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Abstract. The general applicability of the modal
approach for model reduction is restricted by the lack
of guaranteed bounds for approximation errors and
of a satisfactory modal dominance analysis proce-
dure. Functional and computational enhancements
of this approach are proposed. Functional enhance-
ments arise by combining the modal techniques with
other methods and by using improved dominance
analysis techniques. The computational enhance-
ments are the results of employing numerically reli-
able algorithms for both dominance analysis as well
as for model reduction.

1. INTRODUCTION

The modal approach to model reduction proposed
initially by Davison [1] was later extended with
new variants by several authors: Marschall [2], Chi-
dambara [3], Fossard [4], Litz [5] and others. The
importance of the modal approach as a useful model
reduction technique resides in its applicability to re-
duce high order systems as those arising for example
from modelling of large mechanical structures or of
large power systems. The method can handle models
with lightly damped modes and even unstable sys-
tems. In case of very large order systems, the modal
technique is one of the very few applicable methods.

Several limitations of the modal approach raise
problems for a general use of this approach. In the
first place, the lack of a generally applicable modal
dominance analysis method prevents the use of this
method in many cases as for example when the origi-
nal system has multiple poles. The existing methods
fail sometimes even to detect exact structural non-
minimality, that is, poles which are uncontrollable
or unobservable. Another weekness of this approach
is the lack of a guaranteed bound for the approxi-
mation error which has as consequence the frequent
need to experiment on a trial and error basis with
different approximations.

In this paper we shortly survey the main existent
modal reduction approaches and some of available

techniques for dominance analysis. Then we discuss
possible enhancements of the modal reduction ap-
proach. These enhancements consist in: 1) combin-
ing the modal techniques with other approaches; 2)
using a new, more powerful method for modal dom-
inance analysis; and 3) using numerical techniques
with guaranteed numerical reliability. The proposed
new approach is well suited for robust software im-
plementation.

2. MODAL REDUCTION TECHNIQUES

Consider the n-th order original state-space model
G := (A,B, C, D) with the p ×m transfer-function
matrix (TFM) G(λ) = C(λI − A)−1B + D, and let
Gr := (Ar, Br, Cr, Dr) be an r-th order approxima-
tion of the original model (r < n), with the TFM
Gr = Cr(λI − Ar)−1Br + Dr. The modal approach
to model reduction can be interpreted as performing
a similarity transformation Z yielding

[
Z−1AZ Z−1B

CZ D

]
:=




A1 0 B1

0 A2 B2

C1 C2 D


 , (1)

where A1 and A2 contains the r dominant and
respectively, the n − r non-dominant eigenvalues
(modes) of A, and then defining the reduced model
on the basis of this partitioned representation. The
above partition of system matrices is equivalent with
the additive decomposition G = G1 + G2, where
G1 := (A1, B1, C1, D) and G2 := (A2, B2, C2, 0) are
the dominant and non-dominant subsystems, respec-
tively.

For our discussion of different modal approaches
for model reduction we assume that the original sys-
tem is already additively decomposed. Furthermore
we assume that the system is asymptotically stable.
This assumption is only a technical one, because for
an unstable system the modal approach can be per-
formed on its stable projection.

We consider three basic approaches:
Method 1. Define Gr := (A1, B1, C1, D). This is
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basically the modal approximation proposed in [1].
The approximation error ∆ = G−Gr tends to zero at
high frequencies. However, the DC-gains mismatch
of the original and reduced models could be large.
Method 2. Define Gr := (A1, B1, C1, D+G2(γ)),
where γ = 0 for a continuous-time system and γ = 1
for a discrete-time system. Note that G(γ) = Gr(γ),
and thus this approximation preserves the DC-gain
of the original system, but the approximation error
at high frequencies could be large. The methods of
[2, 3, 4], which compensate the steady-state errors
can be viewed as particular cases of Method 2.
Method 3. Define Gr := (A1, B1, C1 + C2E,D),
where E is to be determined such that G(γ) =
Gr(γ). This approximation automatically ensures
small errors at high frequencies. From the equality
of DC-gains follows that E should satisfy

C2(γI −A2)−1B2 = C2E(γI −A1)−1B1.

