
                          Kojaku, S., & Masuda, N. (2017). Finding multiple core-periphery pairs in
networks. Physical Review E, 96(5), [052313].
https://doi.org/10.1103/PhysRevE.96.052313

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1103/PhysRevE.96.052313

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.1103/PhysRevE.96.052313
https://doi.org/10.1103/PhysRevE.96.052313
https://research-information.bris.ac.uk/en/publications/finding-multiple-coreperiphery-pairs-in-networks(f85739a7-1f08-43f6-aa5d-5b4f562d94a5).html
https://research-information.bris.ac.uk/en/publications/finding-multiple-coreperiphery-pairs-in-networks(f85739a7-1f08-43f6-aa5d-5b4f562d94a5).html


PHYSICAL REVIEW E 96, 052313 (2017)

Finding multiple core-periphery pairs in networks

Sadamori Kojaku and Naoki Masuda*

Department of Engineering Mathematics, Merchant Venturers Building, University of Bristol, Woodland Road,
Clifton, Bristol BS8 1UB, United Kingdom

(Received 22 March 2017; revised manuscript received 1 September 2017; published 22 November 2017)

With a core-periphery structure of networks, core nodes are densely interconnected, peripheral nodes are
connected to core nodes to different extents, and peripheral nodes are sparsely interconnected. Core-periphery
structure composed of a single core and periphery has been identified for various networks. However, analogous
to the observation that many empirical networks are composed of densely interconnected groups of nodes, i.e.,
communities, a network may be better regarded as a collection of multiple cores and peripheries. We propose
a scalable algorithm to detect multiple nonoverlapping groups of core-periphery structure in a network. We
illustrate our algorithm using synthesized and empirical networks. For example, we find distinct core-periphery
pairs with different political leanings in a network of political blogs and separation between international and
domestic subnetworks of airports in some single countries in a worldwide airport network.

DOI: 10.1103/PhysRevE.96.052313

I. INTRODUCTION

Many complex systems can be expressed as networks in
which a node represents an object (e.g., person, web page,
protein) and an edge represents the relationship between two
objects (e.g., friendship, hyperlink, physical interaction). A
network can be characterized by microscale, mesoscale, and
macroscale structural patterns such as the degree (i.e., the
number of edges that a node has), clustering coefficient,
and diameter [1,2]. Among various structural properties of
networks, community structure is a representative mesoscale
structure of networks [3]. A community is a group of nodes that
are densely interconnected and sparsely connected to nodes in
different communities. Nodes in the same community often
share a role [3–9] (for an exceptional case, see Ref. [10]), and
therefore identifying communities aids classification of nodes
and visualization of networks [3].

Core-periphery structure is another mesoscale structure of
networks, with which we view a network as being composed of
two groups of nodes called the core and periphery. Although
the definition varies, a core is often defined as a group of
densely interconnected nodes and a periphery as a group of
nodes that are densely connected (i.e., adjacent) to the core
nodes but not to other peripheral nodes [11–23]. A core
and community are both groups of densely interconnected
nodes but have a difference; a core connects densely to its
periphery, whereas a community is not densely connected
to other nodes outside it. Core-periphery structure has been
found in various networks, including brain networks [24],
metabolic networks [25], protein interaction networks [26],
social networks [11,16,17,22], international trade networks
[13,18,27], financial networks [15,28,29], and transportation
networks [12,15,16]. For example, in a coauthorship network
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among researchers, leading researchers often publish papers
with other leading researchers, forming a core, while other
researchers tend to publish papers with particular leading
researchers such as those in the same research group, forming
a periphery [16].

Borgatti and Everett introduced the first quantitative formu-
lation of core-periphery structure [11]. In the discrete version
of core-periphery structure, which we will focus on in this
paper, they introduced an idealized core-periphery structure
in which core nodes are adjacent to all other nodes, and
peripheral nodes are adjacent to all core nodes but not to any
peripheral nodes. Although it is also realistic to assume that
the core-periphery connectivity is sparser than the core-core
connectivity [11], we will focus only on the idealized core-
periphery structure in the present study. Borgatti and Everett
sought for the assignment of all nodes in a given network to a
core or periphery such that the network is as close as possible
to an idealized core-periphery structure. Following their
study, many core-periphery detection algorithms have been
developed [11–13,15–18,20–22,25,27]. These algorithms aim
to identify a single core-periphery pair embedded in a network.
However, a network may be better regarded as a collection of
multiple core-periphery pairs [11,14,16,19–21], which is the
focus of the present study. For example, coauthorship networks
would be composed of multiple groups of researchers. Re-
searchers would often collaborate with the leading researchers
in the same group but not with other researchers in the same
group, which may lead to core-periphery structure within the
group [16]. Previous studies in this direction have not provided
a tailored scalable algorithm to this end. A study focused on a
related but different type of multiple core-periphery structure
[30]. Other algorithms aim to detect multiple cores but do not
assume that peripheral nodes are sparsely connected to each
other [17,31,32]. A network can also have multiple disjoint
cores in the form of k cores [33], k trusses [34], or dense
subgraphs [35,36]. However, the corresponding algorithms do
not tell how densely peripheral nodes are connected to each
other or to which core a peripheral node belongs. An algorithm
to find various mesoscale structure of networks including
multiple core-periphery pairs [19] is computationally costly
and only feasible for small networks (Appendix A).
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We present a scalable algorithm to detect multiple nonover-
lapping core-periphery pairs in networks, each of which is
as close as possible to an idealized core-periphery structure.
Our algorithm automatically determines the number and the
size of the core-periphery pairs. Various algorithms to detect
core-periphery structure in networks are classified as density-
based and transport-based algorithms [15,21,25]. Densely-
based algorithms posit that a core is a densely connected group
of nodes, whereas transport-based algorithms posit that a core
is a group of nodes that can be reached from other nodes along
short paths. In the present study, we focus on density-based
algorithms.

II. METHODS

A. Algorithm

We extend the idealized core-periphery structure introduced
by Borgatti and Everett [11] to the case of multiple pairs of a
core and a periphery. In the Borgatti-Everett (BE) algorithm,
one considers a graph (i.e., network) composed of N nodes
and M edges. Let A = (Aij ) be the adjacency matrix, i.e.,
Aij = 1 if node i and j are adjacent by an edge and Aij = 0
otherwise. We assume an undirected and unweighted network
without self-loops, i.e., Aij = Aji and Aii = 0 for all i and
j . Let x = (x1,x2, . . . ,xN ) be a vector of length N , where
xi = 0 if node i is a peripheral node, and xi = 1 if node i is
a core node. We define the idealized core-periphery structure
as the network where each core node is adjacent to all core
and peripheral nodes, and each peripheral node is adjacent
to all core nodes but no peripheral node. The corresponding
adjacency matrix, B(x) = [Bij (x)], is given by

Bij (x) =
{

1 (xi = 1 or xj = 1, and i �= j ),
0 (otherwise). (1)

The discrete version of the BE algorithm, which we consider
in the present study, seeks x that maximizes similarity between
A and B(x). We will explain the similarity measure in
Sec. II C.

