Holt
et al. (1989) found increasing values of Ri_,, with increasing Reynolds number Re, at
fixed shear number. Rohr et al. (1988) found a critical value of Ri,, = 0.21 and
derived an approximate solution for E,; (t) suggesting a weak dependency of the
terms of the right-hand side of Eq. (16) on the gradient-Richardson number.

The flows presented here are characterized by Re,, =42.7, Pr=1 and Sh, = 3.
For this parameter configuration we found a critical or stationary Richardson
number of Ri; =0.13. This was corroborated by extending the simulation with
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Fig. 5a,b. Power spectrum of kinetic energy density (a) and temperature-variance density (b) versus
integer wavenumber for Ri=0.13 (case D) and various times

=0.13 (case D) up to time (vy// o)t = 20 for which the kinetic and potential energy
stayed close to constant until the final time. For this run we yield ¢, =0.92 + 0.19
and &/(Shouw)= —0.89 +0.19 in a temporal mean which results in Ri
0.10 + 0.04 according to (16).

A slight change with time is observed in the power spectra of kinetic energy Eand
temperature variance TT versus integer wavenumber k as shown in Fig. 5. Etk) and
TT (k) stay fairly constant within the entire wavenumber range and for all times,
except for k = 1 where a continuous growth of both £ and TT is observed. The
power spectra further show that the simulations sufficiently resolve the small scale

dissipation of both E;, and TT. Insufficient resolution would cause an increase of
intensity at the highest wavenumbers.
For subcritical cases A, B and C with Ri < Ri_,, both the kinetic energy E,;, and

the available pbtential energy E = RiTT /2and, thus, the total energy E,, grow in
time according to the source terms in Egs. (3), (10) and (12), see Fig. 4. In the super-
critical cases E, F and G, E,,, first increases strongly due to turbulent motions in the
vertical direction building up the potential energy reservoir. Later E, decays in
time. This decay starts at time Nt = (ry/¢ o)t/Fr > 1.72 for all three cases E, F and G.

In contrast to the unsheared cases, the evolution of — wT /(w'T") depends strongly
on the degree of stratification if also shear is present (Fig. 4f). For supercritical
Richardson numbers (cases E, F and G) oscillations of both vertical fluxes of
momentum and heat occur. Oscillations also can be detected in the graphs of E;,
and E, in cases F and G. Such oscillations do not appear in E,(f). Analogously to
the unsheared cases, we conclude from these facts that a large part of energy is stored
in gravity waves for large Richardson numbers. For Ri =0.66 and 1.32 we further
observe that uw and wT remain persistently positive n the temporal mean
(persistent counter-gradient fluxes of momentum and heat, p-CGMF, p-CGHF).

The osciilating exchange between kinetic and potential energy occurs only for
approximately one time period n/N. For Nit> 5.4, both E,,, and E, decay
monotonously. Note that they decay at a stronger rate than they do in the unsheared
cases. We offer two mechanisms to explain this rather unexpected behaviour. The
first possible mechanism is wave breaking. Gravity waves get unstable and break

crit =
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into turbulence when the effective Richardson number Ri., gets subcritical. Ri ¢
depends on local stratification and local shear,

. _ AT+ Ty/oz
Ricw =29 500y ja2)7

Because of the fact that du/&z is larger at small scales than at large scales, Ri g is
smaller and may first get subcritical for small-scale motions. Hence, small-scale
waves break more easily than large-scale waves and cause additional turbulence at
small scales which increases dissipation. This explanation is corroborated by the
simulation data which show such an increase of dissipation in the sheared case
relative to the unsheared case (Fig. 3c,a). The second possible mechanism is a
consequence of CGMF which also has been observed in stably stratified
laboratory flows (Britter 1988). Such buoyancy induced CGMF causes negative
production of kinetic energy, see Eq. (10).

