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Abstract 

Out-of-plane fibre waviness or ‘wrinkle’ defects significantly reduce the strength of 

laminated composites under quasi-static tension loads. Under tension-tension cyclic loading, 

the peak load amplitude remains lower than the wrinkled laminate quasi-static strength. Small 

delaminations can however still initiate early during the load history and grow steadily with 

increasing numbers of cycles until becoming critical, leading to ultimate structural failure. 

This paper focusses on the application of a novel 3D finite element modelling framework to 

predict fatigue delamination initiation and growth from wrinkle defects. An experimental 

programme was conducted alongside the modelling, for validation purposes. Carbon 

fibre/epoxy laminates with a quasi-isotropic layup containing artificially induced wrinkles 

were tested at various load severities (percentage of quasi-static failure load), until failure 

(defined percentage loss of the initial undamaged stiffness). Failure progression was closely 

monitored throughout the test. A detailed comparison between the novel finite element 

analyses and experiments was undertaken, and it was shown that the delamination locations, 

extent and cycles to failure could be very accurately predicted.  
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1 Introduction 

In the last few decades fibre reinforced polymer composites have gradually been replacing 

metals as the material of choice for structural aircraft applications. These materials provide 

many advantages over traditional metals such as weight saving, stiffness and strength 

tailoring, high structural damping, better corrosion resistance etc. However, composite 

materials technology is a relatively new area of research and as such, does not benefit from 

the well-established design guidelines and manufacturing techniques that are otherwise 

available for metals. Manufacturing of composite components largely depends upon hand-

laying of prepreg sheets on complex moulds, which means that manufacturing variations in 

finished components can occur. Variations from the nominal geometric or functional 

specifications that negatively affect the finished component quality are known as 

manufacturing induced defects [1]. Out-of-plane fibre waviness or ‘wrinkling’ is a defect 

type where fibres deviate from their ideal straight line path and show up in the form of a 

localised wave in the out-of-plane/thickness direction (Figure 1(a)). The severity of a wrinkle 

is characterised either by the wavelength   and amplitude   [2], or by the angle formed 

between the fibres in the wrinkle and a nominally straight fibre, known as the wrinkle angle 

  [3] (Figure 1(b)).  

Under quasi-static tension, wrinkle defects initiate early delamination in the wavy plies, 

causing failure [4–7]. For example, in [7], the authors noted a tensile strength reduction of 

~23% in a quasi-isotropic laminate containing an embedded wrinkle (  = 12.1˚) located 

centrally along the gauge length. Modelling studies confirmed the presence of high-through-

thickness shear stresses in the wavy plies, which initiated the delamination failure.  

Because many aircraft components are subjected to cyclic loads, and the presence of wrinkle 

defects in them cannot be ruled out completely, it is important to investigate delamination 

initiation and growth from a wrinkle under fatigue. The last few decades have seen a 
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considerable amount of research devoted to understand delamination fatigue, see for 

example, a comprehensive review by Martin [8]. Several numerical tools have also been 

developed to accurately predict fatigue delamination growth e.g. Turon et al.[9], Harper and 

Hallett [10], Kawashita and Hallett [11]. Very few studies have however looked into fatigue 

delamination originating from wrinkles. A notable work is due to Nikishkov et al. [12], 

where the authors proposed a progressive fatigue damage algorithm in a 3D finite element 

framework, which was subsequently applied to predict delamination and matrix crack onset 

and growth in a multidirectional laminate containing wrinkle defects induced intentionally by 

terminating plies at certain locations and subject to cyclic tension loading. The constitutive 

law expressed the interfacial normal and shear strengths as a function of the elapsed cycles in 

the form of an experimentally obtained S-N curve. These relations were then put in a stress 

based failure initiation criterion to solve for the remaining number of cycles until damage 

initiated at the present stress state. Following initiation, complete element failure was 

simulated by reducing the stresses to zero in a small number of solution increments, which 

was identified by a convergence study. Once a few elements failed, the stresses were 

recalculated and the procedure was repeated with the remaining number of elements. The 

authors were able to predict the number of cycles to global failure accurately for three 

different wrinkle configurations. Also, the model predicted the ply terminations in the 

wrinkle as the delamination onset locations, which was confirmed in the tests by identifying 

peak strain locations in the DIC strain contours corresponding to ply delaminations. 

By contrast to the above failure criterion based only on initiation stresses, an energy based 

Paris type law has been used in several fatigue finite element models to predict the 

propagation of delamination [9,13].One such model is that which has been developed over 

the years at the University of Bristol [10,11,14]. The objective of this paper is to apply and 

update this novel fatigue delamination cohesive constitutive law for predicting delamination 
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onset and growth from artificial wrinkle defects under tension-tension cyclic loading. To 

obtain data for validation of the models, experiments were first carried out at various load 

severities on wrinkle specimens as well as wrinkle-free, nominally flat, baseline specimens. 