We extend the idealized core-periphery structure to the case
of multiple core-periphery pairs. Let C be the number of core-
periphery pairs and c = (c1,c2, . . . ,cN ) be a vector of length
N , where ci ∈ {1,2, . . . ,C} is the index of the core-periphery
pair to which node i belongs. We exclude overlaps between
core-periphery pairs, and between the core and periphery in
each core-periphery pair. The corresponding adjacency matrix,
B(c,x), is given by

Bij (c,x) =
{
δci ,cj

(xi = 1 or xj = 1, and i �= j ),
0 (otherwise),

(2)

where δ is Kronecker delta.
We seek (c,x) that makes B(c,x) the closest to A by

maximizing

Qcp(c,x) =
N∑

i=1

i−1∑
j=1

AijBij (c,x) −
N∑

i=1

i−1∑
j=1

pBij (c,x)

=
N∑

i=1

i−1∑
j=1

(Aij − p)(xi + xj − xixj )δci ,cj
, (3)

FIG. 1. Schematic illustrations of the adjacency matrices of the
networks generated by stochastic block models. The filled blocks
correspond to the entries that are equal to 1 with probability θ1 and
zero otherwise. The empty blocks correspond to the entries that are
equal to 1 with probability θ2 (θ2 < θ1) and zero otherwise. The
diagonal entries are always set to zero and shown as empty entries
in the figure for the sake of simplicity. The dashed lines indicate the
borders separating different blocks. The labels (c,x) are also indicated
at the top and left of the adjacency matrices. Label R represents a
block of residual nodes. The networks are composed of (a) a single
core-periphery pair, (b) two core-periphery pairs, (c) a single core-
periphery pair and residual nodes, and (d) two core-periphery pairs
and residual nodes. In all cases, we set N = 400.

where p = M/[N (N − 1)/2] is the density of edges in the
network. The term

∑N
i=1

∑i−1
j=1 AijBij (c,x) represents the

number of edges that are present in both the given network and
the idealized core-periphery structure. The null-model term∑N

i=1

∑i−1
j=1 pBij (c,x) is the expected number of edges that are

present in both the idealized core-periphery structure and an
Erdős-Rényi random graph [37], in which each pair of nodes is
adjacent with probability p. The Qcp ranges between −M and
M . A large Qcp value indicates that the given network and the
idealized core-periphery structure share more edges than by
chance. The Erdős-Rényi random graph model is widely used
in the analysis of core-periphery structure [13,24,28,29,38,39].
Similar to modularity for community detection, our formu-
lation permits the use of different null models such as the
configuration model. See Sec. V for further discussion.

B. Maximization of Qcp

We use a label switching heuristic [40,41] to maximize
Qcp. First, we assign each node to a different core by setting
(ci,xi) = (i,1) (1 � i � N ). Then, we scan all nodes in a
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FIG. 2. The VI values between the true and inferred core-periphery structure for the three algorithms. Rows S1, S2, S3, and S4 correspond
to the networks with planted core-periphery structure shown in Figs. 1(a), 1(b), 1(c), and 1(d), respectively. The color of each cell indicates the
VI value. The white cells are those for which we did not calculate the VI values, i.e., we only computed them for θ1 > θ2.

random order. For each scanned node i, we calculate the
increment in Qcp when we tentatively update (ci,xi) to the core
of the core-periphery pair that a neighbor of node i, denoted
by j , belongs to, i.e., (cj ,1). We also calculate the increment in
Qcp when we tentatively update (ci,xi) to (cj ,0). Note that we
experiment on these two cases regardless of whether xj = 0
or xj = 1. We carry out this procedure for all neighbors of
i to measure the increment in Qcp in each case. Finally, we
update (ci,xi) to the label that has yielded the largest tentative
increment in Qcp [i.e., (cj ,0) or (cj ,1) for a neighbor j ]. If any
relabelling does not increase Qcp, we do not update (ci,xi).
When we have scanned all nodes, we stop the entire procedure
if no node has changed its label in the present round. Otherwise,
we draw a new random order of nodes and scan all nodes again
according to the new random order.

The increment in Qcp by changing node i’s label from (c,x)
to (c′,x ′) is given by

{d̃i,(c′,1) + x ′d̃i,(c′,0) − p[Ñ(c′,1) + x ′Ñ(c′,0) − δc,c′ ]}
− {d̃i,(c,1) + xd̃i,(c,0) − p[Ñ(c,1) + xÑ(c,0) − x]}, (4)

where d̃i,(c,x) is the number of neighbors of node i that have
label (c,x), and Ñ(c,x) is the number of nodes with label (c,x).
For each scanned node i, we calculate Eq. (4) at most 2di times,
where di is the degree of node i. Therefore, the time complexity
for scanning all nodes in one round is O(

∑N
i=1 di) = O(M),

and that of the entire algorithm is O(rM), where r is the
number of rounds. We run this algorithm 20 times starting
from the same initial condition stated above and adopt the
node labeling that produces the largest value of Qcp.
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C. Significance of the core-periphery structure

A detected core-periphery structure may be statistically
insignificant [11,38]. Therefore, we adapt a statistical test in
the case of a single core-periphery pair [38] to the case of
multiple core-periphery pairs.

In the statistical test for a single core-periphery pair [38],
we measure the significance of a core-periphery pair by a
quality function based on the Pearson correlation coefficient
[11], which is defined by

Q
cp
BE

=
∑N

i=1

∑i−1
j=1(Aij − p)(Bij (x) − pB)√∑N

i=1

∑i−1
j=1(Aij − p)2

√∑N
i=1

∑i−1
j=1(Bij (x) − pB)2

,

(5)

where pB = ∑N
i=1

∑i−1
j=1 Bij (x)/[N (N − 1)/2]. A core-

periphery pair detected for the given network is deemed to
be significant if Q

cp
BE is statistically larger than Q

cp
BE values

calculated for the Erdős-Rényi random graph model, in which
the number of edges is the same as that of the original
network. One generates many networks using the Erdős-Rényi
random graph and maximizes Q

cp
BE for each network. The

Kernighan-Lin (KL) algorithm [42] is used for maximizing
Q

cp
BE. The core-periphery pair detected for the original network

is significant at a significance level of α ∈ (0,1] if the Q
cp
BE

value for the original network is larger than a fraction 1 − α

of the Q
cp
BE values for the randomized networks.

In the case of multiple core-periphery pairs, we apply
essentially the same statistical test to each core-periphery
pair detected in the original network. For each detected core-
periphery pair, we first calculate Q

cp
BE. Second, we generate

3000 networks using the Erdős-Rényi random graph, which
have the same number of nodes and edges as those of
the core-periphery pair. In counting the number of edges,
we only consider the edges connecting nodes within the
core-periphery pair. Third, we detect a single core-periphery
pair in each randomized network by maximizing Q

cp
BE using

the KL algorithm. Fourth, we compare the obtained Q
cp
BE

values between the original and randomized networks. If
a core-periphery pair is judged to be insignificant, we call
the corresponding nodes the residual nodes, i.e., those not
belonging to any significant core-periphery pair.

If we test C core-periphery pairs at a significance level of α,
then the probability of making at least one false positive (i.e., an
insignificant core-periphery pair is judged to be significant) is
1 − (1 − α)C , which increases as C increases. To remedy this
multiple comparison problem, we adopt the Šidák correction,
with which we test each core-periphery pair at a significance
level of α1 = 1 − (1 − α)1/C , which is equivalent to 1 − (1 −
α1)C = α [43]. We set α = 0.01.

We have decided to use Q
cp
BE maximized by the KL

algorithm as the test statistic to compare the original and
randomized networks. However, we can also use different
algorithms to maximize Q

cp
BE. We can also use a different

test statistic such as Qcp restricted to the case of the one
core-periphery pair (i.e., ci = 1,1 � i � N ).

III. VARIATION OF INFORMATION

For the synthetic networks with planted core-periphery
structure, we measure the difference between the true core-
periphery structure (c,x) and the inferred core-periphery
structure (ĉ,x̂) by the variation of information (VI) [44]. The
VI is given by

VI = −
∑
(c,x)

∑
(ĉ,x̂)

P (c,x; ĉ,x̂) log

× [P (c,x; ĉ,x̂)]2[∑
(ĉ′,x̂ ′) P (c,x; ĉ′,x̂ ′)

] × [∑
(c′,x ′) P (c′,x ′; ĉ,x̂)

] ,

(6)

where P (c,x; ĉ,x̂) is the fraction of nodes that have the true
label (c,x) and inferred label (ĉ,x̂). The VI value is equal
to zero if and only if the inferred core-periphery structure is
the same as the true one. We measure the performance of
an algorithm by averaging VI values over the 100 generated
networks.