This is a system of pm linear equations with (n −
r)r unknowns and a solution (with possibly minimal
norm) generically exists provided pm ≤ (n − r)r, a
condition fulfilled in most applications. The method
of [5] results if we impose the stronger condition

(γI −A2)−1B2 = E(γI −A1)−1B1,

which usually leads to an E with higher norm. The
generical solvability condition in this case is m ≤
r, which in most applications is also fulfilled. The
additional freedom arising from the non-unicity of E
can be used to optimally tune the free parameters of
E to minimize for instance the output error norm.

One difficulty in using the modal approach is the
lack of and a priori computable bound for the re-
sulting approximation error ∆ = G − Gr. The ac-
tual error can be computed only after that a choice
has been made, and thus the model reduction can
be done only on a trial and error basis. In contrast,
methods based on balancing, as for example the bal-
ance & truncate (B&T) method [6, 7], provide a pri-
ori information (the Hankel-singular values) which
can be used to select the appropriate order for an
acceptable approximation error.

It is possible to combine the modal approach with
other techniques. For example, if the system is
already decomposed as in (1), then the reduction
can be performed separately on G1 and G2. Let
Gr = G1r + G2r be the resulting reduced model,
where G1r and G2r are the resulting reduced sub-
systems computed say with the B&T method. If
for the separate reduction of terms we have that
‖Gi−Gir‖ ≤ εi for i = 1, 2, then ‖G−Gr‖ ≤ ε1+ε2.
Thus, by reducing individually the terms, we can
also control the resulting global error by choosing
appropriate orders for the reduced subsystems. The

technique can be readily extended to additive decom-
positions with more than two terms (see the next
section) and many variations of it are possible by
employing alternative model reduction methods.

The real advantage of such combinations is more
evident when we have to reduce very large order
models, as those which typically result from finite-
element analysis of large mechanical structures. Be-
cause the large orders of such models, the modal
approach is frequently the only method which can
be used for order reduction. This reduction is often
only a preliminary reduction which makes tractable
further reductions with the help of more powerful
methods.

3. MODAL DOMINANCE ANALYSIS

The main limitation of the modal approach to model
reduction is the lack of a reliable, general purpose
method for modal dominance analysis. The exis-
tence of such a method is highly questionable be-
cause for any of existing methods counterexamples
can be easily constructed showing their failures in
producing useful dominance information. An coun-
terexample to the method of Litz [5] is given in [8],
where a 12-th order system with distinct and equally
dominant poles is presented for which a good 4-th or-
der approximation can be computed. We can see this
as a basic limitation of the modal approach which
can permanently occur, because often the identified
dominant parts have still too large orders and thus
further reductions should have recourse to alterna-
tive techniques.

In this section we discuss the limitations of exist-
ing dominance analysis techniques and we propose
an alternative approach to overcome them. The new
technique allows an easy handling of systems with
multiple poles or of systems which are exactly or
nearby non-minimal.

Consider the system G = (A, B,C, D) with the
state matrix A in a block-diagonal form (BDF)

A = diag(A1, . . . , Ak) (2)

and the matrices B and C partitioned accordingly

B = [BT
1 , . . . , BT

k ]T , C = [ C1, . . . , Ck ]. (3)

This partition of system matrices is equivalent with
the additive decomposition G = D+

∑k
i=1 Gi, where

Gi(λ) = Ci(λI − Ai)−1Bi, for i = 1, . . . , k. We use
this decomposition to present an unifying treatment
of modal dominance analysis methods.