In the finite element modelling a user-defined cohesive law is used to predict both matrix-

crack growth within a ply and delamination growth between plies. A phenomenological 

damage initiation criterion [14] in fatigue is used and its influence on overall damage 

progression is shown. The model outcomes are compared with the experiments for 

delamination locations, extent and cycles to failure (defined as a certain percentage loss of 

initial undamaged stiffness). Finally general conclusions and suggestions for possible 

improvements of the present modelling framework are made. 

2 Experimental programme 

2.1 Wrinkle coupon manufacture 

IM7/8552 pre-preg supplied by Hexcel composites was hand laid to make the quasi-isotropic 

[+452/902/-452/02]3S specimens. The material has a nominal cured ply thickness (CPT) of 

0.125 mm. Two prepreg sheets were stacked together during the layup to increase the CPT to 

0.25 mm. The ‘doubled-up’ prepreg sheets were then laid on top of each other following the 

specified stacking sequence to make a panel from which tensile test specimens could be 

extracted in sufficient numbers. The specimen dimensions were 250 mm×30 mm×6 mm with 

a gauge length of 150 mm after tabbing (Figure 2(a)). To induce the wrinkle defect 

artificially, the same technique, described in previous work [7] was used. Thin strips of 90 

degree prepreg were added at specific locations throughout the laminate to enforce the out of 

plane movement of the plies during consolidation (Figure 2(b)). To compensate for the extra 

material added, small sections of one of each of the doubled up 90˚plies were selectively 

removed opposite the added ply material. This method resulted in wrinkle formation without 
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using any pre-cured or foreign substance in the layup, which could lead to the generation of a 

weak interface causing premature delamination. The thickness and width of the narrow 90˚ 

strips could be varied to change the wrinkle severity in a controlled manner. For the present 

study, a specific configuration was chosen that resulted in a wrinkle severity with mean 

wrinkle angle of 7.5˚. For this configuration (designated as wrinkle level#2 in [7]), quasi-

static tension loading caused delamination at the wrinkle site, which is associated with a 

small drop in the load curve at ~82% of the ultimate failure load. Final catastrophic failure of 

the specimen is caused by fibre fracture in the gauge section. Also, to compare the failure 

performance with and without the wrinkle defects, pristine specimens (free from any wrinkle) 

of same layup and geometric dimensions were also manufactured. For both the wrinkle and 

pristine configurations, several panels were manufactured, each of which could provide, on 

an average 10-15 specimens for testing. 

2.2 Fatigue testing 

Three specimens from the pristine and wrinkle configurations were tested to failure quasi-

statically using a servo-hydraulic Instron 1342 tensile testing machine with a 250 kN 

capacity. From the ultimate quasi-static failure load of the specimens, the peak fatigue 

amplitudes could then be calculated. This gives rise to the term ‘fatigue severity’ and is 

denoted as a percentage of the ultimate load. The pristine specimens failed at a mean cross-

sectional stress of 724.8 MPa (CV 0.9%) under quasi-static loading, while for the wrinkled 

specimens, it was 694.8 MPa (CV 2.4%). The static tensile strength of pristine specimens is 

in excellent agreement with results previously published [7], and the strength of the wrinkle 

specimens is ~7% higher. This is believed to be due to the slight manufacturing variations 

between different batches of wrinkle specimens, due to which the mean wrinkle angle of the 

present batch was ~1.3˚ lower compared to [7], which resulted in a slightly higher static 

tensile strength.  
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The fatigue tests were performed in an Instron 8801 servo-hydraulic tensile testing machine 

with a 100kN capacity load cell (Figure 3). Tension-tension cyclic loading was applied with 

an R-ratio = 0.1. Fatigue tests were run at different load severities (70, 60, 50, 40 and 30%) 

until no noticeable stiffness loss was recorded. A limit of 106 cycles was used. If no 

noticeable loss in stiffness was recorded at the cycle limit, then this was defined as a runout. 