IV. RESULTS

We compare the proposed algorithm with the BE algorithm,
which detects a single core-periphery pair by maximizing
Q

cp
BE using the KL algorithm [38,42]. We refer to the latter

algorithm as the BE-KL algorithm. We also compare our
algorithm with two other algorithms, two-step and divisive
algorithms. The two-step algorithm partitions the nodes into
core and peripheral nodes using the BE-KL algorithm and also
partitions the same nodes into nonoverlapping communities
by maximizing modularity using the Louvain algorithm [41].
Then we regard the core and peripheral nodes in each detected
community as a core-periphery pair. The divisive algorithm
[3–5,45] partitions the nodes into communities using the
Louvain algorithm [41] and then partitions the nodes in each
community into core and peripheral nodes using the BE-KL
algorithm. The two-step and divisive algorithms provided
similar results. Therefore, we report the results obtained from
the two-step algorithm in this section and those obtained from
the divisive algorithm in Appendix B. We apply the statistical
test (Sec. II C) to the core-periphery pairs detected by the BE-
KL, two-step, and our algorithms. We do not compare these
algorithms with the algorithm introduced by Tunç and Verma
[19] because of a low speed and insufficient performance of
their algorithm on model networks with planted core-periphery
structure (Appendix A).

A. Synthetic networks

We compare the performance of the three algorithms on
four different types of synthetic networks with a planted
core-periphery structure schematically shown in Fig. 1. We
generate the synthetic networks using stochastic block models
[9,16,20,21,46]. We draw label (ci,xi) for the ith node
(1 � i � N ) from a distribution π(c,x) (1 � c � C and x ∈
{0,1}), where π(c,x) > 0 is the probability that (ci,xi) = (c,x)
and satisfies

∑C
c=1

∑
x=0,1 π(c,x) = 1. Then, we place edges

between each pair of nodes with label (c,x) and (c′,x ′) with
probability �(c,x),(c′,x ′). For each type of the stochastic block
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FIG. 3. Core-periphery structure of the karate club network detected by (a) the BE-KL algorithm, (b) the two-step algorithm, and (c) our
algorithm. The filled and blank cells indicate Aij = 1 and Aij = 0, respectively. The solid lines indicate the partition into core-periphery pairs.
The dashed lines indicate the partition into the core and periphery within a core-periphery pair. The color indicates the leaning of the members.
The instructor (i.e., node 1) and president (i.e., node 34) are indicated by the arrows.

model, we generate 100 networks and detect core-periphery
pairs by the three algorithms.

As a first example, we consider a network composed of a
single core-periphery pair [Fig. 1(a)]. We set π(1,1) = 1/4,
π(1,0) = 3/4, �(1,1),(1,1) = �(1,1),(1,0) = θ1, and �(1,0),(1,0) =
θ2, where θ1,θ2 ∈ {0.05,0.1,0.15, . . . ,1} and θ1 > θ2. A gen-
erated network has strong core-periphery structure when

θ1 � θ2. If θ1 is close to θ2, then the generated network is close
to the Erdős-Rényi random graph (i.e., noisy core-periphery
structure). For this network model, the VI value, which
quantifies the discrepancy between the true and inferred core-
periphery structure, is compared between the three algorithms
in Figs. 2(a)–2(c). The VI values for the BE-KL algorithm
are approximately equal to zero in the entire parameter region
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FIG. 4. Density of edges of different types within core-periphery pairs detected in (a) the karate club network, (b) blog network, and
(c) airport network. The dashed line indicates the edge density for the entire network, p.

of θ1 and θ2. The VI values for the two-step algorithm are
large even in the case of strong core-periphery structure (i.e.,
θ1 � θ2) because the two-step algorithm divides the single
core-periphery pair into communities. In contrast, the VI
values for the proposed algorithm are close to zero for most
θ1 and θ2 values, as is the case for the BE-KL algorithm.
Therefore, the performance of the proposed algorithm on this
network model is comparable to that of the BE-KL algorithm.

As a second example, we examine networks composed
of two core-periphery pairs [Fig. 1(b)]. We set π(c,1) = 1/8,
π(c,0) = 3/8, �(c,1),(c,1) = �(c,1),(c,0) = θ1, and �(c,0),(c,0) =
�(1,x),(2,x ′) = θ2 for c ∈ {1,2} and x,x ′ ∈ {0,1}. The VI values
for this network are shown in Figs. 2(d)–2(f). The VI values for
the BE-KL algorithm are large in the entire parameter region
of θ1 and θ2 because the BE-KL algorithm cannot find multiple
core-periphery pairs. The VI values for the two-step algorithm
are close to zero in the case of strong core-periphery structure
(i.e., θ1 is considerably larger than θ2). The VI values for the
proposed algorithm are smaller than those for the two-step
algorithm for most θ1 and θ2 values, including the case of
noisy core-periphery structure (i.e., when θ1 is close to θ2).

In empirical networks, there may be nodes that are better
regarded not to belong to any core or periphery. Therefore, as
a third example, we consider a network composed of a single
core-periphery pair and residual nodes [Fig. 1(c)]. We regard
the block of the residual nodes as a single group of nodes,
like a core or periphery, when calculating the VI value. Let
R be the index for the block of the residual nodes. We set

π(1,1) = πR = 1/5, π(1,0) = 3/5, �(1,1),(1,1) = �(1,1),(1,0) = θ1

and �(1,0),(1,0) = �(1,x),R = θ2 for x ∈ {0,1}. The VI values
for this model are shown in Figs. 2(g)–2(i). The VI values for
the BE-KL algorithm are large even in the case of strong core-
periphery structure. The VI values for the two-step algorithm
are large in the entire parameter region of θ1 and θ2. The VI
values for the proposed algorithm are smaller than those for
the BE-KL and two-step algorithms for most θ1 and θ2 values,
including the case of noisy core-periphery structure.

As a fourth example, we consider networks composed
of two core-periphery pairs and residual nodes [Fig. 1(d)].
We set π(c,1) = πR = 1/9, π(c,0) = 1/3, and �(c,1),(c,1) =
�(c,1),(c,0) = θ1 for c ∈ {1,2} and �(c,0),(c,0) = �(c,x),(c′,x ′) =
θ2, where c = 1,2, c �= c′, and x,x ′ ∈ {0,1}. The VI values for
this network model are shown in Figs. 2(j)–2(l). The VI values
for the BE-KL algorithm are large in the entire θ1-θ2 parameter
space. The VI values for the two-step algorithm are larger than
those for the proposed algorithm for most θ1 and θ2 values.

B. Empirical networks

We apply the three algorithms to three empirical networks.
For directed and weighted networks, we disregard the direction
and the weight of edges.

1. Karate club network

Consider the karate club network [47], which has N = 34
nodes and M = 78 edges (edge density p = 0.139). A node
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FIG. 5. Core-periphery structure of the blog network detected by (a) the BE-KL algorithm, (b) the two-step algorithm, and (c) our algorithm.
The red and blue indicate the conservative and liberal blogs, respectively.

represents a member of a karate club at a university. Two
members are adjacent if they have socially interacted outside
club activities during the observation period. During the
study, a conflict occurred between the instructor (node 1)
and the president (node 34), which fissured the club. Based
on self-reports, each member was labeled on the instructor’s
side (15 members), on the president’s side (16 members), or
neutral (3 members) [47].

The core-periphery structure detected by the three algo-
rithms is shown in Fig. 3. The BE-KL algorithm detects a
single core-periphery pair such that both the instructor and
president are core nodes [Fig. 3(a)], neglecting the fissure of
the club. The two-step algorithm detects two core-periphery
pairs, each of which consists mostly of the members with the
same leanings [Fig. 3(b)]. In particular, the instructor and the
president belong to the core of the different core-periphery
pairs. Two neutral members, nodes 10 and 19, are assigned to
the president’s core-periphery pair, which does not agree with

the self-reports by the members. The residual nodes consist of
the members on the instructor’s side, those on the president’s
side and a neutral member. Our algorithm detects almost the
same two core-periphery pairs as that detected by the two-step
algorithm [Fig. 3(c)].