A downstream heat flux T occurs in a vertically sheared and stratified flow
although no mean temperature gradient exists in the x-direction, see Eq. (7). The flux
is positive and its correlation coefficient in Fig. 4e reaches large values of 0.5 to
0.8. Hence, cold (hot) fluid is strongly correlated with slow (fast) downstream
velocity. In the temporal mean of cases A to E we observe that according to shear
and weak-to-moderate buoyancy fast (slow} downstream and hot (cold) fluid moves
down (up) (uw,wT < 0) and, thus, uT > 0. The correlation coeflicient uT (' T"} = 0.7
is unaffected by Ri for these cases but drops to little lower values 0.65 and 0.5 in cases
F and G when buoyancy dominates shear. Then slow (fast} and cold (hot} fluid
moves down (up) in the temporal mean (uw, wT > 0), again resulting in 4T > 0.

The large amplitudes of wT in the first oscillation periods indicate an exchange
of energy between the potential and kinetic energy reservoir due to gravity waves as
in the unsheared cases. The time scale of these oscillations, however, increases with
decreasing Ri and amount to Nt =3.5,3.4, 3.7 and =4 for Ri=1.32,0.66,0.33 and
0.13, respectively. Qualitatively the same fact is displayed in the oscillations of uw.
Hence, as in the situation without shear, we conclude that the deviation of the

(17)
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Fig. 6a,b. Skewness coefficients of velocity gradients (a) and tempcrature gradients (b) versus time in
stratified and sheared turbulence
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oscillation periods from half the Brunt—Viisila period is due to the nonlinear inertia
forces in the flow which are much stronger in sheared than in unsheared flows. In
Fig. 6 skewness coeflicients for velocity and temperature derivatives (Eq. (15}) are
plotted. Due to the mean shear force we observe strongly enhanced values of S, and
S, for all Ri. The coefficient S,, changes sign as in the unsheared case but then grows
with increasing Ri. St, behaves as in the unsheared case and the lateral coeflicients
vanish at large times for all Ri. In general it is clear from the picture that the derivative
skewnesses (and hence the nonlinearities) are the larger the stronger the influence of
shear is compared to buoyancy. The derivative skewness coeflicients are smallest for
cases F and G with Ri = 0.66 and 1.32 where we observed an oscillation period of the
fluxes closest to Ntg, which is consistent with the previous results.

Persistent Counter-Gradient Fluxes

We now discuss the counter-gradient heat-fluxes (CGHF) in stratified turbulence.
We have to distinguish between temporally oscillating fluxes, as can be described by
linear analysis as in rapid distortion calculations, and temporally persistent positive
heat fluxes (p-CGHF). Figure 7 depicts three cospectra of the vertical heat flux wl
for the unsheared case D and the two sheared flows D and G at several times.
Considering pictures (a) and (c) we observe that wT oscillates between positive and
negative values at large scales (small wavenumbers k) whereas it has small but
persistently positive values at small scales, regardless if shear is present or not. For

= 0.13, we observe positive values of wr at large wavenumbers k whereas it stays
strongly negative at small values of k. Such negative fluxes indicate strong turbulent
mixing. All pictures are consistent with the curves of w7'(¢) in Fig. If and 4f: A
p-CGHF can be recognized in the integral over ali scales only when the large and
sign-changing contributions at small k cancel such that the small positive contribu-
tions at large wavenumbers remain.

The small-scale motion related to the p-CGHF is buoyancy driven. It is expected
that this kind of motion creates the corresponding momentum flux, p-CGMF

003 e o2 . 0005
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Fig. 7a—c. Cospectra of the vertical heat-flux density for (a) unsheared flow with Fr =0.92 (case D) and
for sheared flows with {(b) Ri = 0.13 (case D) and (¢) Ri = 1.32 (case G) at several times



Direct Simulation of Homogeneous Turbulence and Gravity Waves 39

(Fig. 4d), since the cospectrum of uw (not shown) behaves similar as wT. It has strong
oscillating contributions at small wavenumbers and persistently positive values at
large k.