A loading frequency of 3Hz was used for 60% load severity and adjusted linearly for other 

load severities to keep the loading rate constant. At least three specimens were tested at a 

given load severity for statistical significance. The machine was controlled from an external 

LabVIEW® programme, which provided a sinusoidal load signal for the fatigue loading. The 

other purpose of the programme was to pause the machine at the peak of the load cycle after a 

regular interval of cycles (specified by the user) for 0.5 sec and to trigger a camera focussed 

on the specimen gauge section. This enabled visual monitoring of the delamination growth 

over the course of the test, with the delaminations being held open during the pause at peak 

load. A clip gauge extensometer was attached to the specimen gauge section to record the 

tensile strain. The stiffness E of the specimen was measured as  

 
 
 minmax

minmax

 




A

FF
E  (1) 

where maxF  and minF  are the maximum and minimum tensile load on the specimen in a cycle 

obtained as an output from the machine, max  and min  are the corresponding maximum and 

minimum tensile strain obtained from the extensometer, and the measured cross-sectional 

area is A . 

During fatigue loading, the temperature of the specimen rises due to frictional sliding of the 

delaminated interfaces and also due to hysteresis loss from the resin. The temperature rise is 

known to have a negative effect on fatigue life of composites [15]. An infrared (IR) camera 

was therefore focussed on the specimen gauge section (Figure 3) to monitor the temperature 
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rise. This was found to never exceed 10˚C during any of the tests, which is negligibly small 

in relation to any possible adverse effects on the resin properties.  

Finally, several tests were interrupted at certain stages of damage accumulation during 

fatigue cycling. Micro X-ray computed tomography (CT) scanning was performed to 

visualise the internal state of damage using a Nikon X-TH 225kV machine. Each specimen 

was clamped in the rotation stage and positioned between the source and the detector. The X-

ray beam is emitted from the target penetrating through the specimen onto the 16 bit 2000 x 

2000 pixel flat panel detector. Throughout the scan the specimen was rotated a full 360° 

whilst incrementally taking a series of radiographs. These 2D radiographs were then 

reconstructed using a filtered back projection reconstruction algorithm to produce a 3D 

volume of the object. The scanning voltage was 74 kV, the current was 276 µA and the 

exposure time for each radiograph was 500 ms. After testing, but prior to CT scanning, the 

specimens were soaked for two days in X-ray dye-penetrant consisting of 250g of zinc 

iodide, 80ml distilled water, 80 ml isopropyl alcohol and 1ml Triton X100 (a surfactant 

which reduces the surface tension of the solution) to enhance X-ray contrast. The CT scan 

data was post-processed in the VG studio max 2.2 and Avizo® 8.1 software packages. The 

grey scale values in the CT scan data corresponded to the local x-ray absorption within the 

scanned volume of the specimen, which were different for the damaged region 

(delamination/matrix cracks, highlighted by the penetrant solution) and undamaged region. 

Consequently, delaminations and matrix cracks could be segmented by defining certain 

thresholds around the appropriate greyscale values. Testing was not resumed after interrupted 

testing as the penetrant is known to affect crack growth [16]. 
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2.3 Experimental results 

2.3.1 Wrinkle specimens 

The stiffness degradation (normalised with respect to the initial undamaged stiffness) with 

elapsed cycles is shown in Figure 4. A run-out (no failure) at 106 cycles was obtained for a 

30% load severity. For all other severities, the slope of the normalised stiffness dropped 

noticeably after certain number of cycles. The camera images (Figure 5) showed that this 

drop was associated with delamination occurring at the wrinkle site. Furthermore, tests at 

50% load severity were stopped just after the stiffness drop and CT scanned to identify the 

locations and extent of the damage. Delaminations across the entire specimen width, localised 

at the wrinkle, can be clearly identified, as shown in Figure 6. The failure criterion for the 

wrinkled specimens is considered as the initial stiffness drop of around 6-8%. This is 

followed by a more gradual decline in the stiffness towards catastrophic failure of the 

specimen (figure 4). It should be noted that for quasi-static tension tests on these specimens, 

the delamination at the wrinkle happened at ~85% of the ultimate failure load (ultimate 

failure was due to fibre fracture in the 0° plies post delamination). The mean fatigue life for 

various load severities recorded was: 70% - 87 cycles (29.03% CV), 60% - 965 cycles 

(68.16% CV), 50% - 6768 cycles (25.66% CV) and 40% - 181,302 cycles (39.18%CV). 

2.3.2 Pristine specimens 

In absence of any seeded wrinkle defect, a completely different failure mechanism was 

observed in the laminates. Normalised stiffness vs. cycles for a severity range 40-70% is 

shown in Figure 7, indicating a more gradual failure. Run-out was obtained at a severity of 

40% as shown. While the camera images could only show ply delaminations developing in 

the gauge section (Figure 8), CT scan images of tests interrupted after 10% stiffness loss were 

more indicative, clearly showing delaminations emanating from the laminate edges (due to 
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locally high stresses around the edges), which propagates towards the interior (Figure 9) as 

cycling progressed. Because the damage progression was gradual and did not have a 

distinguishable damage event in the stiffness curve, the failure criterion is defined in this case 

as the number of cycles until a 10% stiffness degradation occured. This is also to ensure that 

there was an almost vertical slope in the stiffness curves for all specimens. The mean fatigue 

life as noted for these specimens: 70% - 2444 cycles (2.04% CV), 60% - 12,974 cycles 

(7.30% CV) and 50% - 132,927 cycles (4.01% CV). 