Next, we compare the density of edges within
core-periphery pairs. For each significant core-periphery
pair, we compute the density of edges within the core, that of
edges within the periphery and that of edges between the core
and periphery. Then, we average each type of edge density
over all significant core-periphery pairs (without weighing by
the size of core-periphery pair when calculating the average).

We show the edge densities for the karate club network in
Fig. 4(a). For all algorithms, the average density of intracore
edges and that of core-periphery edges (i.e., edges connecting
a core node and a peripheral node) are larger than the edge
density for the entire network, p = 0.139. The average density
of intraperipheral edges is smaller than p = 0.139. Therefore,
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FIG. 6. Core-periphery structure of the airport network detected by (a) the BE-KL algorithm, (b) the two-step algorithm, and (c) our
algorithm. The color indicates the geographical region.

we conclude that the structure detected by either of the three
algorithms is consistent with the concept of core-periphery
structure based on edge density.

2. Political blog network

The second example is a political blog network [6], which
has N = 1222 nodes and M = 16,714 edges (edge density
p = 0.0224). A node is a blog on the United States president
election in 2004, and two blogs are adjacent if one blog cites the
other blog on its front page. Each blog was labeled with one of
the political leanings, liberal (586 blogs) or conservative (636
blogs), determined by automated categorisations by several
weblog directories [6]. If a blog was uncategorized or classified
to conflicting categories, then the authors of Ref. [6] manually
judged the political leaning.

The core-periphery structure detected by the three algo-
rithms is shown in Fig. 5. The unique core detected by the

BE–KL algorithm is a mixture of liberal and conservative blogs
[Fig. 5(a)]. The peripheral blogs are mostly adjacent to blogs
with the same political leaning. However, the structure detected
by the BE-KL algorithm alone does not tell this unless we refer
to the political leaning of the individual blogs. A different
algorithm for a single core-periphery structure yielded similar
results for the same network [20].

The two-step algorithm detects three core-periphery pairs,
each of which mostly comprises the blogs with the same
political leanings [Fig. 5(b)]. Two core-periphery pairs are
much larger than the third one and have the opposite political
leanings. The third small core-periphery pair is mainly
composed of liberal blogs. In each core-periphery pair, a
majority of the peripheral nodes is densely interconnected,
which is against the idealized core-periphery structure. This
is due to the community detection step that partitions a
network into communities with dense intracommunity edges.
In fact, the average density of intra-peripheral edges within
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FIG. 7. Location of the airports. The large and small filled circles represent the core and peripheral airports, respectively. Each color
represents a core-periphery pair. The open squares represent residual airports.

a core-periphery pair is 0.0214, which is approximately
equal to the edge density for the entire network, p = 0.0224
[Fig. 4(b)]. This result indicates that the peripheral nodes
are as densely adjacent to each other as expected for the
Erdős-Rényi random graph, which contradicts the expectation
from the core-periphery structure that peripheral nodes are
rarely adjacent to each other.

Our algorithm detects two core-periphery pairs, each of
which mostly comprises the blogs with the same politi-
cal leaning [Fig. 5(c)]. The detected two core-periphery
pairs are smaller than those detected by the two-step al-
gorithm. More nodes are classified as residual nodes than
by the two-step algorithm. The average density of in-
traperipheral edges within a core-periphery pair is 0.0064
[Fig. 4(b)], which is smaller than the edge density for the
entire network, p = 0.0224, respecting the notion of the
periphery.

3. Airport network

Our third example is a network of airports, which has
N = 2939 nodes and M = 15,677 edges (edge density p =
0.0036) [48,49]. A node represents an airport. Two airports
are adjacent if there is a direct commercial flight between
them.

Figure 6 shows the core-periphery structure detected by the
three algorithms. The BE-KL algorithm detects a dense core
composed of 89 airports scattered in different geographical
regions [Fig. 6(a)]. The peripheral airports are rarely adjacent
to the core airports in other regions. Furthermore, the periph-
eral airports tend to be adjacent to other peripheral airports in
the same region, which is inconsistent with the notion of the
periphery.

The two-step algorithm detects 16 geographically concen-
trated core-periphery pairs [Fig. 6(b), in which some peripheral
airports are densely interconnected within the core-periphery
pairs. The average density of intraperipheral edges within
a core-periphery pair is 0.0383, which is approximately 10
times larger than the edge density for the entire network,

p = 0.0036 [Fig. 4(c)]. Therefore, the structure detected by
the two-step algorithm is not consistent with the concept of
core-periphery structure with which peripheral nodes should
be sparsely interconnected.

Our algorithm detects 10 geographically concentrated
core-periphery pairs [Fig. 6(c)]. The partition of the world-
wide airport network into geographically distinct groups
of airports found here is consistent with the previous re-
sults derived with community detection algorithms [7,8].
Compared to the two-step algorithm, the peripheral air-
ports detected by our algorithm are not densely inter-
connected; the average density of intraperipheral edges
within a core-periphery pair is 0.000073, which is smaller
than the edge density for the entire network, p = 0.0036
[Fig. 4(c)].

We further analyze the core-periphery structure obtained
by our algorithm. Figure 7 maps the locations of the core
and peripheral airports. The three largest core-periphery
pairs labeled 1, 2, and 3 are mainly based in Europe,
East Asia, and the United States, respectively. The core-
periphery pairs 1, 2, and 3 consist of the airports in 125,
35, and 47 countries, respectively. Each of the other core-
periphery pairs labeled 4–10 consists of the airports in one
country.

The location of the airports and metropolises in Europe,
East Asia, the United States and their surroundings are shown
in Fig. 8. Here the metropolis is defined as the capital city of all
countries, the provincial capitals of China and the state capitals
of the United States because China and the United States have
many airports. Core-periphery pair 1 contains 333 core airports
and 378 peripheral airports, of which 405 (57%) airports are
located in Europe [Fig. 8(a)]. However, this core-periphery
pair excludes most airports in the Nordic countries (84 airports;
68%). There are 89 airports within 20 miles from a metropolis
in Europe, among which there are 51 core airports (57%), 28
peripheral airports (31%), and 10 residual airports (11%). As
a comparison, if we select the same number of the European
airports with the largest degrees as that of the European core
airports, then 64 airports (72%) are contained in the set of
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FIG. 8. Location of the airports in (a) Europe, (b) East Asia, and (c) the contiguous United States and their surrounding areas. The large and
small filled circles represent the core and the peripheral airports, respectively. Each color represents a core-periphery pair. The open squares
represent residual airports. The inverted triangles indicate the location of metropolises, i.e., the capital cities of all countries, the provincial
capitals of China and the state capitals of the United States.

89 airports within 20 miles from a metropolis, which is more
than the number of the core airports (51 airports; see above)
contained in the same set of airports. This result indicates
that hub metropolitan airports, which are common, are not
necessarily core airports.

The second core-periphery pair contains 161 core airports
and 240 peripheral airports, among which 217 (54%) airports
are located in East Asia [Fig. 8(b)]. In this core-periphery pair,
31 airports are located within 20 miles from a metropolis
in East Asia, among which there are 23 core airports
(74%), eight peripheral airports, and no residual airport
[Fig. 8(b)].

The third core-periphery pair contains 150 core airports and
312 peripheral airports, among which 210 (45%) airports are
located in the United States [Fig. 8(c)]. In this core-periphery
pair, 71 airports are located within 20 miles from a metropolis
in the United States, among which there are 29 core airports
(41%), 30 peripheral airports (42%), and 12 residual airports
(17%) [Fig. 8(c)]. We have not found the partitioning of
airports into core-periphery pairs corresponding to different
major airline groups (e.g., American Airlines, Delta Air-
lines, Southwest Airlines, and United Airlines in the United
States).