Based on these findings and previous explanations as given by Schumann (1987),
Holloway (1988) and Gerz et al. (1989), we interpret the p-CGHF as follows. The
p-CGHEF is a property of smail-scale motion in quasi-steady state which requires
a balance between production due to shear, buoyancy effects and molecular
dissipation for both kinetic and potential energy. An imbalance arises if the
molecular dissipations of kinetic and potential energy differ from each other. If the
molecular Prandt] number is about unity or larger, potential energy is dissipated
more slowly than kinetic energy. Therefore, a p-CGHF is required to convert
potential energy into kinetic energy to maintain a steady state. A second reason for
an imbalance originates from differences in the efficiency of nonlinear transfer of
kinetic and potential energy to small scales (Holloway 1988). It is interesting to note
that the effective turbulent Prandtl number of locally isotropic turbulence is 0.4
(Townsend 1976). This indicates that the turbulent energy cascade from large to
small scales is more eflicient for potential than for kinetic energy. For this reason,
steady state requires a p-CGHF, even for Pr <1, as air, to convert some of the
excessive potential energy into kinetic energy. At moderate Reynolds numbers, a
sheared and stratified flow is far from isotropy even at small scales. Hence, for such
flows the first reason for an imbalance suits better: Gerz et al. (1989) simulated flows
with Re, = 47 and Pr =5 and found a strong p-CGHF; the simulations presented
here with Re, = 43 and Pr = 1 reveal a weak but still positive p-CGHF. For large
Reynolds numbers, the second explanation is more appropriate: Sidi and Dalaudier
(1989) have observed an increase of intensity in the temperature variance spectra
at high wavenumbers obtained from the lower stably stratified stratosphere
(Re, = 107---10%, Pr = 0.7). They also found indications of a corresponding CGHF-.

Length Scales

In Fig. 8 the integral length scale
1 1.
= _—— | -Etk)dk
! 2:-2jk (k)dk (18)

and the Kolmogorov length scale L, (Eqg. (2)b) of both the unsheared and sheared
experiments are plotted versus time. In decaying turbulence / grows due to energy
loss by dissipation at large wavenumbers and due to reduced energy transfer from
small to large wavenumbers when the flow is stably stratified. Ly grows quite
uninfluenced by the degree of stratification according to similar decay rates of
dissipation for the cases B to G, see Fig. 3a. If also shear is present, we observe a
strong increase of the integral length for all cases A to G initially, followed by a
decrease and a second increase at late times. In the initial period, shear is suddenly
imposed to the preexisting isotropic field. This augments the large scales resulting in
a strong increase of /. Later, in the period (ry/7 o)t = 1.5...2 when the skewness
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Fig. 8 a-d. Integral scale / and Kolmogorov scale L, of unsheared (2,b) and sheared (e,d) stably
stratified turbulence versus time for cases A to G

coefficients approach their maximum values (see Fig. 6), / is reduced since the large
scales start to lose energy by feeding the small scales. The flow is now at a
quasisteady state, see also Fig. 4. Once the transfer spectrum is established, energy at
large scales can be rebuild by the mean shear flow resulting in a second increase of
the integral length. According to the growing influence of buoyancy from case A to
case G, the second increase of £ is lowered for subcritical values of Ri and is
enhanced again if Ri is supercritical. The increase in the latter cases is equivalent to
the increase of / found in unsheared flows. Due to increased dissipation in shear
flows, the Kolmogorov length (Fig. 8d) decreases for subcritical flows, stays
constant when Ri = Ri,,;, (case D) and increases when buoyancy forces dominate.

In Fig. 9 the Ellison length scale Ly and the Ozmidov scale L of the present
experiments with and without shear are plotted versus time. The time when the value
of Lg of actively stratified flows first deviates notably (i.c. by 2%) from Lg of the
passive flow (case A) marks the onset of gravity waves generated by the largest
eddies. As listed in Table 2, this event occurs for all cases at the same frequency-
normalized time Nt,_,. But—in contrast to the findings of Itsweire et ai. (1986)—we
observe that the ratio L/L, grows with increasing stability. According to the theory
(Gibson 1981), the extinction of turbulence at all scales i1s reached when the mean
heat flux is zero for the first time. This has been confirmed by measured density-flux
cospectra (Itsweire and Helland 1989) which vanished almost entirely at all scales at

this time. Our data of the unsheared flow simulations show that at the time when wT
is zero first (see Fig. 1f), the corresponding ratio Lg/Ly is not constant but increases
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Fig. 9a—d. Ellison scale L, and Ozmidov scale L, of unsheared (a,b) and sheared (c,d) stably stratified
turbulence versus time for cases A to G