The detrimental effect of the wrinkle is apparent. Under the same load severity, the presence 

of an embedded wrinkle of 7.5° wrinkle angle reduced the fatigue life by more than an order 

of magnitude compared to the defect-free specimens. This was due to the wrinkle induced 

delamination. The high shear stresses at the wrinkle dominated over the laminate free-edge 

stresses (causing delamination in pristine specimens). The higher CV of the fatigue life of the 

wrinkle specimens compared to the pristine ones is attributed to the slight variation of 

wrinkle angles from specimen to specimen, induced by the manual layup procedure. 

3 Finite element modelling 

3.1 Meshing tool for fatigue analysis 

The simulations were undertaken in the explicit finite element solver LS-Dyna. 

Delaminations between plies and matrix cracking within a ply, as seen in the CT scan images, 

were the modes of failure included in the analysis. 8 node single integration point solid 

elements (type 1 in LS-Dyna) were used to model both the plies and cohesive elements. 

Delamination was simulated by inserting cohesive element layers of thickness 0.01 mm 

between each ply of different fibre orientation. Additionally, rows of cohesive elements of 

the same thickness, oriented along the fibre direction were inserted within each ply to 

simulate matrix cracking. Usually, such an approach results in non-matched mesh pattern in 
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each ply in a multidirectional laminate, and necessitates use of tied constraints at the ply 

interfaces to hold the assembly together. However, the use of tied constrains increases the 

computational time significantly. In this work a novel, fully automated meshing technique, 

developed by Li et al [17] was used, which resulted in a fully contiguous mesh. The aim was 

to create an in-plane ply mesh using a repetitive unit cell pattern, which allowed to insert 

cohesive elements representing matrix cracks between ply elements along ±45° or 90° 

directions, while keeping the mesh pattern the same for all plies (Figure 10). To simplify the 

model, no cohesive elements were inserted into the 0° plies as those plies were aligned with 

the loading direction, and thus the chances of matrix crack formation were insignificant. A 

FORTRAN90 subroutine built the model from input of the geometric dimensions of the 

laminate and the wrinkle, the unit cell dimension, the cohesive element thickness and the 

spacing between two parallel matrix cracks within a ply, and inserted cohesive elements 

automatically between solid ply elements along the desired interfaces. The wrinkle profile 

was realised in the mesh with a sinusoidal curve (see [7] for more details) with a given height 

and wavelength, which were taken as the average of the height and wavelength data obtained 

by measurement from microscopic images of the polished gauge section of the wrinkle 

specimens. The local material orientation in the wrinkle was generated using the option 

AOPT=3 available in LS-Dyna. This assigns the material axis 3 to be the same as the 

midplane normal of the elements. The mesh was designed such that the element midplane 

followed the waviness, giving the correct local direction 3. The direction 2 needed to be 

specified by the user, which in this case was the global y axis [0 1 0]T for all the elements, 

which was also along the width of the laminate. The direction 1 was then decided as a cross 

product between 2 and 3 direction vectors. For off-axis plies, an additional parameter ‘beta’ 

defined the angle of rotation of the coordinate system in degrees about material direction 3, 

which in the present case was 45˚, 90˚ or -45˚, depending on the ply orientation. To reduce 
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computation time, only the central 90 mm of the entire gauge section (150 mm) was 

modelled. For fatigue calculations, typically a finer mesh is required than for quasi-static 

analyses as the fatigue cohesive zone length tends to be smaller than the quasi-static cohesive 

zone length. The mesh shown in Figure 11, had a unit cell in-plane size of 1 mm, which 

resulted in an individual element size ~0.35 mm, and a total of 931,456 solid elements in the 

model, including both the ply and cohesive elements. 

3.2 Constitutive law for fatigue 

The cohesive formulation used for fatigue crack growth presented here follows from the 

crack-tip tracking approach of Kawashita and Hallett [11]. For completeness, a brief outline 

of the formulation is provided, and interested readers are referred to [11] for details. 