Table I lists the size of core-periphery pairs and the fractions
of different types of edges. The airports in a large core
are not densely interconnected compared to those in small
core-periphery pairs, probably due to the limited capacity of
the airports (e.g., a small number of runways). Core-periphery
pairs 1, 2, and 3 contain hub airports in each region. The
other small core-periphery pairs consist of a small number
of core airports, i.e., at most 20% of the airports in each
core-periphery pair. In these core-periphery pairs, most of
the peripheral airports are adjacent to the core airports but
not to other peripheral airports in the same core-periphery
pair. This observation suggests that a small number of core
airports relays most of the flights into these regions as gateway
airports. For example, the representative core airport (i.e.,
the core airport that has the largest number of neighbors in
the core-periphery pair) in pair 4, MNL (Philippines), and
that in pair 8, LOS (Nigeria), serve most of the domestic
airports in the respective countries. Such a structure is
evident in small core-periphery pairs such as core-periphery
pairs 4–10.

The subnetwork within the Philippines is shown in Fig. 9(a);
see Table II for properties of all airports in the Philippines.
Most of the airports (34 airports; 92%) in core-periphery pair
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TABLE I. Properties of the core-periphery pairs in the airport network. The core-periphery pairs are ordered according to the number of
the core nodes. The core nodes that have the largest number of neighbors within the same core-periphery pair are shown as representative core
nodes. C–C, C–P, and P–P denote core–core, core–periphery, and periphery–periphery edges, respectively.

Number of nodes Fraction of edges within a pair Representative core nodes

Pair Core Periphery C–C C–P P–P IFTA City Country

FRA Frankfurt Germany
1 333 378 0.0825 0.0194 0.0005 CDG Paris France

AMS Amsterdam Netherlands

PEK Beijing China
2 161 240 0.0964 0.0234 0.0000 CAN Guangzhou China

PVG Shanghai China

ATL Atlanta USA
3 150 312 0.1372 0.0265 0.0003 LAS Las Vegas USA

MCO Orlando USA

4 5 32 0.4000 0.3312 0.0000 MNL Manila Philippines
5 4 21 0.5000 0.2976 0.0000 THR Teheran Iran
6 2 8 1.0000 0.5625 0.0000 ADQ Kodiak USA
7 1 6 0.0000 1.0000 0.0000 YKS Yakutsk Russia
8 1 9 0.0000 1.0000 0.0000 LOS Lagos Nigeria
9 1 9 0.0000 1.0000 0.0000 UIO Quito Ecuador
10 1 12 0.0000 1.0000 0.0000 DMK Bangkok Thailand

4 [shown in orange in Figs. 7, 8(b), and 9(a)] only serve
domestic flights. Core airport 1 [labelled in Fig. 9(a)] has
most of the edges (41 edges; 84%) between core-periphery
pair 4 and the rest of the network. Therefore, core airport
1 functions as a gateway airport in the Philippines. Core
airport 2 also functions as a gateway airport but to a lesser
extent than core airport 1 does. Core-periphery pairs located
in Alaska (core-periphery pair 6 in Table I), Russia (pair 7),

FIG. 9. Airport network within (a) the Philippines and (b)
Thailand. The line color indicates the core-periphery pair to which the
two airports belong. The edges connecting two airports in different
core-periphery pairs are shown in gray. The numbers attached to some
airports indicate the IDs of the airports listed in Tables II and III. We
only show the IDs of all core airports, some peripheral airports and
all residual airports.

and Ecuador (pair 9) also contain a few core airports serving as
gateway airports in the respective regions (Appendix C). Core
airports 8 and 21 in the Philippines [Fig. 9(a)] have a small
degree, which is counterintuitive. Core nodes having degree
one or two are also found in core-periphery pair 6 [Fig. 14(c)].
The airports 8 and 21 in the Philippines are adjacent to one
peripheral airport 7 and 4, respectively. If we assign airport 8
to the periphery, then two peripheral airports 7 and 8 would
be adjacent. Similarly, if we assign airport 21 to the periphery,
then two peripheral airports 4 and 21 would be adjacent.
To avoid edges between peripheral nodes, our algorithm has
identified airports 8 and 21 as core nodes. However, airports
8 and 21 may be better regarded as peripheral airports given
that they are not densely interconnected to other core airports.
Previous studies provided remedies for this issue [11,16] (see
Sec. V for further discussion).

The subnetwork within Thailand is shown in Fig. 9(b); see
Table III for properties of all airports in Thailand. Two major
airports 1 and 14 are located in the capital city, Bangkok,
and belong to different core-periphery pairs. All international
airports in Thailand belong to core-periphery pair 2 [shown
in blue in Figs. 7, 8(b), and 9(b)], including core airport 14.
Most of the domestic airports (13 airports; 59%) belong to
core-periphery pair 10 (shown in magenta), including core
airport 1. The subnetwork composed of core-periphery pair 10
is largely separated from the other airports in Thailand, which
belong to core-periphery pair 2, and the rest of the world.
The separation of the domestic and international airports and
their respective subnetworks is also observed in the Philippines
[Fig. 9(a)], Iran, and Nigeria (Appendix C).

C. Computation time

We implement the three algorithms in MATLAB and run
simulations on a computer with Intel 2.6-GHz Sandy Bridge
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TABLE II. Properties of the airports in the Phillipines. The
airports are sorted in the descending order of the total number of
edges. The internal edge is defined as that between two airports
within the same core-periphery pair. The external edge is defined as
that between an airport in the focal core-periphery pair and an airport
in a different core-periphery pair or a residual airport.

Number of edges

ID IFTA Pair Type Domestic International Internal External

1 MNL 4 Core 36 40 35 41
2 CEB 4 Core 19 6 18 7
3 DVO 4 Core 5 1 5 1
4 ZAM 4 Periphery 4 0 4 0
5 CGY 4 Periphery 3 0 3 0
6 ILO 4 Periphery 3 0 3 0
7 PPS 4 Periphery 3 0 3 0
8 USU 4 Core 2 0 2 0
9 PAG 4 Periphery 2 0 2 0
10 TAC 4 Periphery 2 0 2 0
11 BCD 4 Periphery 2 0 2 0
12 DGT 4 Periphery 2 0 2 0
13 MPH 4 Periphery 2 0 2 0
14 BXU 4 Periphery 2 0 2 0
15 DPL 4 Periphery 2 0 2 0
16 LGP 4 Periphery 2 0 2 0
17 OZC 4 Periphery 2 0 2 0
18 GES 4 Periphery 2 0 2 0
19 SUG 4 Periphery 2 0 2 0
20 CRM 4 Periphery 2 0 2 0
21 JOL 4 Core 1 0 1 0
22 CBO 4 Periphery 1 0 1 0
23 SJI 4 Periphery 1 0 1 0
24 TAG 4 Periphery 1 0 1 0
25 LAO 4 Periphery 1 0 1 0
26 ENI 4 Periphery 1 0 1 0
27 WNP 4 Periphery 1 0 1 0
28 BSO 4 Periphery 1 0 1 0
29 SFE 4 Periphery 1 0 1 0
30 TUG 4 Periphery 1 0 1 0
31 VRC 4 Periphery 1 0 1 0
32 CYP 4 Periphery 1 0 1 0
33 MBT 4 Periphery 1 0 1 0
34 RXS 4 Periphery 1 0 1 0
35 CYZ 4 Periphery 1 0 1 0
36 TBH 4 Periphery 1 0 1 0
37 MRQ 4 Periphery 1 0 1 0
38 CRK 2 Core 1 8 8 1
39 KLO 2 Periphery 1 3 3 1

processors and 4 GB of memory. The speed of an algorithm
is measured by averaging the CPU time over 100 runs. We do
not run the statistical test because it is a common process for
the three algorithms.

The average CPU time of the three algorithms is compared
in Table IV. The BE-KL algorithm is the fastest on all synthetic
networks and the karate club network. However, it is slower
than our algorithm on the blog and airport networks. The two-
step algorithm is the slowest on all but one network. Our
algorithm is approximately two times slower than the BE-KL
algorithm on the synthetic and karate club networks. However,

TABLE III. Properties of the airports in Thailand.