The earlier modal reduction methods [1, 2, 3, 4]
concerns exclusively with continuous-time systems
and always assume that A is diagonalizable, and thus
all blocks in (2) are 1× 1. An eigenvalue λi is called
dominant (or slow) if it is situated not too far from



the imaginary axis and non-dominant (or fast) oth-
erwise. The fast modes lying far from the imaginary
axis are always neglected, even if they have a sub-
stantial contribution to the system dynamics.

A more satisfactory approach was proposed by
Litz [9]. As dominance index for an eigenvalue λi

he used the quantity

Ri = ‖D1Gi(0)D2‖, (4)

where D1 and D2 are diagonal output and input scal-
ing matrices, respectively, and ‖F‖ :=

∑
i,j |fij | or

‖F‖ := maxi,j |fij |. Those eigenvalues having the
largest dominance indices are called dominant and
are retained in the reduced model. In order to ev-
idence week dynamic interactions, Litz also intro-
duced a somewhat heuristically defined frequency-
weighted dominance index. The choice of matrices
D1 and D2 should reflect the relative importance
of different output and input variables. A possi-
ble choice for the diagonal elements of these matri-
ces is to take them as the reciprocal of the abso-
lute maximum values of the the corresponding out-
put and input variables. Note that dominance in-
dices equivalent with (4) can be defined by using
any norm for TFMs as for instance the 2-, ∞- or
Hankel-norm. Each TFM Gi(λ) being of the form
CiBi/(λ− λi), the evaluation of these norms can be
done by using easily computable explicit formulas:
‖Gi‖∞ = Γi, ‖Gi‖2 =

√
|λi|/2Γi, ‖Gi‖H = Γi/2,

where Γi = ‖Gi(0)‖2.
The main limitation of using such dominance in-

dices is the requirement for A to be diagonaliz-
able. Even if A is diagonalizable, all discussed
dominance indices are not appropriate for detect-
ing exact or nearby structural non-minimality, as
evidenced by the following simple example A =
diag(−1,−1,−10), B = [ 1 1 1 ]T , C = [ 1 −1 1 ].
Apparently the slow eigenvalues λ1 = λ2 = −1
should be kept in the reduced model and the fast
eigenvalue λ3 = −10 should be removed. The dom-
inance indices R1 = R2 = 1, R3 = 0.1 computed
with (4) support this decision. However, it is easy
to observe that an exact minimal realization of this
system is A = −10, B = 1, C = 1.

The possible enhancements of the modal dom-
inance analysis are directed towards handling the
cases of multiple eigenvalues, or of exact or nearby
non-minimality. We assume that in the BDF (2), any
of two diagonal blocks have no common eigenvalues.
Let ni be the order of the i-th block and let σ

(i)
j , j =

1, . . . ni the decreasingly ordered Hankel singular val-
ues (HSV) of the subsystem Gi = (Ai, Bi, Ci) (the
square-roots of the eigenvalues of the product of the
corresponding gramians). The eigenvalues of a diag-
onal block Ai for which σ

(i)
ni > ε, are called dominant,

where ε is a given tolerance on the HSV. If σ
(i)
1 ≤ ε

then the eigenvalues of Ai are called non-dominant.
If σ

(i)
j > ε for j = 1, . . . ri, then ri of the eigenval-

ues are dominant and ni − ri are non-dominant. To
uncontrollable and/or unobservable eigenvalues cor-
respond null singular values. Thus, by setting ε = 0,
the dominant eigenvalues are those which are both
controllable and observable. The non-dominant part
of a subsystem Gi = (Ai, Bi, Ci) can be removed
by applying one of several powerful model reduction
methods, as for instance the balancing-free square-
root variant of B&T method [10].

The following straightforward procedure can be
used to compute reduced order models by combining
the modal approach with a suitable model reduction
method capable to handle non-minimal systems:
1. Reduce the system (A,B, C, D) to the additively

decomposed form (2)-(3), where λ(Ai)∩λ(Aj) 6= φ
for i 6= j.