Interfacial stiffness degradation due to cyclic loading is introduced as an additional damage 

variable in the bilinear traction-separation based constitutive law (Figure 12(a)) for 

delamination analyses under quasi-static loading (see Jiang et al [18]). Before damage onset, 

a high penalty stiffness in the cohesive elements connects the adjoining ply elements. A 

quadratic stress interaction criterion is used to detect onset of cohesive damage: 
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where I  and II  are the interfacial  tractions in mode I and mode II respectively, and the 

prefix ‘max’ indicates corresponding strength in those modes. The Macaulay bracket on 

mode I traction indicates that normal compression does not induce any damage. Under quasi-

static loading (i.e. in absence of fatigue), the relative separation between the top and bottom 

surface of the cohesive element drives the damage to complete failure using a displacement 

based damage variable sD : 
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where m  is the mixed mode relative separation between the cohesive element faces, the 

superscripts ‘e’ and ‘f’ represent the value at damage onset and complete failure respectively. 

Complete failure is reached when the critical energy release rate under mixed mode satisfies 

the following power law criterion: 
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where IG  and IIG  are the energy release rates in mode I and mode II respectively, the 

subscript ‘c’ indicates their critical value. The exponent α is taken to be unity for simplicity, 

since it shows a good fit to experimental data for the current material system [19].  

For cyclic loading, a ‘cycle jump’ strategy is used whereby the load is increased smoothly 

from zero to peak cyclic load and held constant (see Figure 13). A certain number of cycles 

are assumed to have elapsed per unit simulation time, based on a user-given cycle frequency 

‘f’. The energy release rate amplitude ΔG, which is the difference of energy release rates 

between the peak and trough load condition in a cycle, is given by: 

  2

max 1 RGG   (5) 

where maxG  is the energy release rate at the peak of a cycle and R is the R-ratio. From 

equation (2)-(4), a mixed mode critical energy release rate cG  is obtained, following which a 

Paris law of the form given by Equation (6) is used to estimate crack growth rate Δa/ΔN: 
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The mixed mode Paris law coefficient and exponent C and m are obtained from their 

corresponding experimentally measured pure mode values (CI, mI in mode I and CII, mII in 

mode II) using the scheme proposed by Russell and Street [20]: 
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At an element level, the crack growth rate can be approximated as:  
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where fN  is the number of cycles within which the current element must fail, and Le is the 

effective element length in the direction of crack advancement. In the present 

implementation, Le was taken to be the square root of the in-plane area of the cohesive 

elements for simplicity, since a relatively regular mesh has been used. Assuming a cohesive 

element at peak load has already accumulated a static damage Ds (see Equation (3)), it will 

require an additional amount 1-Ds in order to fail completely. At this point a fatigue damage 

variable fD  is introduced, whose rate of increase is given by: 

  

f

sf -1

N

D

dN

dD


  (9) 

The cyclic rate can be converted to the rate with respect to simulation time using the user 

defined frequency f, and thus fD  is updated at every time increment Δt: 
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f  (10) 

The cohesive traction m  is now reduced linearly from its damage onset value 0

m  using the 

following scheme: 
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The resulting cohesive response including combined static and fatigue damage is shown in 

Figure 12(b). Although the above mentioned damage law can be readily applied, cohesive 

zone modelling does not take account of a sharp crack tip unlike classical fracture mechanics 

(on which the Paris law is based), but rather represents damage as an extended cohesive zone 

ahead of the failed elements. Thus, applying the damage law to all the elements in the 

cohesive zone causes faster overall damage growth and conservative estimates. In order to 

confine the fatigue damage only to the crack tip (instead of the entire cohesive zone), 

Kawashita et al [11] suggested an in-situ tracking of the moving damage front and selectively 

applied the fatigue law only to the damaged cohesive elements that belong to the crack tip. 

This requires each cohesive element to ‘know’ the damage status of its neighbouring 

elements and attributes a non-local character to the algorithm.  

Another aspect of this formulation is the damage initiation criterion. For the original fatigue 

degradation law to be active, an element needs to accumulate some static damage Ds a priori. 

Although this condition is usually satisfied under high load severities, the same cannot be 

guaranteed for lower load severities, or in absence of any stress concentrations (such as the 

pristine specimens studied in this work) using the stress based initiation criterion (Equation 

(2)). In order to address this issue, the work of May and Hallett [14] on fatigue damage 

initiation is additionally included in the current formulation, whereby the static interfacial 

strengths σI max and σII max are degraded as a function of the elapsed cycles N by using 

equations of the following form: 
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where 
max

fatI,  and 
max

fatII,  are the modified mode I and II strengths and 
ISNa  and 

IISNa  are the 

corresponding slopes, which are obtained experimentally. This scheme was only applied to 

elements that did not have any static damage at the start of the fatigue cycling. This ensured 

that all elements would eventually satisfy the stress initiation criterion (Equation (2)) at some 

point as the cyclic loading is continued, and fatigue damage could be applied to them. 