Number of edges

ID IFTA Pair Type Domestic International Internal External

1 DMK 10 Core 17 0 12 5
2 CEI 10 Periphery 2 0 1 1
3 NST 10 Periphery 2 0 1 1
4 URT 10 Periphery 2 0 1 1
5 NNT 10 Periphery 2 0 1 1
6 PHS 10 Periphery 1 0 1 0
7 TST 10 Periphery 1 0 1 0
8 SNO 10 Periphery 1 0 1 0
9 LOE 10 Periphery 1 0 1 0
10 KOP 10 Periphery 1 0 1 0
11 ROI 10 Periphery 1 0 1 0
12 BFV 10 Periphery 1 0 1 0
13 MAQ 10 Periphery 1 0 1 0
14 BKK 2 Core 14 122 69 67
15 HKT 2 Core 7 21 23 5
16 CNX 2 Core 8 6 12 2
17 USM 2 Core 6 3 9 0
18 HDY 2 Periphery 3 2 4 1
19 UTH 2 Periphery 4 0 3 1
20 KBV 2 Periphery 2 2 4 0
21 UBP 2 Periphery 3 0 2 1
22 UTP 2 Periphery 2 0 2 0
23 TDX 2 Periphery 2 0 2 0
24 NAW 2 Periphery 1 0 1 0
25 KKC 2 Periphery 1 0 1 0
26 HGN 2 Periphery 1 0 1 0
27 THS – Residual 2 0 0 2
28 LPT – Residual 1 0 0 1

on the blog and airport networks, it runs much faster than the
BE-KL algorithm. Our algorithm runs in O(rM) time, where
r is the number of rounds (Sec. II B). Therefore, our algorithm
is expected to be fast on sparse networks.

V. DISCUSSION

We proposed a scalable algorithm to detect multiple core-
periphery pairs in networks by maximizing a novel quality
function Qcp. The quality function Qcp compares the number

TABLE IV. The average CPU time of the three algorithms on
different networks. We generate synthetic networks 1–4 using the
stochastic block models schematically shown in Figs. 1(a), 1(b), 1(c),
and 1(d), respectively. For each of them, we set θ1 = 0.9 and θ2 =
0.05 and measure the CPU time for one generated network.

Average CPU time (s)

Network N M BE-KL Two-step Proposed

Synthetic 1 400 31 331 0.186 1.076 0.356
Synthetic 2 400 16 355 0.162 0.343 0.240
Synthetic 3 400 19 308 0.187 1.117 0.366
Synthetic 4 400 10 939 0.193 0.392 0.251
Karate 34 78 0.006 0.023 0.025
Blog 1222 0.022 5.076 9.080 1.321
Airport 2939 15 677 51.57 67.17 5.709
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FIG. 10. The VI values between the true and inferred core-
periphery structure obtained by the maximisation of Q

cp
config.

of edges of different types in the given network with the
expected number for an Erdős-Rényi random graph. The
present algorithm reveals the groups of nodes sharing a
common property (e.g., a group of members sharing the same
political leaning) and different roles of nodes within the groups
(e.g., leaders and followers in each group). These properties are
simultaneously revealed neither by partitioning of networks
into a single core-periphery pair nor community detection.

In the airport network, we have found several core nodes
having degree one or two [e.g., airports 8 and 21 in Fig. 9(a)],
which contradicts the intuition that core nodes would have a
large degree. Our algorithm assigned these nodes to a core to
suppress the edges between peripheral nodes. However, these
nodes may be better regarded as peripheral nodes because
they are adjacent to at most one core node. One remedy is
to weaken the suppression of the edges between peripheral
nodes [11,16]. Adapting this idea to the case of multiple core-
periphery structure warrants future research.

Previous studies provided algorithms to detect multiple
core-periphery pairs based on community detection algo-
rithms. Yang and Leskovec used an algorithm for detecting
overlapping communities in networks [17,50,51]. They re-
garded the nodes belonging to many communities as core
nodes and nodes belonging to few communities as peripheral
nodes. The algorithm may detect densely interconnected
peripheral nodes because the detected peripheral nodes in a
single core-periphery pair belong to the same community. In

addition, a periphery may belong to multiple cores in these
algorithms. These properties are shared by the algorithms
proposed in Refs. [31,32]. In contrast, our algorithm detects
disjoint core-periphery pairs such that peripheral nodes are
interconnected sparsely within each core-periphery pair and
across different core-periphery pairs. Yan and Luo focused on
a different type of structure consisting of multiple cores and
a single periphery [30]. In contrast, a core detected by our
algorithm owns its exclusive periphery, including the case of
an empty periphery.

We used the Erdős-Rényi random graph as the null model
to define Qcp. The Erdős-Rényi random graph model is also
used for detecting communities in networks [9,35,52,53]. For
example, the community detection algorithms based on the
Potts model [52,53] and stochastic block models without de-
gree correction (i.e., without assuming a heterogeneous degree
distribution) [9] use the Erdős-Rényi random graph model as
a null model. There are also null models that incorporate
other properties of networks such as degree heterogeneity
[5], weighted edges [54], signed edges [55], correlations [56],
bipartiteness [57], and space embeddedness [58]. It is possible
to incorporate these null models into the second term of the
right-hand side of Eq. (3). For example, a popular null model
is the configuration model, with which we randomly rewire
edges while conserving the degree of each node [3]. With the
configuration model, the quality function is given by Q

cp
config =∑N

i=1

∑i
j=1(Aij − didj /2M)(xi + xj − xixj )δci ,cj

. As is the
case in community detection [9], the choice of the null model
will affect the organization of the detected core-periphery
pairs. To see this, we maximized Q

cp
config using a label switching

heuristic (Sec. II B) for the synthetic networks with a single
core-periphery pair [Fig. 1(a)]. The VI values for Q

cp
config were

larger than 0.4 in the entire parameter region spanned by θ1

and θ2 (Fig. 10), indicating that the maximization of Q
cp
config

did not enable us to detect the planted core-periphery pair.
This is due to the null-model term didj /2M in Q

cp
config. In

the synthetic networks with a planted single core-periphery
pair, the planted core nodes have a large degree. If we put
the planted core nodes into the same core-periphery pair,
then the null-model term didj /2M becomes large, giving a
large decrement in Q

cp
config. Therefore, the maximization of

Q
cp
config assigned the planted core nodes to different core-

periphery pairs (yielding δci ,cj
= 0) or a periphery (yielding

xi + xj − xixj = 0).

FIG. 11. The VI values between the true and inferred core-periphery structure for the five algorithms. Panels (a) and (b) correspond to the
networks whose structure is shown in Figs. 1(a) and 1(b), respectively. The error bars indicate the ±1 standard deviation.
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FIG. 12. The VI values between the true and inferred core-periphery structure for the divisive algorithm. Panels (a), (b), (c), and (d) show
the VI values for the synthetic networks shown in Figs. 1(a), 1(b), 1(c), and 1(d), respectively.

There are several lines of possible extensions of the present
work. First, we did not consider continuous versions of
core-periphery structure, with which each node is assigned a
strength (i.e., a coreness) value representing the belongingness
of the node to a core [11,13,15,16,21,25,27,27]. Continuous
versions of core-periphery structure can reveal nested structure
of cores (i.e., cores within a core), which discrete versions of
the algorithms would not. Borgatti and Everett generalized a
discrete version of core-periphery structure defined by Eq. (1)
to a continuous version by replacing binary variables xi ∈
{0,1} (1 � i � N ) by continuous variables (e.g., xi ∈ [0,1])
[11]. This approach may allow us to generalize our algorithm
to continuous versions.

Second, we have ignored the weight and direction of edges.
It is straightforward to incorporate the weight of edges by
redefining Aij on the right-hand side of Eq. (3) as the weight
of the edge. In contrast, it is not easy to extend our algorithm
to the case of directed networks. In the case of community
detection, a natural extension is to allow an adjacency matrix
A to be asymmetric [59,60], which is, in fact, problematic [61].
Therefore, we expect that the same pitfall exists in the detection
of core-periphery pairs if we extend our algorithm to the case
of directed networks by simply allowing A to be asymmetric.