2. For i = 1, . . . , k determine ri, the number of dom-
inant eigenvalues of block Ai.

3. For each ni-th order subsystem Gi = (Ai, Bi, Ci)
compute its ri-th order dominant part Gir =
(Air, Bir, Cir, Dir) by using a suitable model re-
duction algorithm.

4. Construct Gr = (Ar, Br, Cr, Dr), where Ar =
diag(A1r, . . . , Akr), Br = [ BT

1r . . . BT
kr ]T , Cr =

[ C1r . . . Ckr ], Dr = D +
∑k

i=1 Dir.

This procedure can be easily implemented to de-
termine a reduced system of a specified order or a
reduced system Gr satisfying ‖G−Gr‖ ≤ εa, where
εa is a given absolute error tolerance. In the lat-
ter case, the orders ri of reduced subsystems Gir,
i = 1, . . . , k can be usually determined automati-
cally. For instance when using the B&T method we
can choose ri such that for a given εa we have

‖G−Gr‖∞ ≤ 2
k∑

i=1

ni∑

j=ri+1

σ
(i)
j ≤ εa,

where we used the expressions of bounds derived in
[7] for the B&T method. Note however that the ac-
tual error is generally greater (sometimes even much
greater) than that resulting from the application of
the B&T method directly to the whole system. Var-
ious other aims (DC-gain matching, phase preserv-
ing) can be accommodated by using alternative tech-
niques (see [11] for a survey of model reduction meth-
ods). It is easy to see that when A has distinct eigen-
values, then the above procedure can be so devised
to be equivalent with any of mentioned modal meth-
ods.

4. NUMERICAL ASPECTS

The model reduction procedure of previous section
can be implemented by using exclusively numerically



reliable algorithms. For the computation of the BDF
at step 1 the algorithm of [12] can be used followed
possibly by the reordering and enlarging of diago-
nal blocks. Note however that in many cases (finite-
element models, non-minimal TFM realizations) A
is already block-diagonal. In such cases only the re-
ordering of blocks is necessary in order to include
nearby eigenvalues in the same blocks.

For the dominance analysis at step 2 the HSV can
be computed very accurately by using the square-
root algorithm of [13]. The same algorithm is appli-
cable to both continuous- and discrete-time systems.
The only difference consists in solving continuous-
or discrete-time Lyapunov equations to compute the
corresponding gramians. The term square-root des-
ignates a class of new model reduction methods with
enhanced accuracy in which the computation of re-
duced models is based exclusively on square-root in-
formation as for instance the Cholesky factors of the
gramians. The computation of Cholesky factors can
be done by solving directly for these factors the cor-
responding Lyapunov equations by using the algo-
rithms proposed in [14].

The reduction at step 3 can be done by using any
of the recently developed model reduction algorithm
with enhanced accuracy (the so-called square-root or
balancing-free square-root methods) (see the refer-
ences in the companion paper [11]). All these meth-
ods are appropriate to handle exact or nearby non-
minimality and thus can be also used very effectively
as minimal realization procedures. At both steps 2
and 3 additional computational efficiency arises by
exploiting the particular quasi-upper triangular form
of diagonal matrices Ai which results usually from
the reduction to BDF.

Because of usually low dimensions of subsystems
Gi, the involved computational effort is mainly due
to the reduction to the BDF and thus is about
15n3 operations. If the procedure is properly im-
plemented, all computations can be done practically
with minimum additional storage (at most n2 loca-
tions if the reduction to BDF is necessary).

5. CONCLUSIONS

A model reduction procedure based on an enhanced
modal dominance analysis technique has been pro-
posed. The proposed procedure fulfills the basic
requirements (generality, numerical reliability, en-
hanced accuracy) for a satisfactory numerical algo-
rithm and thus can serve as basis for robust soft-
ware implementation. The new procedure extends
the range of applicability of the modal approach to
the reduction of arbitrary continuous- or discrete-
time systems. In the same time, it can be seen as en-
larging also the applicability of many powerful model
reduction methods to very large order systems.
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