Although the interfacial strength was modified with increasing numbers of cycles, the critical 

energy release rate Gc being a material property, was kept unchanged. As a result, the static 

displacement to failure in the bilinear traction-separation law was increased as shown in 

Figure 14. 

In the present implementation, the damage law was implemented as an LS-Dyna user 

material subroutine (UMAT), written in FORTRAN90, where a neighbour map was created 

internally as a common block array at the beginning of the simulation, which contained the 

element IDs of the four edge-sharing neighbour elements of each cohesive element. If any of 

the neighbouring elements had failed, the current element was identified as a crack tip (see 

Figure 15), provided it had already accumulated some static damage Ds. If a current element 

was statically damaged, but none of the neighbour elements failed, then a comparison was 

drawn between the mixed mode energy release rate of the current element and its neighbours. 

If the current element had the highest energy release rate among its neighbours, it was taken 

as a crack tip. The damage state and energy release rate of each element were also stored as 

common block variables in order to enable access from other elements. The models contained 

nearly a million elements and thus were run on multiple Central Processing Units (CPUs) for 

faster computation. However, in a parallel simulation, each individual CPU gets its own local 

copy of a specified common block, which can store and exchange information only for 

elements which are being processed by that particular CPU. In order to make sure each of 

such local common blocks all had the same global information at the end of an increment, 
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several Message Passing Interface (MPI) routines were used to efficiently exchange 

information between CPUs. 

3.3 Model results and comparison with experiments 

Thermo-elastic properties of IM7/8552 and the user cohesive material properties for fatigue 

damage are given in Table 1 and 2. Before load application, thermal residual stress 

development in the laminate was simulated by reducing the ambient temperature from 180˚C 

(final cure temperature) to 20˚C (room temperature) and holding it constant for the rest of the 

simulation. The load severities for the fatigue simulation were based on the quasi-static 

tensile strength predicted by the models. Under monotonic tension, a laminate was considered 

failed when axial stress in any of the 0˚ plies exceeded the fibre tensile strength. The pristine 

model failed at a cross-sectional stress of 723.6 MPa and the wrinkle at 675.2 MPa, both of 

which are in very good agreement with experiments (see Section 2.2). For fatigue analysis, 

the tensile load was ramped up using a smooth curve from zero to peak load (for a given load 

severity) and held constant while the cycle jump method was used within the formulation to 

realise the passage of cycles and simulation of interface damage. The user defined cycle 

frequency f was set at a value such that the simulations could be finished in reasonable time, 

whilst avoiding elevated values that could induce dynamic effects in the models due to rapid 

damage growth. In order to speed up calculations a selective mass scaling was used to a 

target time increment size of 10-5 sec, which was seen reasonable as it did not induce any 

noticeable dynamic effects. A typical finite element model of a wrinkle specimen containing 

931,456 solid elements and 1,046,675 nodes took ~30 hours to finish while running parallel 

on 16 SandyBridge cores clocked at 2.6GHz and each containing 4GB RAM. 



 17 

3.3.1 Failure prediction in wrinkle specimen 

The stiffness (normalised by its initial undamaged value) vs. cycles graph obtained from the 

models is plotted in Figure 16. Similar to experiments, the rapid drop in stiffness after a 

certain number of cycles could be predicted across all the load severities except for 30%, 

where a run-out occurred after 106 cycles. The models were queried for the damage 

(delamination and cracks) location and extent after the stiffness drop and compared with CT 

scan images obtained from the experiments, showing an excellent match (Figure 17). In order 

to check for mesh dependency, a model of 50% load severity was run with two other mesh 

densities (Figure 18). The results showed that the baseline mesh (1 mm unit cell size) was 

sufficiently accurate. Fatigue life obtained from the model were: 70% -76 cycles, 60% - 879 

cycles, 50% - 11,300 cycles and 40% - 104,500 cycles, which are in good agreement with 

experiments (see Section 2.3.1) The influence of the damage initiation model (equation 12) 

on failure was briefly studied. The model at 40% severity was used. The model was run with 

and without the damage initiation criterion to check its influence on fatigue life. When the 

interfacial strengths were kept at their unmodified static value, the fatigue life was 543,000 

cycles, which is noticeably higher than the experimental mean for this load severity (181,302 

cycles). 