Third, our quality function, Qcp, has a similar mathematical
form to modularity [3,5]. If we constrain all nodes to be core

nodes, i.e., xi = 1 (1 � i � N ), then Qcp is equivalent to
the modularity based on the Potts model [52,53]. Another
class of approach is based on the likelihood maximization
of stochastic block models. Stochastic block models are
generative models of networks composed of blocks of nodes
[9,46]. In fact, stochastic block models for detecting a single
core-periphery pair [20] and multiple core-periphery pairs [19]
have been proposed. Modularity maximization and likelihood
maximization are equivalent in a particular situation but are
different in general [62]. Modularity has some limitations such
as the incapacity of finding small communities [63] and that of
distinguishing nonrandom from random structure [64]. There-
fore, we may benefit from using the stochastic block models.

How multiple core-periphery pairs emerge is unclear. An
economic mechanism explains the emergence of a single
core-periphery pair in networks [23]. The authors considered
the trade-offs between the profit obtained by connecting nodes
and the cost for maintaining edges. Core-periphery structure
emerges if the cost is not extremely small or large relative to the
profit [23]. Given their results, multiple core-periphery pairs
may emerge when the cost of intergroup edges is significantly
larger than the cost of intragroup edges. For example, in airport
networks, interregional flights would be more costly than
intraregional flights due to the different fuel expense and tax.
Exploration of dynamical or economic mechanisms behind
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FIG. 13. Core-periphery structure identified by the divisive algorithm in (a) the karate club network, (b) blog network, and (c) airport
network.

the formation of multiple core-periphery pairs in a network
warrants future work.

APPENDIX A: TUNÇ-VERMA ALGORITHM

We evaluated the performance of the Tunç-Verma (TV)
algorithm [19] using the synthetic networks used in Sec. IV.
The Python code provided by the authors [19] is not fast
enough. Therefore, we reimplement their algorithm based on
the original code by changing the data structure and replacing

some functions by faster inbuilt functions in MATLAB. We
did not change the algorithm itself including the parameters.
We refer the original and reimplemented algorithms as the TV
and TV+, respectively. With the TV and TV+ algorithms, each
node belongs to multiple core-periphery pairs. Therefore, we
assign each node to the core-periphery pair to which the degree
of belonging [19] is the largest. The TV and TV+ algorithms
can infer the number of core-periphery pairs. However, to
save their computational time, we provide the correct number
of core-periphery pairs in the synthetic networks to these

052313-15



SADAMORI KOJAKU AND NAOKI MASUDA PHYSICAL REVIEW E 96, 052313 (2017)

TABLE V. Properties of airports in Iran.

Number of edges

ID IFTA Pair Type Domestic International Internal External

1 THR 5 Core 36 4 24 16
2 ZAH 5 Periphery 5 2 3 4
3 KER 5 Core 6 0 3 3
4 KSH 5 Periphery 5 0 3 2
5 PGU 5 Core 4 0 2 2
6 ABD 5 Periphery 4 0 1 3
7 GBT 5 Core 3 0 2 1
8 MRX 5 Periphery 3 0 1 2
9 BUZ 5 Periphery 2 1 1 2
10 OMH 5 Periphery 1 1 1 1
11 XBJ 5 Periphery 2 0 1 1
12 GSM 5 Periphery 2 0 1 1
13 NSH 5 Periphery 2 0 1 1
14 ADU 5 Periphery 2 0 1 1
15 CQD 5 Periphery 1 1 1 1
16 SDG 5 Periphery 1 0 1 0
17 RZR 5 Periphery 1 0 1 0
18 KHD 5 Periphery 1 0 1 0
19 BXR 5 Periphery 1 0 1 0
20 BJB 5 Periphery 1 0 1 0
21 AFZ 5 Periphery 1 0 1 0
22 ACP 5 Periphery 1 0 1 0
23 IIL 5 Periphery 1 0 1 0
24 PFQ 5 Periphery 1 0 1 0
25 YES 5 Periphery 1 0 1 0
26 IKA 1 Core 1 43 40 4
27 MHD 1 Core 21 17 26 12
28 SYZ 1 Periphery 14 9 17 6
29 IFN 1 Core 11 5 11 5
30 BND 1 Core 12 2 12 2
31 AWZ 1 Core 8 5 12 1
32 TBZ 1 Core 6 4 9 1
33 KIH 1 Core 7 1 7 1
34 RAS 1 Periphery 7 1 6 2
35 ZBR 1 Periphery 4 2 4 2
36 LRR 1 Core 2 3 4 1
37 AZD 1 Periphery 3 1 3 1
38 SRY 1 Periphery 3 1 3 1
39 BDH - Residual 1 0 0 1

algorithms. We set θ1 = 0.9 and θ2 = 0.05, use the same �

and π parameter values as those used in the main text and vary
N ∈ {10,20, . . . ,400}.

Figure 11(a) shows the VI for the networks composed of
a single core-periphery pair, whose structure is schematically
shown in Fig. 1(a). The VI for the BE-KL and our algorithms
is approximately equal to zero except for small N . The VI for
the two-step algorithm increases as N increases. The VI for
the TV algorithm is large for N � 230. The TV algorithm did
not terminate for N � 240. As expected, the VI values for the
TV+ algorithm are similar to those for the TV algorithm and
similarly large for N � 240.

Figure 11(b) shows the results for the networks composed
of two core-periphery pairs, whose structure is schematically
shown in Fig. 1(b). The VI for the BE-KL algorithm is large for

TABLE VI. Properties of the airports in Nigeria.

Number of edges

ID IFTA Pair Type Domestic International Internal External

1 ABV 8 Core 11 8 9 10
2 AKR 8 Periphery 2 0 1 1
3 BNI 8 Periphery 2 0 1 1
4 CBQ 8 Periphery 2 0 1 1
5 PHC 8 Periphery 2 0 1 1
6 QOW 8 Periphery 2 0 1 1
7 QRW 8 Periphery 2 0 1 1
8 KAD 8 Periphery 2 0 1 1
9 ILR 8 Periphery 1 0 1 0
10 SKO 8 Periphery 1 0 1 0
11 LOS 1 Core 11 23 23 11
12 KAN 1 Periphery 3 5 6 2
13 ENU – Residual 2 0 0 2
14 JOS – Residual 1 0 0 1

all values of N because the BE-KL algorithm is not designed
for multiple core-periphery pairs. The VI values for the two-
step and our algorithms are comparable and close to zero for
N � 50. The VI for the TV and TV+ algorithms is larger
than that for the other algorithms. The TV algorithm did not
terminate for N � 60.

FIG. 14. Airport network within (a) Iran, (b) Nigeria, (c) core-
periphery pair 6 based in Alaska, (d) Ecuador, and (e) Russia. The
line color indicates the core-periphery pair to which the two airports
belong. The edges connecting two airports in different core-periphery
pairs are shown in gray. The numbers attached to some airports
indicate the IDs of the airports listed in Tables V–IX. We only
show the IDs of the core airports, some peripheral airports and some
residual airports.
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TABLE VII. Properties of the airports in core-periphery pair 6
based in Alaska.

Number of edges

ID IFTA Pair Type Domestic International Internal External

1 ADQ 6 Core 10 0 9 1
2 ORI 6 Core 2 0 2 0
3 KOZ 6 Periphery 2 0 2 0
4 AKK 6 Periphery 1 0 1 0
5 KLN 6 Periphery 1 0 1 0
6 OLH 6 Periphery 1 0 1 0
7 ALZ 6 Periphery 1 0 1 0
8 AOS 6 Periphery 1 0 1 0
9 KKB 6 Periphery 1 0 1 0
10 KPY 6 Periphery 1 0 1 0

In both types of the synthetic networks, the TV and TV+

algorithms do not infer the true planted core-periphery struc-
ture for the entire range of N . Tunç and Verma applied their
algorithm to dense and weighted networks. In contrast, here we
have analyzed sparse and unweighted networks, which might
be a main reason for the poor performance of these algorithms.