Table 2. Length-scale ratios for unsheared and sheared stratified turbulence.
Nit,, is the time at onset of buoyancy effects; Nt, is the time at extinction of
turbulence according to Gibson (1981), see Eq. (2)a

Cases Lo/Ly Le/lg at Nt Le/Ly at Nt

atr=90
B: Fr=142 222 0.34 0.40 6.1 2.04
Ri =0.055 222 0.27 041
C:Fr=116 16.5 038 0.40 6.0 198
Ri=0.083 16.5 0.34 0.41
D: Fr=092 11.6 048 043 6.0 195
=013 11.6 0.42 0.43
E: Fr =058 59 0.59 0.40 53 1.90
=033 59 0.54 0.40 57 253
F: Fr=041 35 0.67 0.39 4.5 193
=066 35 0.68 0.41 49 2.11
G: Fr=029 20 075 0.38 35 1.90
Ri=1.32 20 082 040 36 201

with decreasing stratification reaching an asymptotic level of six for cases B, Cand D
(Table 2). This result is reasonable because Gibson’s theory presumes that Lg > Ly
initiaily, a condition which is satisfied only in cases B, C and D. Hence, the
theoretical estimate Eq. (2)a for active turbulence according to Gibson (1981) is
corroborated within reasonable limits.

The temporal evolution of the length scales Ly, Ly and Ly in unsheared flowsis in
very good agreement with corresponding data from measurements (Itsweire et al.
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1986) and direct numerical simulations (Métais and Herring 1989, see their Fig. 4).
The evolution of the Ozmidov scale starts at different levels depending on N. In all
cases without shear Ly decreases in time according to the decreasing dissipation
rate. In cases A to C with shear (Ri < Ri,,), both L, and L, grow continuously as
does the total energy of turbulence. The correlation coefficient of the vertical heat
flux never approaches zero in these cases (Fig. 4d). Hence, the flow remains actively
turbulent although gravity waves have been generated by the largest eddies. This
result confirms the measurements of Rohr et al. (1988) who also observed a
continuous growth of all length scales as long as Ri < Ri_;,. For the supercritical
cases E to G, L and Ly decay and behave very similar as in the unsheared flows
(Rohr et al. 1988).

Anisotropy

We have computed the components of the anisotropy tensor

_uH; 1
5= 2E. ~3% (19)
from our simulation data and plotted the trace components b;; versus time in Fig. 10.
Unsheared cases will be discussed first. Since stable stratification reduces the vertical
motion of fluid parcels compared to isotropic motion, buoyancy-induced ani-
sotropy manifests in a negative vertical component b, which is compensated by the
two equally large horizontal components, i.e. b,, = b,, ® — b3,/2. The temporal
mean value of b, during integration time is = — 0.14. The oscillations of the trace
components have a time period of about n/N which is also observed for oscillations
of the energies and the fluxes, see Fig. 1. This suggests that the anisotropy is
correlated with gravity waves in the turbulent flow as one would expect. It is
remarkable, however, that in all cases the onset of anisotropy occurs significantly
before the value of L, departs from that in the passive scalar case at Nt = 0.4 (see

Y 1
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Fig. 10. a,b. Trace components of the anisotropy lensor b;; of (a) unsheared and (b) sheared stably
strafied turbulence versus time
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Table 2) and, hence, before the first gravity wave is generated by the turbulent eddy
with the largest vertical extension. For the unsheared case B eg, Nt=04
corresponds to (v,/f o)t = 0.57. At this time, b, is already significantly smalier than
zero, see arrows in Fig. 10a. In fact, at Nt = 0.4 all simulated flows have reached
the same level of anisotropy, b4, = — 0.028, which is already about 20%;, of the
temporal mean of b, ;. Hence, our results for unsheared flows support the results and
interpretations of Stillinger et al. (1983) and Itsweire et al. (1986): Stratification
causes anisotropy in a formerly isotropic flow. The anisotropy manifests in gravity
waves and in turbulence.