3.3.2 Failure prediction in pristine specimen 

For the pristine specimens, no defect was present, and therefore delaminations propagating 

from the specimen edge caused a gradual failure, defined as a 10% loss in initial stiffness (see 

Section 2.3.2). The model predictions for stiffness vs. cycles are shown in Figure 19. In this 

case a 40% load severity gave a run-out, which is in agreement with experiments. The edge 

delaminations could be successfully captured by the model as seen in Figure 20, by 

comparing damaged locations between CT scan data obtained from experiments and failed 
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elements extracted from model, shortly after failure. The fatigue life obtained from the model 

are: 70% -750 cycles, 60% - 7,168 cycles and 50% - 98,400 cycles. The model predictions in 

this case are more conservative (when compared with experimental results in Section 2.3.2). 

In the absence of any major local stress concentration at the start of fatigue cycling in these 

models, the strength reduction scheme (Equation 12) was crucial to initiate delamination as 

cycles progressed. However keeping this scheme active throughout the entire model run was 

seen to eventually initiate damage in a large number of cohesive elements, causing faster 

failure compared to experiments. Nonetheless, the presence of the initiation criterion in the 

models was crucial. To give an example, a 40% load severity model run with the strength 

reduction scheme deactivated, didn’t show any static delamination in the models at the 

beginning of the fatigue cycling, and thus would have predicted infinite fatigue life. 

Although, at this severity a run-out occurred at a million cycles, it did indeed suffer ~4% loss 

in stiffness at 106 cycles (and clearly had some damage, see Figure 9), and therefore would 

have failed eventually, if cycling was continued. With the strength reduction criterion active, 

the same model was able to predict ~7% loss in stiffness at the end of a million cycles. 

Although the fatigue life prediction was slightly conservative, the physical process of 

delamination growth with cycling could be correctly captured at this severity level. The mesh 

size sensitivity studies were also carried out for pristine specimens (not presented for 

brevity), and the baseline mesh (1 mm unit cell size) was found to be sufficiently accurate.  

4 Discussion and Conclusion 

The present work highlights the detrimental effect of wrinkle defects in causing early 

delamination onset under tension-tension fatigue loading and provides a robust and accurate 

finite element modelling framework to predict such failure.  As part of this, a thorough study 

was undertaken, where laminates with an embedded wrinkle defect of a known severity were 
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manufactured and tested to failure. Defect-free pristine specimens are also tested in order to 

differentiate between the damage mechanisms with and without the presence of a wrinkle and 

to compare their failure performance. Figure 21 shows a summary of the experimental and 

numerical results plotted as S-N curves, where the severities for each of the cases (pristine 

and wrinkle) are expressed by normalising the applied peak cyclic stress to the static tensile 

strength in the respective cases. The experimental and numerical results are in excellent 

agreement with each other. The fatigue life of wrinkle specimens is approximately an order 

of magnitude lower than the pristine specimens for a given load severity, which, in addition 

to the knockdown in quasi-static properties, clearly demonstrates the negative impact of 

embedded wrinkles on high-cycle fatigue life of composite components. Another major 

contribution of this work is the development of a novel fatigue delamination modelling 

strategy in a cohesive element framework and its implementation in a commercial 3D finite 

element code. Unlike many existing fatigue modelling methods whose applicability has only 

been demonstrated on simple fracture coupons or in 2D, the present method is programmed 

to handle larger 3D structural models with complex cracking and delamination patterns, 

running in parallel environment and giving very accurate results. It is however acknowledged 

that the method still is limited to a ply-by-ply modelling approach and hence component scale 

models would be computationally expensive. In such a case a sub-modelling or multi-scale 

approach is recommended. The known limitation of stress based damage initiation criterion 

in cohesive elements to correctly predict initiation under low load severities is addressed by 

an experimentally obtained strength reduction model to further increase the models 

robustness. Lastly, this modelling method is very general and not only limited to predicting 

failure in a wrinkle, but in any general multi-directional laminate modelled using a ply-by-ply 

scheme. In future it may be possible to improvise on the fatigue initiation criterion, which 
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could provide less conservative predictions in the absence of pre-existing stress 

concentrations and under low load severities. 
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                                      (a)                                                          (b)                                         

Figure 1. (a) Wrinkle formation in a curved composite part. (b) Geometric parameters defining the 

severity of a wrinkle defect. 

 

                           (a)                                                                                (b)                                   

Figure 2. (a) Tensile specimen with artificial wrinkle in the middle of the gauge length (dimensions 

not to scale). (b) Method of inducing artificial wrinkle (left) and complete layup (right). 

 

Figure 3. Experimental set-up 
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Figure 4.Typical normalised stiffness vs. cycles graph of wrinkle specimens at different load 

severities 

 

                                                      (a)                     (b)                     (c)                                                          

Figure 5. Camera images of damage evolution in the gauge section of a wrinkle specimen at 50% 

severity (highlighted in red circles) during test (a) 0 cycles (b) 4,000 cycles (c) 8,000 cycles. 