Next, we measure the speed of the TV+ algorithm (which is
faster than the TV algorithm) for the synthetic networks used
in the main text (Sec. IV C). For the synthetic networks, we set
N = 400, θ1 = 0.9 and θ2 = 0.05. For the synthetic network
with a single core-periphery pair [Fig. 1(a)], the TV+ algorithm
requires 29.6 s on average. This is 83 times slower than our
algorithm (Table IV). For the synthetic network with two core-
periphery pairs [Fig. 1(b)], the TV+ algorithm requires 81.1
s on average, which is 338 times slower than our algorithm
(Table IV). On the karate club network, for which we set the
number of the core-periphery pair to two, the TV+ algorithm
requires 298.3 s on average, which is 11,932 times slower than
our algorithm. For the blog and the airport networks, the TV+

algorithm did not terminate in 12 h.

APPENDIX B: DIVISIVE ALGORITHM

The divisive algorithm [3–5,45] partitions the nodes into
communities using the Louvain algorithm [41] and then par-

TABLE VIII. Properties of the airports in Ecuador.

Number of edges

ID IFTA Pair Type Domestic International Internal External

1 UIO 9 Core 10 9 9 10
2 CUE 9 Periphery 2 0 1 1
3 GPS 9 Periphery 2 0 1 1
4 LOH 9 Periphery 2 0 1 1
5 OCC 9 Periphery 1 0 1 0
6 XMS 9 Periphery 1 0 1 0
7 MEC 9 Periphery 1 0 1 0
8 PVO 9 Periphery 1 0 1 0
9 ESM 9 Periphery 1 0 1 0
10 LGQ 9 Periphery 1 0 1 0
11 GYE 3 Core 5 11 11 5
12 SCY 3 Periphery 1 0 1 0

TABLE IX. Properties of the airports in Russia. Only the airports
in core-periphery pair 7 and those in other core-periphery pairs that
are adjacent to core-periphery pair 7 are shown.

Number of edges

ID IFTA Pair Type Domestic International Internal External

1 YKS 7 Core 13 1 6 8
2 BQS 7 Periphery 4 0 1 3
3 UUD 7 Periphery 2 0 1 1
4 CKH 7 Periphery 1 0 1 0
5 CYX 7 Periphery 1 0 1 0
6 IKS 7 Periphery 1 0 1 0
7 NER 7 Periphery 1 0 1 0
8 DME 1 Core 62 97 134 25
9 VKO 1 Core 34 15 42 7
10 OVB 1 Core 14 18 27 5
11 VVO 1 Core 13 7 11 9
12 KHV 1 Core 14 5 11 8
13 IKT 1 Periphery 9 5 10 4
14 GDX 1 Core 8 0 7 1
15 UUS 2 Core 7 6 8 5

titions the nodes in each community into core and peripheral
nodes using the BE-KL algorithm. We apply the statistical test
(Sec. II C) to the core-periphery pairs detected by the divisive
algorithm.

The VI values for the synthetic networks are shown in
Fig. 12. For the synthetic network with a single core-periphery
pair [Fig. 1(a)], the VI values are large in the entire θ1-θ2

parameter space [Fig. 12(a)] because the divisive algorithm
divides the planted single core-periphery pair into multiple
core-periphery pairs. For the synthetic network with two
core-periphery pairs [Fig. 1(b)], the VI values are larger than
those for the proposed algorithm for most θ1 and θ2 values
[Figs. 2(f) and 12(b)]. For the synthetic network with a single
core-periphery pair and residual nodes [Fig. 1(c)], the VI
values are larger than those for the proposed algorithm for
most θ1 and θ2 values [Figs. 2(i) and 12(c)]. For the synthetic
network with two core-periphery pairs and residual nodes
[Fig. 1(d)], the VI values are larger than those for the proposed
algorithm in the entire parameter region of θ1 and θ2 [Figs. 2(l)
and 12(d)].

The core-periphery structure in the karate club detected by
the divisive algorithm is shown in Fig. 13(a). The divisive
algorithm detects two core-periphery pairs, each of which
mostly consists of the members supporting the same leader
[Fig. 13(a)]. The average density of intracore edges and that
of core-periphery edges within a core-periphery are 1.000 and
0.619, respectively, which are larger than the edge density for
the entire network, p = 0.139. The average density of intrape-
ripheral edges within a core-periphery pair is 0.080, which
is smaller than the edge density for the entire network, p =
0.139. Therefore, the core-periphery structure in the karate
network detected by the divisive algorithm is consistent with
the concept of core-periphery structure based on edge density.

In the blog network, the divisive algorithm detects three
core-periphery pairs, each of which mostly comprises the
blogs with the same political leaning [Fig. 13(b)]. Two core-
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periphery pairs are much larger than the third one and have the
opposite political leanings. The divisive algorithm identifies
more residual nodes than the two-step algorithm. The average
density of intracore edges and that of core-periphery edges
within a core-periphery pair are 0.3964 and 0.2906, respec-
tively, which are larger than the edge density for the entire
network, p = 0.0224. The average density of intraperipheral
edges within a core-periphery pair is 0.0138, which is smaller
than the edge density for the entire network, p = 0.0224.
Therefore, the core-periphery structure in the blog network
detected by the divisive algorithm is consistent with the
concept of core-periphery structure based on edge density.

In the airport network, the divisive algorithm identifies 12
core-periphery pairs, each of which mostly consists of the
airports located in the same geographical region [Fig. 13(c)].
The average density of intracore edges and that of core-
periphery edges within a core-periphery pair are 0.6335
and 0.2978, respectively, which are larger than the edge
density for the entire network, p = 0.0036. The average
density of intraperipheral edges within a core-periphery pair
is 0.0419, which is larger than the edge density for the entire
network, p = 0.0036. Therefore, the core-periphery structure
in the airport network detected by the divisive algorithm is
inconsistent with the concept of core-periphery structure based
on edge density.

APPENDIX C: PROPERTIES OF AIRPORTS IN
CORE-PERIPHERY PAIRS 4–10

Our algorithm separates the international and domestic
airports in the Philippines, Iran, and Nigeria into different

core-periphery pairs. In Iran, the airports mainly serving the
international and domestic flights belong to core-periphery
pairs 1 and 5, respectively (Table V). In Nigeria, the airports
mainly serving the international and domestic flights belong
to core-periphery pairs 1 and 8, respectively (Table VI).
There is no clear geographical division of the international
and domestic airports in Iran and Nigeria [Figs. 14(a)
and 14(b)].

Some core airports in Alaska, Ecuador, and Russia serve as
gateway airports in the respective regions. In core-periphery
pair 6 based in Alaska, core airport 1 is adjacent to all the other
airports in this core-periphery pair [Fig. 14(c)]. In addition,
only core airport 1 has an edge to the rest of the network
(Table VII) and therefore is the unique gateway airport for
this core-periphery pair. In Ecuador, most of the airports
(10 airports; 83%) are adjacent to airport 1, which is the
unique core airport in core-periphery pair 9 [Fig. 14(d)]. This
core airport has most of the edges (10 edges; 77%) between
core-periphery pair 9 and the rest of the network (Table VIII).
Therefore, core airport 1 serves as a gateway airport in
Ecuador. Airport 11 also functions as a gateway airport in
Ecuador. The Russian airports belong to core-periphery pair 1,
2, or 7 [Fig. 14(e)]. Most of the airports in core-periphery 7 are
located in Russian Far East. In core-periphery 7, all peripheral
airports are adjacent to core airport 1. The core airport 1 has
most of the edges (eight edges; 67%) between core-periphery
pair 7 and the rest of the network (Table IX). Therefore, core
airport 1 serves as a gateway airport for this core-periphery
pair. There is no clear separation between the domestic and
international airports into different core-periphery pairs in
Russia.
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