The influence of shear and stratification on the degree of anisotropy is illustrated
in the plots of the trace components of the anisotropy tensor b;;(t) in Fig. 10b. We
observe a much stronger degree of anisotropy of the downstream velocity
component b, , compensated by unequal shares of b, , and b,; when shear is present.
The degree of anisotropy in shear flows grows with increasing Richardson number
as predicted by Launder (1975). For Ri < Ri,, the anisotropy of the flow is only
weakly affected by buoyancy whereas for supercritical flows the oscillations of b, ,
and b, indicate dominating stratification effects. Further we observe that for cases
F and G the degree of anisotropy is slightly reduced which coincides with the
occurrence of CGMF and CGHF, see Fig. 4d, f. Similar findings were reported by
Gerz et al. (1989) who observed in flows with Pr=35 that the anisotropy is
considerably reduced for supercritical Richardson numbers where a CGHF
occurred. Both results are likely to sustain the findings of Gargett (1988) insofar as
shear-induced anisotropy is diminished when Ri > Ri;,.

Analogous to b;;, the anisotropic dissipation rates d;; are defined as

g =1

=35, 5551- (20)

In flows with low-to-moderate Reynolds number we expect that the anisotropy
of the flow is compensated by both pressure-strain interactions and anisotropic
dissipation rates (Gerz ct al. 1989). In all flows presented here we find considerably
large values of d;; reaching between 507, and 80%; of the magnitude of b;;. The largest
contributions are observed in supercritical shear flows which may indicate breaking
gravity waves.

Conclusions

The method of Gerz et al. (1989) has been successfully applied to homogeneous
turbulence with and without shear for moderate Reynolds number. In unsheared
stratified flows, initially isotropic turbulence becomes anisotropic even before
gravity waves are generated by the eddies with the largest vertical extent. This is
corroborated by Riley et al. (1981). Gravity waves occur when the Ellison length
reaches about the magnitude of the Ozmidov length scale. At the extinction of
turbulence, Ly is about six times the Kolmogorov length scale. This result confirms
the estimate, Eqg. (2)a, given by Gibson (1981) within reasonable limits. Further, it
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supports the findings of Stillinger et al. (1983) and Itsweire et al. (1986) but
contradicts the arguments of Gargett (1988).

Animportant phenomenon of strongly stratified turbulence is the appearance of
temporally persistent (non-zero) counter-gradient fluxes of momentum and heat,
p-CGF. The p-CGHF and the related p-CGMF belong to buoyancy driven mo-
tions at small scales. A p-CGHF reduces excessive potential energy. The excessive
potential energy arises at small scales either due to the more efficient energy cascade
of potential energy than that of kinetic energy (Holloway 1988) or due to differences
in the molecular dissipation rates of E,;, and E_,, (Schumann 1987; Gerzet al. 1989).
For large Reynolds number, the former effect dominates even if Pr < 1. For exampie,
Sidi and Dalaudier (1989) have measured an increase of intensity in the temperature-
variance spectra at high wavenumbers and found indications of a corresponding
CGHEF in the lower stably stratified stratosphere. For moderate Reynolds numbers
the second effect is more important, in particular for flows with large Prandtl
numbers. Gerz et al. (1989) found a strong p-CGHF for Pr=35 and the present
simulations show the appearance of a rather weak p-CGHF for Pr= 1.

The CGHF and the related CGMF have important effects on the degree of
anisotropy. If shear is present, the degree of anisotropy grows with increasing
Richardson number as predicted by Launder (1975) but gets limited when counter-
gradient fluxes appear. Since the p-CGHF depends on the molecular Prandtl
number, so does the degree of anisotropy.

The critical Richardson number 0.13 of the present flow simulations with
Re,,=42.7 and Shy = 3 is smaller than the linear and inviscid results 0.25 (Miles
1961). It depends on the ratio of dissipation relative to shear production and may
become zero if both have equal magnitude. For high Reynolds numbers this
ratio may vanish so that the inviscid theory applies. If Ri < Ri,,;,, turbulence is
dominated by shear. Supercritical flows behave at large scales as if no shear
would be present. These results corroborate the experimental findings of Rohr
et al. (1988). However, shear causes wave breaking and, thus, converts gravity
waves into small-scale turbulence which increases dynamical and thermal
dissipation compared to the unsheared flows.
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on sheared and stratified turbulence during the TSF 7 conference at Stanford.
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