 

Figure 6. Post-processed CT scan images (cracks with different orientations and delaminations at 

different interfaces highlighted with different colours) of two wrinkle specimens, one run-out at 30% 

severity, showing no observable delamination, another at 50% severity interrupted after stiffness drop, 

showing extensive delamination at the wrinkle site. 

30% run-out50% interrupted
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Figure 7.Normalised stiffness vs. cycles graph of pristine specimens at different load severities. 

 

                                                   (a)                         (b)                         (c)                                            

Figure 8. Camera images of damage evolution in the gauge section of a pristine specimen at 50% 

severity (highlighted in red circles) during test (a) 0 cycles (b) 100,000 cycles (c) 150,000 cycles. 

 

Figure 9. Post-processed CT scan images (cracks with different orientations and delaminations at 

different interfaces highlighted with different colours) of two pristine specimens, one run-out at 40% 

severity, showing many matrix cracks but no major delamination, another at 50% severity interrupted 

after 10% stiffness drop, showing significant delamination along the specimen edge. 

70% 60% 50%

40%

50% interrupted

40% run-out
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Figure 10. A unit cell pattern containing 12 solid elements (top) is repeated along specimen length 

and width direction to create each ply mesh. Possible locations for cohesive element insertion between 

solid elements to simulate matrix cracks is shown for -45° plies in red(bottom left), 90° plies in blue 

(bottom middle) and 45° plies in brown (bottom right). 

 

Figure 11. Finite element mesh of the wrinkle specimen. A close-up view of the wrinkle is shown in 

the inset. 

 

                                        (a)                                                                                     (b)                             

Figure 12. (a) Static mixed mode cohesive bilinear law, following [18]. (b) Fatigue cohesive law, 

following [11] (the loading path is highlighted). 
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Figure 13. Cycle-jump strategy for simulation of high-cycle fatigue. 

 

Figure 14. Cohesive strength reduction with cycles in the static bilinear law in order to initiate 

damage in an element which is presently elastically loaded under the peak fatigue load. 

 

Figure 15. Approximating a sharp crack front as a single row of elements (red) adjacent to failed 

elements (grey) in its neighbourhood, using the crack-tip tracking approach [11]. The other elements 

in the cohesive zone (cyan) remain unaffected by fatigue. 
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Figure 16. Simulation results of stiffness vs. cycles graph of wrinkle specimen at different load 

severities. 

 

Figure 17. Delamination and crack locations and extent in a wrinkle specimen at 50% load severity 

shortly after failure (corresponding to the sharp drop in stiffness). Different ply interfaces and crack 

orientations are coloured differently for ease of identification: CT scan of experimental specimen 

(above) (b) Model results (below). 

 

Figure 18.  Mesh sensitivity study on a 50% load severity wrinkle specimen showing stiffness vs. 

cycles to failure for three different unit cell sizes. 
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Figure 19. Simulation results of stiffness vs. cycles graph of pristine specimen at different load 

severities. 

 

Figure 20. Delamination and crack locations and extent in a pristine specimen at 50% load severity 

shortly after failure Different ply interfaces and crack orientations are coloured differently for ease of 

identification: CT scan of experimental specimen (above) (b) Model results (below). 

 

 

 

70% 60% 50% 40%
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Figure21. Summary of the results plotted as S-N curves obtained from experiments (blue) and model 

(red), for pristine specimens (above) and wrinkle specimens (below). 
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Table 1. Thermo-elastic properties of IM7/8552[11] 

E11 

(MPa) 

E22 

(MPa) 

E33 

(MPa) 
γ12 γ13 γ23 

G12 

(MPa) 

G13 

(MPa) 

G23 

(MPa) 

α11 

 (/°C) 

α22 

 (/°C) 

α33 

 (/°C) 

161000 11380 11380 0.32 0.32 0.43 5170 5170 3980 0 3e-5 3e-5 

 

 

Table 2. Cohesive interface properties of IM7/8552 for fatigue damage [18,21] 

KI  

(N/mm3_ 

KII  

(N/mm3) 

𝜎I
max

 

(MPa) 

𝜎II
max

 

(MPa) 

GIc 

(N/mm) 

GIIc 

(N/mm) 
α 

105 105 60 90 0.2 1.0 1 

CI 

(mm/cycle) 

CII 

(mm/cycle) 
mI mII aSN,I aSN,II  

0.00651 0.087 5.29 6.7071 0.072 0.071  

 


